MC88110UM/AD |

MC88110

SECOND GENERATION
RISC MICROPROCESSOR
USER'S MANUAL

@ MOTOROLA

Overview

Programming Model

Addressing Modes and Instruction Set Summary
Floating-Point Implementation

Graphics Unit Implementation

Instruction and Data Caches

Exceptions

Memory Management Units

Instruction Timing and Code
Scheduling Considerations

Instruction Set

—t

System Hardware Design
Appendix A

Index

—h

Overview

Programming Model

Addressing Modes and Instruction Set Summary
Floating-Point Implementation

Graphics Unit Implementation

Instruction and Data Caches

Exceptions

Memory Management Units

Instruction Timing and Code
Scheduling Considerations

Instruction Set

System Hardware Design

Appendix A

Index

MOTOROLA

MC88110

Second Generation
RISC Microprocessor
User’s Manual

Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design.
Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it
convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use
as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any
other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should
Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and
the @ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© MOTOROLA INC., 1991

TABLE OF CONTENTS

Paragraph Page
Number Title Number

Section 1

Overview
1.1 FEAtUe LiSt ...ttt ettt e s 1-2
1.2 88000 Family OVEIVIEW......c.c.ocireeirieeceeenerter et saees 1-3
1.2.1 Register-to-Register ArchiteCture...........cccooveeeennninceee e 1-3
1.2.2 Simplified Addressing MOEScooeeerririnieeteee et e 1-4
1.2.3 INSLrUCtioN FOMMALS ..o 1-4
1.2.4 Levels Of PriVIIRge ...ttt e s 1-4
1.2.5 Special FUNCHON UNItS......c.coooiiieeeereeee et 1-4
1.2.6 Optimizing SOfWAIE ...t e e 1-6
1.3 MC88110 Processor OVEIVIEWcoooeeereeeeieieecreeirsiescee et ee e 1-6
1.3.1 INTEINAI BUSES.....ceieeee ettt sttt et et 1-8
1.3.2 General Register File ...t et 1-8
1.3.3 Extended Register File.........cooiieiiieeeeeete e 1-8
1.3.4 Integer Execution UNItS........ccoeceeeierenieieeeceee e 1-9
1.3.5 Multiply and Divide Execution UnitS.........ccccvevieeviieiieeeeeceeceeee 1-9
1.3.6 Floating-Point Function Unit..........ccoeeiiiiicee e 1-9
1.3.7 Graphics Processing Function Unit............ccceieniinnninnieneneeneeeeeee 1-10
1.3.8 Instruction Unit/SEQUENCETcoeeeeieeeeeeee et e 1-10
1.3.8.1 INSTUCHON UNit....c.cetiiieiecee ettt 1-10
1.3.8.1.1 Program FIOW ...ttt 1-10
1.3.8.1.2 Exception ProCeSSINGccoeuerriereerere sttt 1-11
1.3.8.1.3 Register Scoreboard.............coooiiceeiieeeee e 1-11
1.3.8.1.4 General Control RegiSters.........coeeeeveirreiececeeeeeeree e, 1-11
1.3.8.2 SEQUENCEL ...ttt ettt se s s b e nann 1-11
1.3.9 INSIUCHON CACRE ...ttt 1-12
1.3.10 Target INstruction Cache ... 1-13
1.3.11 INSErUCHON MMU ..ot 1-13
1.3.12 Data UNit.......eceeieieteiesee ettt eb et es s e e en s 1-14
1.3.13 Data CaACh@ ...ttt s aa e s 1-14
1.3.14 Data MMU ...ttt et 1-15
1.3.15 External BuS OVEIVIEW..........couiuieieieieceeeetcteee st 1-16
1.3.16 System Debugging Features............cooeiiririiieeeeceeee e 1-17
1.4 EXECULION MOEIciiiini ettt ettt et 1-17
1.4.1 REGISIEE S ...t 1-17
1.4.2 General Timing Considerations.........cceeeeeeeernreeeeenereneneneeerereranene. 1= 18

MOTOROLA MC88110 USER’S MANUAL i

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
1.4.21 Source and Destination Data Considerations...........ccocoevverenannee 1-19
1.4.2.2 Execution Unit Considerations...........cocoooeveevieinnneenineceee e 1-20
1.4.2.3 HIStOry BUSfEr ...t sttt 1-21
1.5 InStruction Set SUMMANY ..o e 1-22
Section 2
Programming Model
21 ProCessor SEAtES......c.couivierireieeeetee ettt et e et 2-1
2141 RESEE SHAE. ... 2-1
2.1.2 EXCEPLION State....c.coeeieiieee ettt 2-1
2.1.3 Normal Instruction Execution State..........ccoococonrinicneinnenccceeee 2-2
2.1.31 Supervisor Level of Privilege. ..o 2-2
2.1.3.2 User Level of Privilege.......c.coevieeeeeeceeteeeceeee e 2-3
2.1.3.3 Changing Levels of Privilegecoeeeveureeeececireeeeee e 2-3
2.2 Register DeSCHPHIONcciiri ettt st st 2-3
2.21 Supervisor/User Programming Model..........ccocooeiicnininncncnnneeee 2-3
2.2.2 General Register File ...t 2-5
2.2.3 Extended Register File.......c.ooiiiii e 2-5
224 Control REQISIEISocvieeeeeeeeeee ettt e ettt 2-6
2.2.4.1 General Control RegiSters.......c..covvirieeienireeeeeeeeee e 2-6
22411 Processor Identification Register ... 2-8
22412 Processor Status Register........ccoocoverieiiiiicecceeee e 2-9
2.2.41.3 Supervisor Storage Registers.......cccoovevveeeeceeeeeeeeeeee e 2-11
2.2.4.2 Floating-Point Control Registers.........ccccevveniecnnnccre e 2-11
2.3 Operand CONVENLONS........ccocervireiirierceeeeereee et ete e eae e 2-12
2.3.1 OPErand TYPES. ..ccceuireeeereenterteett et s trec ettt see e e e s s s nae 2-12
2.3.2 Data Organization in General Registers..........ccccceevvevvvevneeceneeennne 2-12
2.3.3 Data Organization in Extended Registers........cccocevvnnnienenneccrneennne. 2-14
234 Data Organization in Memory and Data Transfers..........cccccceveveueneen. 2-15
2.3.41 MiSAlIGNEd ACCESS.......coveriretriirietreetee e ettt et er et s 2-16
2.3.4.2 BYLE OFAEIANG. ... ettt ettt s 2-16
Section 3
Addressing Modes and Instruction Set Summary

3.1 AAAressing MOAES......cc.vuviireerrr ettt st 3-3
3.1.1 Computational Addressing MOdES.......cccoeveieeeenienreneieecceeeeeeeenas 3-3
3.1.1.1 Triadic Register Addressing......c...veveeeruesieerieeeseneeese e 3-3
3.1.1.11 ALU INSHUCHONS ...ttt s s 3-3
3.1.1.1.2 Floating-Point INStruCtions.............cceeiiiiiicieeeececeee e 3-4
3.1.1.1.3 GraphiCs INSIUCHIONS.......c.coveiireeeteee e 3-6
3.1.1.2 Immediate AdAreSSiNg.......coeiirieirrerereieee e 3-7
3.1.1.21 Register with 6-Bit Immediate Addressingcoccevvvvvccvcrieenne 3-7

iv MC88110 USER’S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
3.1.1.22 Register with 10-Bit Immediate Addressing........cccccoeveevcerrnnnnnne.e. 3-8
3.1.1.2.3 Register with 16-Bit Signed Immediate Addressing..................... 3-9
3.1.1.2.4 Register with 16-Bit Unsigned Immediate Addressing................ 3-10
3.1.1.3 Control Register AdAresSsing.........cceeeeereerrrrreerenereeecereseesee e 3-11
3.1.2 Load/Store/Exchange Addressing Modes.......cccoeevrirmnnieoscenceccnns. 3-12
3.1.2.1 Register Indirect with Immediate Index Addressing...........cccuuu....... 3-12
3.1.2.2 Register Indirect with Index AddreSSingccccoveeeeevreeeeeiecieceerenene 3-13
3.1.23 Register Indirect with Scaled Index Addressingc.ccccoceeevvvvreuene. 3-14
3.1.3 Flow Control Addressing MOdES.........cccuecuveeceecieenieeeie e 3-16
3.1.3.1 Triadic Register AdAressing.......cccoceerereeceeinecennenie e seeseseennns 3-16
3.1.3.1.1 Jump Instructions (JMP, JSI) oo 3-16
3.1.3.1.2 Trap-Generating Bounds-Check Instruction (tbnd).................... 3-16
3.1.3.2 Register with 9-Bit Vector Table Index Addressingc.ccccceueuenee... 3-18
3.1.3.3 Register with 16-Bit Displacement/Immediate Addressing.............3-19
3.1.3.31 Bit-Test and Conditional Branch Instructions...........c..ccooeueinee. 3-19
3.1.3.3.2 Trap-Generating Bounds-Check Instruction (tbnd)..................... 3-21
3.1.3.4 26-Bit Branch Displacement Addressingc.ccoeeeceeeeenecnenneerennnne. 3-21
3.1.3.5 Return from Exception (rte) and lllegal Operation (illop)

InStruction AddreSSingc.cceeeeeeeivieseeeeeee et rsse s 3-22
3.2 INStruction Set SUMMATY ..ottt 3-23
3.21 Logical INSTrUCHONS........ccomiiiiiicic e 3-26
3.2.2 Integer Arithmetic INSTUCHONSccccieiinieee e 3-27
3.23 Bit-Field INSTrUCHONS ..ot 3-28
3.24 Floating-Point INSIIUCLIONS.........ccooiiiiiiiiieerrccete et 3-28
3.25 Graphics INSIIUCHIONS.......ccecveeieieeeeeeeeeeeeerecte ettt e 3-30
3.2.6 Load/Store/Exchange INStrUCtIONSccceeveveeeereeeeecetererceeee e 3-31
3.2.7 Flow Control INStrUCHONSccoeiieie ettt 3-31

Section 4
Floating-Point Implementation

4.1 Floating-Point Numeric Representationccocovvvvveveveeeceeecenee 4-2
411 Floating-Point Numeric FOrmatscocoeeeeieeeeeceeceeeceeeeeee e 4-2
41.2 Normalized Floating-Point Numbers............cccce oo evieecciieeecieceeeevee 4-4
413 Denormalized NUMDEIS ...t st 4-5
4.1.4 Unnormalized Double-Extended-Precision Numbers......................... 4-6
415 Not-a-Numbers (NANS).......ccicrivireeire ettt 4-7
4.2 ROUNAING ...ttt ettt et e et tsaeeraeeeseeene 4-7
4.21 ROUNA-T0-NEAIESt ...t st 4-9
422 ROUNA-TOWAIA-ZEIO0c.covreeiiriiieirect ettt e ettt 4-9
4.2.3 Round-toward-Positive-Infinity ... 4-9
4.24 Round-toward-Negative-Infinitycccoeveonnnnnnnn e 4-9
4.3 Floating-Point EXCEPHONSccoiveevireerre ettt 4-9

MOTOROLA MC88110 USER’'S MANUAL v

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
4.3.1 Floating-Point Control RegiSters........c.oceevrieveneneieneceenerreeeens 4-12
4311 Floating-Point Exception Cause Register (FPECR)............ccc......... 4-12
4.31.2 Floating-Point Control Register (FPCR)........ccccooeeveeiiremreeeceeeeceenene 4-14
4.3.1.3 Floating-Point Status Register (FPSR)cccccoenvenevmrrcecererceeee 4-16
432 IEEE Exceptions CONfOrmanCe.........ccoceveeeveeenerenenenenenenecreeseseessesennens 4-18
4321 Floating-Point Unimplemented Instruction..............cccoociiinne 4-18
43.2.2 Floating-Point Privilege Violation ... 4-19
4323 Floating-Point to Integer Conversion Overflowcccocveeeenrnee.e. 4-19
4324 Floating-Point Reserved Operand...........cccoovoveevveceveecececceeceeees 4-20
4.3.2.5 Floating-Point OVerflow ...t 4-20
4.3.2.6 Floating-Point Underflow..........ccccoeirirrrneieer e 4-22
4.3.2.7 Floating-Point Divide-by-Zero ... 4-24
4.3.2.8 Floating-Point IN@XaCt ..ottt 4-24
4.3.3 Time-Critical Floating-Point (TCFP) Mode......c.ccooecvneeceniinrnenenene 4-25
4.3.3.1 Floating-Point Unimplemented Instruction in TCFP Mode.............. 4-25
4.3.3.2 Floating-Point Privilege Violation in TCFP Mode.........cccccceueeruenee... 4-26
4333 Floating-Point to Integer Conversion Overflow in TCFP Mode.......4-26
4.3.3.4 Floating-Point Reserved Operand in TCFP Mode.........ccoueuvunuue.. 4-26
4.3.35 Floating-Point Overflow in TCFP Modecccocevnierececceeeieeeenee, 4-27
4.3.3.6 Floating-Point Underflow in TCFP Mode.........ccceeevvevnicieecieee 4-27
4.3.3.7 Floating-Point Divide-by-Zero in TCFP Mode.........ccoeoevevvvrennnee. 4-27
4.3.3.8 Floating-Point Inexact in TCFP Modecccoovveeeeveiceeeeeeeeeeeeene 4-27
Section 5
Graphics Unit Implementation

5.1 GPU OVEIVIEW ...ttt sttt ettt s s e st b 5-1
5.2 Graphics Data TYPeS.......ccoeiiereecrercr e e e 5-3
5.2.1 General Data TYPES ...c.cvveirerrerecrere et ettt 5-3
5.2.2 Fixed-Point Data Type Definition........cccoievennicnnicrecnsecne e 5-4
5.2.3 Other Common Data TYPESccceveeeeeeieeieeeeeeeeee ettt 5-5
5.2.3.1 PiXel TYPES. ..ttt et st e et aeaan 5-6
5.2.3.2 NUMDET TYPES .ttt e 5-7
5.3 Graphics INSITUCHIONS......c..ooiiiceerteteeee et s 5-7
5.3.1 Pixel Add/Subtract Operations.........cceceveeiereeeeeeceseereeeeeee e eneeas 5-7
5.3.1.1 Types Of SAtUIationccccvvrieirreeeee et e 5-8
5.3.1.2 User-Defined Saturation Limits.........cccocovvenieniiinieinencceeeee e 5-10
5.3.2 Pixel Pack/Unpack Operations........c..coeceeerereerineenteneeieneenenneeeesesessesaenens 5-10
5.3.3 Pixel Multiply Operation.........co.coccieeieeiiriiiretesere e st 5-12
5.4 Primitive OPerationS......cocceerirrirnreeeeeee sttt 5-13
5.4.1 Arithmetic OPEratioNS.......cov i recrrieirrc ettt en 5-13
5.4.11 INEEIPOIAtION ...t 5-13
5.41.2 INtENSItY SUMMING ..oeieiireieee e 5-13

vi MC88110 USER’S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
5.4.2 FOrmat CONVEISION.......coieieieeeeeece e es e se et sae e eae s s e enmeeeeen 5-13
5.4.2.1 Packing PiXelS......coo et e 5-14
5.4.2.2 Unpacking PiXelS........cco it 5-16
5.43 INtENSity SCANNG.....c.cveeveeereretrer ettt s 5-18
5.4.4 Coordinate COMPANSON.........cueirreecieeee et se s s 5-19
5.5 Accelerated FUNCHONSov ettt e 5-20
5.5.1 Gouraud Shadingccceveeeerierrrereeee s s es s 5-20
5.5.2 Hidden-Surface Removal.............oooeeeiiieeeeeeeee e 5-22
5.5.3 Pixel Block Transfer (PiXBIt)..........ccooeereerriereereeeeeeee e 5-23
554 COMPOSHING. ..c.cieeeuiretrie ettt ettt sttt st e st s e s 5-23
Section 6
Instruction and Data Caches

6.1 Cache Organization ...ttt er s 6-1
6.1.1 DAt CaChB.....eeeeeeeee ettt et et 6-2
6.1.2 INSHUCHION CACRE ...t eeeeeeee s 6-3
6.1.3 Target Instruction Cache (TIC)ooeivenininiieireee e, 6-4
6.2 Cache CONBIENCY.....ccocvieeiieieeieteeert ettt s s se e aeerenen 6-4
6.3 Address Translation OVEIVIEW ..ottt e 6-5
6.3.1 - BATC DESCHPLOIS ...ttt sttt st ent et se s s as e seaes 6-7
6.3.2 PATC DESCHIPIOIScueeeirieeceiteecerert et sttt et st s e s es e nenes 6-8
6.4 Memory Update PONCY........ccoooieiieeieeeeee et 6-10
6.4.1 WIIE-BACK MOAE........eee et 6-10
6.4.2 WIite-Through MOGE ..ottt e 6-11
6.4.3 (072 o] o 1= [o1 o SRR UORR ORI 6-12
6.5 Cache LooKUP Operationccccerecereerereeeeeee et eiese s eveeaeaee 6-12
6.6 INSIUCHION CaChE ACCESSES........ueeiieeieie ettt ete e s e eeeaeas 6-15
6.6.1 INStruction Cache Hit.........oooeiieieeeeeeeceee ettt e e e 6-16
6.6.2 INStrUCtioN CaChe MISS........oooeeeieeeieeee e 6-16
6.7 Data Cache Decoupling.......ccceeerreeieececeeeeeeee et e 6-17
6.8 Data Cathe ACCESSES.....c..uvieieeeeeeeeeee et sae s resete e s e saesnes 6-18
6.8.1 Data Cache REA Hito.ooeeeeeeeeeeeeeeeeee ettt e e eean 6-21
6.8.2 Data Cache Read MiSS ..ot 6-21
6.8.3 Data Cache Wt Hit........ ..ot 6-24
6.8.4 Data Cache WHEE MISSoeeieeieeeeeeeee ettt e e e e eees 6-26
6.8.5 Data Cache XMeM ACCESSESoeeeueeviiieecie e etreeeeee et er et e eeeeseen 6-31
6.9 Cache Control and Mainte@nNaNCe.........ooeeeeiiieeiee et eeeenee e 6-31
6.9.1 User-Mode Cache Control Features...........oouveeeeeeeeeceveenceie e 6-31
6.9.1.1 SEOrE-THIOUQGN ...ttt ettt ettt 6-33
6.9.1.2 TOUCKH LOGM. ..ttt ettt et ae e e e e emeas 6-33
6.9.1.3 FIUSN I0AQA. oottt e e e e e e ne e 6-34
6.9.1.4 AlOCALE TOAA. ..ottt sttt et e e s eeneseneen 6-34

MOTOROLA MC88110 USER’S MANUAL vii

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
6.9.2 Cache Control REGISterSocevvrivenrieecirecerccrtre et 6-35
6.9.2.1 Instruction MMU/Cache/TIC Command Register (ICMD)................ 6-35
6.9.2.2 Instruction MMU/Cache Control Register (ICTL).......cccccceevirenceenenne 6-36
6.9.2.3 Instruction System Address Register (ISAR)cccoeceviveveennnncnenne 6-38
6.9.2.4 Data MMU/Cache Command Register (DCMD)c.ccccoorvnnrnneen. 6-39
6.9.2.5 Data MMU/Cache Control Register (DCTL).....ccccceevieeviiiniieeeeen. 6-40
6.9.2.6 Data System Address Register (DSAR)cocovveciniennnnceieeeen, 6-42
6.93 The Invalidate Command.........c.ccveerrrerreenreee e 6-43
6.9.4 The Flush Command..........cooveeeereeiee et 6-43
6.9.5 Cache Fre@zing.......oo oottt et 6-44
Section 7
Exceptions

71 EXCEPHON OVEIVIEW.......ceiiiiiitterin ettt e st 7-1
7.2 The EXCeption MOEL ..ottt 7-2
7.2 The History BUfer ...ttt 7-2
7.22 Exception Vectors and Vector Base Register (VBR).......ccccoeueunnnee. 7-3
7.3 Exception Recognition, Processing, Handling and

Return from EXCeptions...........ccccvvveievieceeeeece et 7-5
7.3.1 Exception ReCOGNItIONcooiierrieceer ettt 7-5
7.3.1.1 Internal or Bus Generated EXCeptions........ccccoeveeveeeerececerecececreve 7-5
7.31.2 Externally Generated Interrupts ..o, 7-6
7.31.3 [110 1 (1= TR UU USSR 7-7
7.3.2 EXCEPtion ProCESSINGcvvevieiriieeereeecteeiniecesteseere st 7-7
7.3.3 Exception HandliNgcooueuiiiiiiirreecece et s 7-9
7.34 Return from EXCeptions.......c.cocivvievirieiieiieneecri et 7-10
7.4 L qot=T o] (o] o I Y0 11 T OO 7-11
7.4.1 Latency for Internal or Bus Generated Exceptions.......ccccceevvveevrvennes 7-11
7.4.2 Latency for Externally Generated Interruptsccoeeeeiinecncccccenns 7-13
7.5 TYPeS Of EXCEPLONS ..ottt sttt 7-13
7.5.1 Interrupts........coeveueenee. OO OO PRSPPI 7-13
7.51.1 Maskable Interrupt (INT)ccoooiviiiiicicc e 7-13
7.51.2 Non-Maskable Interrupt (NMI) ..o 7-13
752 Instruction Unit EXCEPLIONS.......cvoeieuieieeeieieee e 7-14
7.5.2.1 Misaligned Access Exception (Vector Offset $20)..........ccccccueuneeee. 7-14
7522 Unimplemented Opcode Exception (Vector Offset $28).................. 7-14
7.52.3 Privilege Violation Exception (Vector Offset $30)......cccccceevereecunee.. 7-15
7524 Trap Instruction Exceptions (Vector Offset $400-$7F8).................. 7-15
7525 Integer Overflow Exception (Vector Offset $48)c.cceovvenrrerenennene. 7-15
7.5.3 Memory ACCess EXCEPONS ..ot 7-15
7.5.31 Instruction Access Exception (Vector Offset $10)ccccoevvvcvrenennne. 7-15
7.5.3.2 Data Access Exception (Vector Offset $18)covvevevevevevveereereernene. 7-17

viii MC88110 USER’S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
7.5.4 Floating-Point Unit EXCEPONScccoiiiciniiicee e 7-19
7.5.4.1 Floating-Point Unimplemented ... 7-21
7.54.2 Floating-Point Privilege Violationcooooeiiiiii e 7-21
7.5.4.3 Floating-Point to Integer Conversion Overflowccoccvevvnenae. 7-21
7.5.4.4 Floating-Point Reserved Operand............cccccovriiennenceneenncneenens 7-21
7.5.45 Floating-Point OVerflow ...t 7-21
7.5.4.6 Floating-Point Underflow.............ccooooiiii e, 7-21
7.5.4.7 Floating-Point Divide-Dy-Zero ... 7-21
7.5.4.8 Floating-Point INeXact ... 7-22
7.5.5 Graphics Unit Exceptions (Vector Offset $3A0).......ccoovcieeiieneiieen, 7-22
7.5.5.1 SFU2 DIiSabIeq......c.ooiiiieeieeieiticte ettt 7-22
7.5.5.2 SFU2 Unimplemented.......ccooiieiieie et 7-22
7.5.6 Error EXCEPHON.....cooii e 7-22
7.5.7 RESEL ...t et et st 7-22
7.5.8 Address Translation Cache (ATC) Miss Exceptioncccocceeeveneneennene. 7-23
Section 8
Memory Management Units

8.1 MMU OVEIVIEW......vvieiieteeeee ettt et s st et s b e s 8-1

8.1.1 MMU Organizzation..........oeeeeierniee ettt ere e 8-2

8.1.2 Block and Page Translation Capabilityc.cceeuvevevneeeneiieccie, 8-4

8.1.3 ATC DesCriptor CONCEPL........c.erveiieiiiiiiieiee ettt 8-4

8.1.4 Table Search OPtONS ..o 8-5

8.1.5 Address Translation MOdeS ... 8-6

8.1.6 General Flow of MMU Address Translation..........ccoecoveeeiciieneenenene, 8-7

8.1.7 MMU Exceptions and Faults SUMMarycccccovvinenienenieneneeienns 8-8

8.1.8 MMU Control Register SUMMATYc.ccveiineeeieiieceee e, 8-10
8.2 Selection of Address Translation MoOdeccccovivnniienvnncinnees 8-12
8.2.1 Identity Translation ... e 8-13
8.2.2 Block-Exclusive Translation...........couoveivieieiiniii e 8-13
8.2.3 Page-Exclusive Translation ..o 8-13
8.2.4 Combined Block/Page Translation...........ccceoeveieneeiienie e 8-13
8.3 Block ADdress TransSIationc.covveeeeennne i 8-13
8.3.1 BATC Organization.........ccceveruereeiinesieneeieresiciee st 8-13
8.3.2 Block Address Translation FIOW...........ccceiiiiiininiienieecee e, 8-15
8.3.3 BATC Descriptor FOrmat.........cccooiiiiieeeeeeeeteeee e 8-15
8.3.4 Sharing Blocks Between Programsccceveievnneneeniece e 8-18
8.3.5 Block Descriptor MaintenancCec..ccceeeevieineneviiieine et 8-19
8.3.5.1 Selecting the BIOCK Siz€c.cooiiiiieiieiieeeece e, 8-19
8.3.5.2 Loading BATC ENtHES ..ot e 8-20
8.3.5.3 Reading BATC ENtHES....cocoeieee ettt 8-20
8.3.5.4 Invalidating BATC ENtries ... 8-20

MOTOROLA MC88110 USER’S MANUAL ix

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
8.4 Page Address Translation...........c.coeieeieneciienne e 8-20
8.4.1 PATC Organization........cooeeeeerereereenrnene e enee e reeseeseseeses e eene 8-21
8.4.2 Page Address Translation FIOW........cccoceivenennccncnreccn e 8-21
8.4.3 PATC DesCriptor FOrMAL........cceoeiveeeirireirereeer e sae e 8-23
8.4.4 Software Maintenance of PATC Entries........cccocevvrennennnecenenecneens 8-25
8.4.4.1 Software Table Search Operations..........ccccvevierieeninirsereneieee 8-25
8.4.4.2 Loading PATC ENtriesS ..ot e 8-26
8.4.4.3 Reading PATC ENtresS ...ttt 8-26
8.4.4.4 Invalidating PATC ENtHes ...t 8-27
8.5 Page Descriptor Tables ... 8-27
8.5.1 Page Translation Table Structure............cococevevevninineniieieee e 8-27
8.5.2 Translation Table Descriptor FOrmats.........cccovveveeiiiiii i 8-31
8.5.2.1 Area Descriptor FOrmat.......c..ooo it 8-31
8.5.2.2 Segment Descriptor FOrmMat........coovvceiincnnenerenene e 8-32
8.6.2.3 Page Descriptor FOrmMat..........c.ooooueieiiicice e 8-34
8.5.2.4 Indirection Descriptor FOrmat ... 8-37
8.5.3 Hardware Table Search AlGOrithm..........ccooivieneniinee e 8-38
8.5.3.1 Table Search FaultS......coooiiree e 8-38
8.5.3.1.1 Table Search Bus EIOr......cioiecnecc e 8-38
8.5.3.1.2 Segment Descriptor Invalid ..o, 8-39
8.5.3.1.3 Page Descriptor Invalid ... 8-39
8.5.3.1.4 Supervisor Protection Violation. ..., 8-39
8.5.3.1.5 Write Protect Violation...... ..o 8-39
8.5.3.2 Detailed Flow of Hardware Table Search Operation...................... 8-39
8.5.3.3 Hardware Table Search Operation Timing........cccccoeeeeeieveenieniieenn. 8-44
8.5.4 Page Descriptor Table Considerationsccceevvenvcvnreneceineceees 8-44
8.5.4.1 Maintaining Used Status.........cccoeveirennnninn e 8-44
8.5.4.2 Maintaining Modified STatusS.......ccoeoireiriiniecce e, 8-45
8.5.4.3 SharNg Pages ...t ettt s s 8-45
8.5.4.4 Paging Sets of Page DesCriptors.c.cocoeieerieceseieee e 8-47
8.6 Data Breakpointscccueieiierere ettt e 8-47
8.6.1 Data Breakpoint DeSCrPIOIS.ccvivirireririe e 8-49
8.6.2 Enabling Data BreakpointS........ccccoevvevreiereneneeeeeeesee e 8-50
8.6.3 Loading Data Breakpoint Registerscooeiineeiinecnceerece, 8-50
8.6.4 Reading Data Breakpoint Registers.......c.cccoovvveiennienecnreiese s, 8-51
8.6.5 Data Breakpoint Faultccoooomreeieiieiceeeeece e 8-51
8.7 MMU/CaChe FaUIS ..ot 8-52
8.7.1 COPYDACK EITOF ...t 8-53
8.7.2 WItE-AllOCALE ETTON ..o e e 8-53
8.7.3 BUS EITON ..ottt sttt ettt 8-53
8.8 ATC Probe Capabilityccccveeieernreeneeerireeresen et 8-53
8.8.1 ATC Probe Commands...........cuueeieeriniiieeeenieerctne e eaees 8-54

X MC88110 USER’S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
8.8.2 ATC Probe RESUISccuvei ettt e 8-55
8.9 MMU/Cache Control RegiSters........ovveveiveererinenrieee e 8-56
8.9.1 Instruction MMU/Cache RegiSterscoovvevveiieenneeevecnre e 8-56
8.9.1.1 Instruction MMU/Cache/TIC Command Register (ICMD)................ 8-56
8.9.1.2 Instruction MMU/Cache Control Register (ICTL).....ccccceeovivrivrrvinnnns 8-57
8.9.1.3 Instruction System Address Register (ISAR)cooceeevvieveeciverieieens 8-59
8.9.1.4 IMMU Supervisor Area Pointer Register (ISAP)cocoovivieniinens 8-60
8.9.15 IMMU User Area Pointer Register (IUAP).......ccoocvrvniicie s 8-60
8.9.1.6 IMMU ATC Index Register (IIR)......oooorereeceee e 8-60
8.9.1.7 IMMU BATC R/W Port Register (IBP)........coeoeeninenineeneeceieeee, 8-61
8.9.1.8 IMMU PATC R/W Port Upper Register (IPPU)cccooooecveveeeiennene. 8-61
8.9.1.9 IMMU PATC R/W Port Lower Register (IPPL).....c.ccoooineioiiiee 8-61
8.9.1.10 Instruction Access Status Register (ISR)......ccooeoennieicneieen, 8-62
8.9.1.11 Instruction Access Logical Address Register (ILAR).......cccccoevenene. 8-63
8.9.1.12 Instruction Access Physical Address Register (IPAR).........ccccc....... 8-63
8.9.2 Data MMU/Cache REQISIEIScocoieuerre ettt 8-64
8.9.2.1 Data MMU/Cache Command Register (DCMD)c.cccovvververvennnne. 8-64
8.9.2.2 Data MMU/Cache Control Register (DCTL).....c..ccceceenenne rreeeraraeen 8-65
8.9.2.3 Data System Address Register (DSAR)c.coovrieiceeereeeeeeeee 8-68
8.9.2.4 DMMU Supervisor Area Pointer Register (DSAP)ccccovvreuenene. 8-68
8.9.2.5 DMMU User Area Pointer Register (DUAP)........ccccocviviniineiieenene 8-68
8.9.2.6 DMMU ATC Index Register (DIR)........cccoeireneeeereererese e 8-69
8.9.2.7 DMMU BATC R/W Port Register (DBP).......cccoceerrneeeecreeeeeeeieeee 8-69
8.9.2.8 DMMU PATC R/W Port Upper Register (DPPU)ccccceeevineennnee. 8-70
8.9.2.9 DMMU PATC R/W Port Lower Register (DPPL)......ccccvevevreeennee. 8-70
8.9.2.10 Data Access Status Register (DSR) ..o 8-70
8.9.2.11 Data Access Logical Address Register (DLAR)cocvverievenneeenne. 8-73
8.9.2.12 Data Access Physical Address Register (DPAR).......ccccccovvvivreennnene. 8-73
8.10 MC88110 and MC88200 MMU Differencesccoeervveerenecevvreereennes 8-74
Section 9
Instruction Timing and Code Scheduling Considerations

9.1 Instruction TiMINGg OVENVIEW.........cccoci ittt e 9-1
9.2 General Timing Considerations..........cccccvvevnrerennce e e 9-5
9.21 Instruction ISSUE TiMING ..c.coviiiieeec et e 9-6
9.2.1.1 Instruction Cache Timing......cccoevveriinienineeeee e 9-7
9.2.1.1.1 Instruction Cache Hit......cccovreireer e e 9-8
9.2.1.1.2 Instruction Cache MISs........ccceiivieirerieceree e 9-9
9.2.1.2 Source Data Considerations.........ccoevcveecenenernineeecntre e e 9-12
9.2.1.2.1 Scoreboard CheCKS ... e 9-12
9.2.1.2.2 Feed FOrwarding........ccccceriresoniiesncscve et 9-13
9.2.1.3 Destination Register Considerationsccoeeeeevereeeerecereseeeeene 9-14

MOTOROLA MC88110 USER’S MANUAL xi

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
9.2.1.3.1 Scoreboard CheCKSceiriieieeieccre s 9-14
9.2.1.3.2 Write-Back Prionities.......ccoovvvreecreeeececcee et e 9-14
9.2:1.4 Execution Unit Considerations...........cccoooereeiniirninininieseneeeeeeee 9-15
9.2.1.5 History Buffer Induced Stalls ..o, 9-17
9.2.2 Load Buffer and Store Reservation Station Model............cc....ccoocee.e 9-18
9.2.2.1 Load Buffer and Store Reservation Station Example..................... 9-21
9.2.2.2 Load/Store Reordering EXample........cocoeoeeeenninreeccicce e 9-23
9.3 Execution Unit TimingsSccocovireneneeeeseeeee et 9-24
9.3.1 Integer/Bit-Field Unit Execution Timingcccceveverenenicnenecececeeeene 9-24
9.3.2 Data Unit Execution Timingcccocoevereirecirereeceee e 9-26
9.3.2.1 Decoupled Cache ACCESSESoeveriririrueiieieeiee et 9-27
9.3.2.2 User Mode Cache Control Featuresccovveviiicnneienccceee, 9-27
9.3.2.2.1 StOre-THIOUGHN ..ot st 9-28
9.3.2.2.2 TOUCK LOAA..... .ttt eeens 9-29
9.3.2.2.3 FIUSH LOAG - ..ttt e 9-29
9.3.2.2.4 AlOCALE LOAA. ...ttt 9-30
9.3.2.3 Data Unit Execution Timing EXamples.......cccccooninineiinneneens 9-31
9.3.2.3.1 Load Timing with Cache Hit Example..........ccccovoeiieiiiiiiiiiie e 9-31
9.3.2.3.2 Load Timing with Cache Miss Exampleccccooevnicvienierennnnee. 9-32
9.3.2.3.3 Load Miss with Dirty Line Copyback Example.......c.cccccoveinnnee. 9-34
9.3.2.34 Load Miss with Instruction Overlap Example.........cccccoovueeniinnnnne. 9-34
9.3.2.3.5 Load Miss with Data Streaming Example.......ccccccoeoveecievienrenene. 9-35
9.3.2.3.6 Store EXamPIE.......oouveuiieiieieeeee e 9-36
9.3.2.3.7 Write-Back Arbitration Example ..o 9-37
9.3.2.3.8 Load/Store with Extended Operands Example............ccccccueeee. 9-38
9.3.2.3.9 I/O Serialization EXample........cccoeoeoririneeinieeeeeeeeeeeie e 9-39
9.3.2.3.10 Touch Load Operation Timing Example..........cccceoeviieeeiieeieeeen. 9-40
9.3.3 Multi-Cycle Execution Unit Timing.......ccoeeeerenine e 9-41
9.3.3.1 Floating-Point Add and Multiply Timing Example.......ccccccceiiiiinnis 9-42
9.3.3.2 Divide Timing EXample......ccocoiieiieieeeee e 9-43
9.3.4 Instruction Unit (Flow Control) Execution Timing..........ccoccvoveevnieenenee. 9-44
9.3.4.1 Delayed BranChing..........cooeeeciinininienrce e 9-46
9.3.4.2 Target Instruction Cacheccovieieni et 9-47
9.3.4.21 Delayed Branching Example..........c.ccooiriiiniiniesee e 9-48
9.3.4.2.2 Nondelayed Branching Example.........ccccceoenieicnieieneneee e 9-49
9.3.4.3 Static Branch PrediCtion........oooviveieneeee e 9-50
9.3.4.4 Unpredicted Branch Timing Examples........ccvvnncinecccnccnene 9-53
9.3.4.4.1 Unpredicted Branch Not Taken Example..........ccccocveieiieininnnnne 9-53
9.3.4.4.2 Unpredicted Branch Taken with TIC Miss Example..................... 9-54
9.3.4.4.3 Unpredicted Delayed Branch Taken with TIC Miss Example.....9-55
9.3.4.44 Unpredicted Branch Taken with TIC Hit Exampleccccueeeeeee.. 9-56
9.3.4.4.5 Unpredicted Delayed Branch Taken with TIC Hit Example........ 9-57

Xii MC88110 USER’S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
9.345 Predicted Branch Timing Examples.......ccoccooioieiiineneeeeceeeeeeae 9-58
9.3.4.5.1 Predicted Branch Examplec.ccooccvreieneneeecenenenecee e 9-58
9.3.45.2 Predicted Branch Taken with TIC Hit Exampleccccccoun..... 9-60
9.2.453 Predicted Branch Not Taken with TIC Hit Example...................... 9-61
9.3.454 Long Latency with Misprediction Example..........c.cccccccerrrenencnnnne. 9-62
9.35 Graphics Unit Execution Timing.........ccccoiiinnnencecvcceee e 9-63
9.3.6 Instruction Execution Example ... 9-65
9.4 Memory Performance Considerations.........cccooeveenrrrecreneneceseeceens 9-66
9.4.1 WIite-Back MOGE........ouooiieeieee ettt s 9-67
9.4.2 Write-Through Mode ...ttt e 9-67
9.4.3 Cache INIDIL.........coeeieiee e 9-68
9.5 Superscalar Optimization TeChniQUEScccooeeevvrverrece e 9-68
9.5.1 The Impact of Superscalar Processing on Schedulers....................... 9-68
9.5.2 Upgrading from an MC88100 Scheduler to an

MC88110 Scheduler.........co.ooviiiieeeeee e, 9-70
9.5.2.1 Overlapping Latencies with Useful Workcccoooeieiniininccceeenne. 9-70
9.5.2.2 No Grouping vs. Grouping of Like Instructions..........c.cccccoerieinnne.e. 9-71
9.5.2.3 ReGISIEr USAQE... ettt s 9-73
9.5.3 Code Optimization EXample........cccoceveueveeeeeneeiieece e 9-75

Section 10
Instruction Set

10.1 Instruction Set DetailS ... 10-1
10.2 OPCOAE SUMMENY......oeiiieieieteeeeteetee et eeatese e s sb e e e ereeeaeensennees 10-93
10.2.1 Logical INStrUCHIONS..........cooiii ettt 10-93
10.2.2 Integer ArithmetiC INStUCLIONSocoeoinvreec e, 10-94
10.2.3 Special Function Unit (SFU) InStructions..........cccooeeevievcceccnciireiee 10-95
10.2.3.1 Floating-Point INStructions...........ccoeereoerennereeee e 10-96
10.2.3.2 GraphiCs INSITUCHIONS.......cceevieiiire ettt s e 10-97
10.2.4 Bit-Field INStrUCIONS ... 10-98
10.2.5 Load/Store/Exchange InStructionscccceeeeeevenneneinerenc e 10-99
10.2.6 Flow Control INStruCtionS.........covoueeeieeeeeieeeeeeeeeeeeece e 10-100
10.2.7 Instruction Encoding in Numeric Order...........ccceceeeeneeciecniiecieeene 10-101

Section 11
System Hardware Design

11.1 System Hardware Design OVeIVIEW.........c.ccccveerineierernieneneeeereseee e 11-1
11.1.1 Cache Operation OVEIVIEW.............cccceeeiiiieeeeeeeieerie e 11-2
11.1.2 Bus Arbitration OVEIVIEW ..ottt 11-3
11.1.3 Data Transfer OVEIVIEW.............ceerverieiireer et 11-4
11.2 Signal DeSCrIPHON ... sttt 11-6
11.2.1 Data Transfer SignalS ...ttt er e 11-8

MOTOROLA MC88110 USER’S MANUAL Xiii

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
11.2.1.1 Data Bus (DB3—DO0).......ccoerririrerriicreccrerrene et se s seeeeeenes 11-8
11.2.1.2 Address Bus (A31—A0)cccceriirrecererereeree ettt e ee s 11-9
11.2.1.3 Byte Parity Bus (BP7—BPO) ...t 11-9
11.2.2 Transfer Attribute Signals...........c.ceeeeicieieicieicc e 11-9
11.2.2.1 Read/WIite (R/W).....o it en et aneaeseene 11-10
11.2.2.2 LOCK (LK) oottt ssss s s s ser e eesaenenes 11-10
11.2.2.3 Cache INhibit (Cl). ..o 11-10
11.2.24 Write-Through (WT) ...ttt 11-10
11.2.2.5 User Page Attributes (UPAT=UPAD)......cccoeuevevnnrrreeeireerreeees 11-10
11.2.2.6 Transfer Burst (TBST)ccccccerireeeeercereee ettt e seseeneees 11-10
11.2.2.7 Transfer Size (TSIZ1=TSIZ0)cceerereeereerrrereeeeereeeeee e 11-10
11.2.2.8 Transfer Code (TC3—TCO0)cccvueiriruririiirieereerercesse e e rmacseeseeaees 11-11
11.2.29 INValidAte (INV)...cocericiiee e er et 11-11
11.2.2.10 Memory Cycle (MC).......crrceitece e 11-11
11.2.2.11 GIODAI (GBL)...uceeceeieiirececrceceeeree et sttt 11-12
11.2.2.12 Cache Line (CLINE).......co ettt 11-12
11.2.3 Transfer Control SigNalS ... 11-12
11.2.3.1 Transfer Start (TS)......... e ettt et 11-12
11.2.3.2 Transfer Acknowledge (TA) ...t 11-12
11.2.3.3 Pretransfer Acknowledge (PTA)......cccocumicicinicennisiceccecrecnnes 11-12
11.2.34 Transfer Error Acknowledge (TEA).........coeieeeirceeeeeeeee e 11-12
11.2.3.5 Transfer Retry (TRTRY) ..ottt 11-13
11.2.3.6 Address Acknowledge (AACK) ... 11-13
11.2.4 Snoop Control Signals..........cccrniiecsiceeccre s 11-13
11.2.4.1 Snoop Request (SR)......ciiiciece et 11-13
11.2.4.2 Address Retry (ARTRY) ...t st eea 11-13
11.2.4.3 Shared (SHD) ..ottt e e s s 11-13
11.2.4.4 Snoop Status (SSTATT1=SSTATO)cccnrrrrrerrrrere e 11-13
11.2.5 Bus Arbitration Signals.............ccciiniices e 11-14
11.2.5.1 Bus Request (BR).......c.cociiiciccccsice e 11-14
11.2.5.2 Bus Grant (BG)cccceuriniiicinic e 11-14
11.2.5.3 Address Bus Busy (ABB).........ccciicniieieecceeeeeeneesesee s 11-14
11.2.5.4 Data Bus Grant (DBG)..........ccoccvriniiinniccceecccesee e 11-14
11.2.5.5 Data Bus BuSy (DBB)......ccoovireecieciiteeec e 11-14
11.2.6 Processor Status Signals...........ceevrerreienennieeeeere et 11-15
11.2.7 Interrupt Signals.........ccuceeiieii e 11-15
11.2.7.1 Nonmaskable Interrupt (NMI)covimiminicae 11-15
11.2.7.2 INEErTUPE (INT).eee e 11-15
11.2.7.3 Reset (RST).......... OO OTPTUVUOROTION 11-16
11.2.7.4 Byte Parity Error (BPE).....c.cocoioieeeece et 11-16
11.2.8 CIOCK (CLK)...eueteeereieineeieeeeieie e ese ettt sttt sest et et asas s anennnns 11-17
11.2.9 TSt SIGNAIS ...t et 11-17
xiv MC88110 USER’S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
11.2.9.1 Debug (DBUG) ...ttt et aeee e e saen e 11-17
11.2.9.2 Resistor (RES2-REST)........ccoeec et e 11-17
11.2.9.3 JTAG Test Reset (TRST).....oc ettt e 11-17
11.2.94 JTAG Test Mode Select (TMS)......coiiveicirceineenesce et 11-17
11.2.95 JTAG Test CIOCK (TCK) .ottt seese e ese s esesenas 11-17
11.2.9.6 JTAG Test Data Input (TDI) ... 11-17
11.2.9.7 JTAG Test Data Output (TDO)coeeeieveeeiieireeeeeeeeeeeeee e 11-17
11.3 Data Cache Operation...........cc vt s seeeevenenas 11-18
11.3.1 Data Cache States ...ttt 11-18
11.3.2 Memory Update POICY.c.ooeeeririeeeeeere et 11-19
11.3.2.1 Write-Back MOGE..........oieeieeeeeee et 11-20
11.3.2.2 Write-Through Mode ...t 11-20
11.3.23 Cache Inhibited Mode.........c.ccccouvieiieieeeeee e, 11-20
11.3.3 Data Cache COherency.......ccoeenreeeieceeee e st 11-21
11.3.3.1 Bus Snooping Flow for Transaction without Intent-to-Modify....... 11-23
11.3.3.2 Bus Snooping Flow for Transaction with Intent-to-Modify............. 11-23
11.3.3.3 Example Flow for Snooping Protocol........c.ceeevennnvccnnsecccieenee 11-24
11.3.4 Data Cache State Transitionsccecevveeeecereieeee e e 11-29
11.4 BUS ArDItration ..o e 11-33
11.4.1 Address Bus Arbitration.........cceceereieenceeee e 11-33
11.4.2 Data Bus Arbitrationccoceoeeeerere ettt 11-34
11.4.3 Bus Arbitration Timing EXamples...........oceoeeeieininnnenreccce e 11-34
11.4.4 BUS Parking......cocooeeeieeier ettt st 11-36
11.4.5 Arbitration for Split Bus Transactions...........cccccoevveeicennrieececvee e, 11-39
11.5 Data Transfer MechaniSm ... eoeeiinnnce e e 11-42
11.5.1 Data Transfer Mechanism Signal Overview.........cccccoevveveeveceereereneene. 11-42
11.5.2 Data Byte Lanes and MultipleXing.......ccccoccevreeinenieceececeeseceeieeeen, 11-43
11.5.3 Single-Beat Transactions........ccveeererrencieee st 11-46
11.5.3.1 Single-Beat Transaction Timing Examplec.ccooovevveeeecrenenne. 11-46
11.5.3.2 Single-Beat Transaction TYPeS.......cccoceriereiienieeiieneeee e 11-48
11.5.3.3 Single-Beat Read Transaction.........cevveeeccninnnnenn et 11-49
11.5.3.4 Single-Beat Write Transactioncccocccceecenevesrcnnenennee e 11-50
11.5.3.5 Invalidate TranSaction.........cccuececeeeiieeeciee e 11-52
11.5.3.6 XMEM TranSaCHiON ..ottt 11-53
11.5.3.7 Table Search Transactions............ccovevveveeieieeiesereere e 11-57
11.5.3.8 Store-Through TranSaction............ceceveeeeeeveiesirseeieseseeeeeee e 11-57
11.5.3.9 Allocate Load TranSactionccccevenvrreeeeseseere st snesees 11-57
11.5.4 BUrst TranSaClONSco.oceiereerete ettt s e s 11-58
11.5.4.1 Burst Transaction Timing Examples.......ccccovoeeeiveriecinieciesenineene 11-59
11.5.4.2 Burst Transaction TYPES.....c.ccuvueceirreeecenreeeireeeee et eeeseseeeees 11-62
11.5.4.3 Burst Read TranSactionsccccevreerrrecerrerenene e seeeseeens 11-63
11.5.4.3.1 Cache Line Fill Operation—Read MiSsccccocvennrvnnrnecenreenns 11-64

MOTOROLA MC88110 USER’S MANUAL XV

TABLE OF CONTENTS (Concluded)

Paragraph Page
Number Title Number
11.5.4.3.2 Touch Load Burst Read Transaction............ccccocveiciiiieicen e 11-65
11.5.4.3.3 Read-with-Intent-to-Modify Burst Transactionc.cccecovceeee. 11-65
11.5.4.4 Burst Write TranSactions..........cucvveveerecnenencneeeeseceeereeese s esee s 11-66
11.5.4.4.1 Replacement Copyback Transaction............ccoevceevcnnccnccnncee. 11-67
11.5.4.4.2 Snoop Copyback Transaction..........c.c.ceveereeceeececeecienne s 11-67
11.5.443 Flush Copyback Transaction.........ccceecevernreernicenevennreeereseennnns 11-68
11.5.44.4 Flush Load Transaction...........ccccevverrereninncnnnecenrceeecreseee e 11-68
11.5.5 Back-to-Back Transfer Timingccooeoerrerceeneneneeeeice e 11-68
11.6 Termination of Bus Transactions............. USRS 11-69
11.6.1 Normal Transaction Termination with TA.........cccoeiiiie 11-70
11.6.2 Decoupled Cache Accesses and PTA. ... 11-72
11.6.3 Transfer Retry Termination..........cocceverrreceinienecceene et ee e 11-75
11.6.4 Transfer Error Termination.........cceeeereeninenei e eeerevee e 11-78
11.7 Data Cache Coherency Timing Considerations.........c.ccevcivecenennee 11-80
11.7.1 Snoop Control Signal Overview.............cccceeeeineecirceccneee e 11-81
11.7.2 SSTATI=SSTATO TIMING...c.ccrueerrrerreeirerererrereee et semeeseseseseseenenas 11-82
11.7.3 Address Retry Transaction Terminationc.ccoevecceiveerenrncneveenne 11-83
11.7.4 Snoop Miss Timing EXample........cccoeeeerrvennnnicnee et 11-85
11.7.5 Snoop Hit Timing—No Split Bus Example ... 11-85
11.7.6 Snoop Hit Timing—Split Bus (One-Level) Example..........ccccuueeee..e. 11-86
11.7.7 - Snoop Hit Timing—Split Bus (Full) Examplec.coccoeeveniennnenennne 11-87
11.7.8 Split-Bus Snoop ColliSioNs..........ccoererireriieeeeie e 11-87
11.7.9 Snoop Copyback Detailsceoeeerceieeeee et e 11-96
11.8 MMU Transactions.........ccoveveueerevenieneeiie ettt et 11-96
11.8.1 Hardware Table Search Operation.......c..cccocveeemecceneneenenenesenececnns 11-97
11.8.2 Hardware Table Search Operation with Indirection.............ccceeee.ce. 11-98
11.8.3 Hardware Table Search Operation with TRTRYccccocvvveeevecrccnnnnn 11-99
11.8.4 Hardware Table Search with Snoop Copyback........cccecevnrveneneenene. 11-99
11.9 Reset OPEration ... et e e 11-104
11.10 IEEE 1149.1 Test ACCESS PO ...t 11-106
11.10.1 JTAG OVEIVIEW......oeiiirieieeece ettt ettt scs e seseen e eneas 11-107
11.10.2 Three-Bit Instruction Register ... 11-108
11.10.2.1 EXTEST (000) c..ueuiuiiinieeeieererereeiesniese e esere e e sesesesesanssesessenssnesesens 11-109
11.10.2.2 BYPASS (1171) ettt eaes e 11-112
11.10.2.3 Sample/Preload (100) ... vt eseseens 11-112
11.10.2.4 CLAMP (100) c...cuiereeeceueerieieiicee et ceee et se s e s 11-113
11.10.2.5 HI=Z (0071) ettt ettt st st 11-113
11.10.2.6 EXTEST_PULLUP (010) ..cccuiiiiiriririecerreeeeeeenrsenereesesereeseseneeseenes 11-113
11.10.3 MCB88110 RESHHCHONS.....ccveeerveieeeiieeeiie et seere e s en et 11-113
11.10.4 NON-IEEE 1149.1 OPeration.........cccocevreeucneeeneneeneeceneeeeeseserseeceees 11-114

Appendix A
Bit Scan Bit Definition

XVi MC88110 USER’S MANUAL MOTOROLA

LIST OF ILLUSTRATIONS

Figure Page
Number Title Number
1-1 SFU Conceptual Dia@ram...........ccooviriirienceeeeree ettt esee st ees 1-5
1-2 SFU Hardware US@ ...ttt e 1-6
1-3 MCB88110 BIOCK Diagram.......coceoeimrieireieieent ettt sesee e sttt e s 1-7
1-4 Instruction Cache Organization...........cccoeccieieccieiecee e 1-12
1-5 Data Cache Organization..........c.ceeveeerrerieneenrert ettt sttt en 1-15
1-6 MC88110 External Bus INterface........ccccvuveciereecreec e 1-16
1-7 Symmetric Superscalar INStruction ISSUE..........ccccvveivviivinrn e 1-19
1-8 Simultaneous Instruction Issue Restrictions.........cccceveueereicreciiiececeeecee, 1-21
1-9 MC88110 INStUCHON Set.....ccuiieieeieeeieeeee e 1-23
2-1 Programming MOdel........cce ettt e 2-4
2-2 General REQIStEr File ...ttt st 2-5
2-3 Extended RegiSter File..........oo oottt et e 2-6
2-4 Processor ldentification ReQISIEr ... 2-8
2-5 Processor Status REQISLEN..........cccvveiueieeeree ettt eneas 2-9
2-6 Data Organization in General Registers.........cocoeveereinineeneneneneccenceeeens 2-14
2-7 Operands in Extended Register Filec..cccveeieeeiieiecceeeeeec e 2-15
2-8 Floating-Point Memory Storage Alignment............oc.eovirniirieiiene e 2-15
2-9 Memory Accesses with Misaligned Access Exceptions Disabled................. 2-16
2-10 Byte-Ordering Configuration in Memory.........cccevevevvereniieeeeeeecceeee e 2-17
2-11 Example Byte-Ordering Environment Using

Big-Endian Memory and 64-Bit BUS...........cccccviiiiincnnineeenereeee 2-18
2-12 Example Byte-Ordering Environment Using

Little-Endian Memory and 32-Bit BUSccccocveeieveieeeee et 2-20
3-1 MC88110 INStIUCHON Set.....c.eeieeieee e 3-2
4-1 Floating-Point Data FOrmMatS.......ccccvveinrinireesee e 4-3
4-2 Single-Precision Floating-Point Representation of 1.0.....c.ccccecevveicncenennnee. 4-5
4-3 Single-Precision Floating-Point Representation of 1/8 (.125).........cccceeeuuneen. 4-5
4-4 Example of a Denormalized NUMDET ..o 4-6
4-5 The Guard, Round, and Sticky BitS..........ccoeveverrrnennenneseseee e 4-8
4-6 Mapping of Floating-Point Exceptions to IEEE Exception Conditions.......... 4-10
4-7 Floating-Point Exception Cause RegiStercccoveveieienecieceeceeee e 4-13
4-8 Floating-Point Control Register ...t 4-15
4-9 Floating-Point Status RegiSter.........cccovriiiiiiecereceece et 4-16
4-10 Default Floating-Point Overflow Algorithm for Software Envelope................ 4-21

MOTOROLA MC88110 USER’S MANUAL xvii

LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title , Number
4-11 Default Floating-Point Underflow Algorithm for Software Envelope............. 4-23
5-1 Packed Data Organization in General Registers........ccocevvvnnveveienesccennen. 5-4
5-2 Example 32-Bit Fixed-Point Number (8.24).........cccccovvminrnneneeereeece e 5-4
5-3 Common Graphics Data TYPESccccererventrnreirr sttt seeenesensnsens 5-6
5-4 User-Defined Saturation LImitS...........cecevevrieninienie et 5-10
5-56 PPACK.AB ED,IST ISttt et st e 5-11
5-6 PUNPK.D ID IS T ettt ettt et e n e 5-11
B5-7 PrOt ID IS 1B ettt ettt aane 5-12
5-8 PMUL IDEST,IS2 .t ettt e et e st 5-12
5-9 PPACK.B2.R F2,12,11 .ot et 5-14
B-10 PPACK.B .ot e b e st en s 5-15
5-11 PPACK.TE oottt ettt et 5-15
5-12 PPACK. TGN ettt e 5-15
513 PPACK.B2 .ttt st b e ettt 5-16
5-14 PPACK.S2.D ..t et st st s 5-16
5-15 PUNPKN....cooe ettt es ettt et 5-17
5-16 PUNPKD.....cee e ettt et st et 5-17
517 PUNPKN. ..o et sttt sttt s e et se e e e snanens 5-17
5-18 punpk.b followed by Prot by 8. 5-18
5-19 Intensity Scaling EXamPple........ccoverreeinieireeesrr et 5-19
5-20 Interpolating and Building PiXels.......ccococoeniinne e 5-21
5-21 Example Z-Buffer AlGONthm ..ot cesssaesens 5-22
5-22 Example Polygon a Value Assignment...........ccoveevriienenceieneenece e 5-24
5-23 Compositing Operation EXample.........cccccvueurrrecieiee e 5-25
6-1 MCB88110 Cache Terminologycccwmreeenreeie st sessesesesesesssesenenas 6-2
6-2 Data Cache Organization...........ccccceerieieernienreece e sesesse s eseseaseeeens 6-2
6-3 Double Word AlIGNMENt ..ottt 6-3
6-4 Instruction Cache Organization.............oceveveeveverieneeeeseeeee e 6-4
6-5 Target Instruction Cache (TIC)cccoeiiiirrieeer e 6-4
6-6 Physical Address Generation Using ATCs (ATC Hit).......ccccoveeveeieieeiecienne, 6-6
6-7 BATC DeSCriptor FOIMAL.........cocoueoiieuirirerieiiere ettt se e ena 6-7
6-8 PATC Descriptor FOrMAL..........cocooiiiieeceeceste ettt et s eneae e 6-8
6-9 Cache LOOKUD OPEratioN.......ccccccccveeirinereeeeeeeeeee sttt eseseasae e 6-13
6-10 Logical AdAress FIields ..ottt et ese e enens 6-14
6-11 Instruction Cache Read FIOWChaM.............cccoreirreecncneccienree e 6-15
6-12 Instruction Cache Hit TIMINg.......ccccoirreneiniieceee e 6-16
6-13 Instruction Cache MiSS TiMINGccceoeerrcrireeieeeierece e sreseens 6-17
6-14 Data Cache Read FIOWChaM...........cecceeirininirriceeres ettt 6-20
6-15 Data Cache Read Hit TimMiNg.......cccoerirninrererimenieeneseseses e sreressssseens 6-21
6-16 Data Cache Read Miss—No Copyback Timing.......cccecveveururerereneruesererencenenens 6-22

xviii MC88110 USER'S MANUAL MOTOROLA

LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number
6-17 Data Cache Read Miss with Copyback Timing.......ccccooeevenninninsenreeeeeneee 6-23
6-18 Data Cache Write Hit FIOWCharcooiiiiicr e 6-24
6-19 Data Cache Write Hit in Write-Back Mode Timing.....ccccoeeeeereeiececencenicenenns 6-25
6-20 Write Hit in Write-Through or Cache Inhibited Mode Timing........cccecevveeeu.. 6-26
6-21 Data Cache Write Miss Flowchar..........c.ccovoiriiiienincccti e 6-27
6-22 Write Miss with Copyback Timingcccooernnnniecn et 6-29
6-23 Write Miss—No Copyback Timing......c.cocoveererrienneeneneneeeeene e 6-30
6-24 XMEM FIOWChAI.......oouiiteee ettt e a e 6-32
6-25 Instruction MMU/Cache Command RegiSter ... vneeievnenecerreerecee e 6-35
6-26 Instruction MMU/Cache Control RegiSter........ccoceervenenenreneenreie e 6-36
6-27 Instruction System Address Register ...t 6-38
6-28 Data MMU/Cache Command RegiStercorreoerieieeeenee et 6-39
6-29 Data MMU/Cache Control Register........coeoeoneeceeeeeeece e 6-40
6-30 Data System Address RegiSter ...t e 6-42
7-1 History Buffer EXample ...ttt e 7-3
7-2 Exception Vector Address FOrmation...........c.coceeevereneniienieseneesee e 7-3
7-3 Exception Recognition in the History Buffer...........cocoevineiinnnnineeeee 7-6
7-4 Exception Processing FIow Chart...........cccoieeviininieneieecereeeee e 7-8
7-5 Exception-Time Executing Instruction Pointer (EXIP)......cccooovvmiveeeirenrnenee. 7-8
7-6 Exception Time Next Instruction Pointer (ENIP)........ccoovriiiiiiinnieicieeeeceee 7-9
7-7 Return from Exceptions FIow Chart............cocooiiieeieeneeee st 7-11
7-8 Exception Latency Time LiNe ... 7-12
7-9 NMI Signal TimiNg...cccueeeciirreeeeiecere ettt eeee 7-14
7-10 Instruction Access Status Register (ISR)......ccoooeeveeeerecececececeeeeece e 7-16
7-11 Data Access Status Register (DSR) ..o oot 7-18
8-1 MC88110 MMU BIOoCk Diagramc.cooeieeuecreneenererereeseeseseesescessiesessssessens 8-3
8-2 Address Translation with Page Address Descriptors in PATC....................... 8-5
8-3 MMU Address Translation FIOW.........ccoocoeoeieerece et 8-7
8-4 Address Translation Mode Selection...........cccoceeeriiiniicncineeeeece e 8-12
8-5 BATC Organization..........ccccoeeeeieueuenerieeeeree e setsie e s esesestsseesse s sesessenesesssesenns 8-14
8-6 Block Address Translation FIOW...........ccc.cceeeenieiiiecieceeeeee e 8-15
8-7 BATC Descriptor FOIMAL........ccccviiieirieieiee et st sacte st se e 8-16
8-8 PATC Organization............c.ccueieeteieeeeeeieceteeeeeeee e eseesesesesessese s e eeeemsssessesennes 8-21
8-9 Page Address Translation FIOW..........cooeeeveceecccieecece e e 8-22
8-10 PATC Descriptor FOIMAL..........ccoviieriveririeiiee sttt et sesses e s e 8-23
8-11 Page Translation Table StruCture..........ccoceveeieeieeieeeeecee e e 8-28
8-12 Page Table LOOKUP ...ttt et enees s ensen e ean 8-30
8-13 Area DesCriptor FOIMAL.......c..ceou ittt e e 8-31
8-14 Segment DesCriptor FOrMAaL.......c.cooiuiuieiiie ettt 8-33
8-15 Page Descriptor FOrMaLt.........ccoviviiiiiiicciciintetc et 8-35

MOTOROLA MC88110 USER’S MANUAL Xix

LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number
8-16 Indirection Descriptor FOrMaL ..ot 8-37
8-17 Hardware Table Search FIOW ...t 8-40
8-18 Shared Pages with Indirection DescCriptors.........cc.ccovveeeeeencnccceeerneneeeeeenes 8-46
8-19 Data Breakpoint AlIQOFithmc.ocoiiininrceeee ettt s 8-48
8-20 Data Breakpoint Descriptor FOrmat.........oocceoeeveicnneicrrneceeeeceee e 8-49
8-21 ATC Probe AIGOTtNMc.couuiiieececer ettt ettt st 8-55
8-22 ICMD FOIMAL......c. ettt ettt st et 8-56
8-23 ICTL FOIMAL ...ttt ettt ettt ae e e e et st et e 8-57
8-24 ISAR FOIMEL......ooiiiiieeeceric ettt e et sttt st nnn e 8-59
8-25 ISAP FOIMAL......cooiiirieiieeect ettt st et ses st eaa e e se s s ansaseneanan 8-60
8-26 IUAP FOIMAL.....c.cieieieieeieeeeee sttt sttt be s eaa e enes 8-60
8-27 HR FOMMIAL ..ttt ettt et se e st st se e e seaaneaees 8-60
8-28 IBP FOIMAL....ccuiuicieriiieieiireeeesietet et ee et ete s s et st e e ssess st st eseseesessesesessasnstesennenan 8-61
8-29 IPPU FOIMAL......ooiiieeieeeeeeeteie ettt st s e et e e b s s nanns 8-61
8-30 IPPL FOIMMAL ...cioiieieieieeieeeereeeetetee ettt ettt es et eaet e s ss s e et ne e 8-61
8-31 ISR FOIMAL ..ottt er ettt ettt s e st enannatan 8-62
8-32 ILAR FOIMAL ...ttt ettt se et s sn e an 8-63
8-33 IPAR FOIMAL ...ttt sttt eee ettt sn s s s snas 8-63
8-34 DOMD FOMAL......ccoouieeeereeeieeeieeiee e ctst et et e st e se st se s snnas 8-64
8-35 DOCTL FOIMEAL ..ottt ettt e e s st ee s e e sa st enesanean 8-65
8-36 DSAR FOIMAL.......coootririeriereiee ettt st st ettt st st e ettt st st enenesnns 8-68
8-37 DSAP FOIMAL....ccoomiieeireeeee ettt sresta st sae et e sesses e sen s es e e e ssasesanean 8-68
8-38 DUAP FOIM@L......cooiiieiieirieie sttt et sttt st sben sttt st sr e e sneas 8-68
8-39 DIR FOMMAL ...ttt st e er e sann 8-69
8-40 DBP FOIMAL......o.e ettt e et nsnans 8-69
8-41 DPPU FOMMAL... .ottt ettt cr et ee e en e en et e e sansanes 8-70
8-42 DPPL FOMAL ...ttt ettt et et st se s s ass s e sess e sasa 8-70
8-43 DSR FOIMAL ...ttt ettt es e en s se s st s s s senes 8-71
8-44 DLAR FOIMALceiieeeeeiee ettt tesss sttt et s arnanss et s sane 8-73
8-45 DPAR FOIMAL....iiiiiiieieeeeeetcc ettt sttt st st sb et e 8-73
9-1 INStIUCHON LALENCY.....coveeeiieeeeee ettt ettt 9-2
9-2 Pipelined EXeCution Unit.......cooieieiinie et 9-3
9-3 Instruction Prefetch and Execute Timing.......c.ccoeevrrcrennneecnnie e 9-4
9-4 Symmetric Superscalar InStruction ISSUE..........cceeieiviniecenieneeiee e 9-5
9-5 Instruction EX@CULION OFGET.........ccciuiiiiiiieieceeee et 9-7
9-6 Instruction Cache Hit Timing EXample.......ccccouerieiiirrinncneeneeercre e 9-8
9-7 Instruction Cache Miss Timing—First Instruction in Pair Missed.................... 9-9
9-8 Instruction Cache Miss Timing—Second Instruction in Pair Missed............. 9-10
9-9 Missing the Stride of Arriving Informationcccoereeeieeeneereeseeeeee 9-11
9-10 Feed FOIWAIAING.......cccoveiieiierieere ettt seere et st s et ae e e n e 9-13
9-11 Simultaneous Instruction Issue Restrictions.........covvicecnnincncnneneneeccneenns 9-16

XX MC88110 USER’S MANUAL MOTOROLA

LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number
9-12 HIStOry BUTTEI ...ttt e 9-17
9-13 Load/Store FIFO Queue Model.......ccoiiiiirere e 9-18
9-14 Clock Cycle One—Load/Store Example ..o 9-21
9-15 Clock Cycle Two—Load/Store Example ..o 9-21
9-16 Clock Cycle Three—Load/Store Example......cccvveienecnnccence e 9-22
9-17 Clock Cycle Four—Load/Store EXamplecccceveeeneveeieieieieeiciee e 9-23
9-18 Load/Store Reordering TiMINgG.......ccocieciriererimeee ettt et sre e 9-23
9-19 Integer and Bit-Field Instruction Sequence Timing......ccccooeeeevieiicceiceeeeeenn, 9-26
9-20 Load Hit Timing oottt sttt es et 9-32
9-21 Load MiISS TiMiNG.....ccioteiererieieriteteet ettt s e 9-33
9-22 Load Miss with Copyback Timing.......cocevereiieiieeeiiiiee e 9-34
9-23 Load Miss with Instruction Overlap Timingcccocoveeeeiieceeeceece e 9-35
9-24 Load Miss with Data Streaming Timing........cccceereirreerniieeeie e 9-36
9-25 SHOrE TIMING ceiiieiit ettt ettt ettt r e e st sa et et ss e eeens 9-37
9-26 Write-Back Arbitration Timing ..ot 9-38
9-27 Load/Store with Extended Operands Timingc.ccocveveveeeeeceeeeee e 9-39
9-28 /O Serialization TimMiNgG ..cccove oottt e e ee e 9-40
9-29 Touch Load Operation TimiNg......cccoceeereeieninene e s e 9-41
9-30 Floating-Point Add and Multiply Timing.........ccovverieiiiiiiee e 9-43
9-31 DivIde TimMIiNG..c.eeveeerierieetietere sttt ettt sttt ettt eeaeeeeneete e e seeeae e 9-44
9-32 Branch Delay SIOt.......cocoeiiieieeee e et 9-46
9-33 The Target Instruction Cache (TIC)ociieieieiree e 9-47
9-34 Effect of the TIC When Delayed Branching Is Used.......c..ccccoe i, 9-49
9-35 Effect of the TIC When Nondelayed Branching Is Used.........c..cccceoeinerrnnnn... 9-50
9-36 Unpredicted Branch Not Taken Timingccccceeeernnenneeecne e 9-54
9-37 Unpredicted Branch Taken with TIC Miss Timing........cccoevvvveiviiieericeee 9-55
9-38 Unpredicted Delayed Branch Taken with TIC Miss Timingcccccoeeveveunee. 9-56
9-39 Unpredicted Branch Taken with TIC Hit Timing.......ccccoveverniiineieieeeeeeee, 9-57
9-40 Unpredicted Delayed Branches Taken with TIC Hit Timingccccocoeevveenne. 9-58
9-41 Branch Prediction Effect Timingccccooeoiieeeiciceeee e 9-60
9-42 Predicted Branch Taken Timing.......cocceovvireiriereieeeee e 9-61
9-43 Predicted Branch Not Taken Timingc.ccccceeerinnieie e 9-62
9-44 Long Latency with Misprediction Timingccocccoeveveiriereeieeieceeceie e 9-63
9-45 Example GraphiCs Pipelinescoceeiieiiiieineeere et 9-64
9-46 Example Matrix Multiplication Code Sequence..........cccceeevieeecciieccieeee 9-66
9-47 Instruction Stall Due to Write-Back Arbitrationccceeeiiinncieeccieneceenne 9-70
9-48 Example of the MC88100 Technique of Overlapping

Latencies with Useful WOrK...........cocoririninii e 9-70
9-49 Example of the MC88100 Technique of Grouping Like Instructions............. 9-72
9-50 Interdependency Resolution Hardware Rules ... 9-74
9-51 Example Source Code Which Has Been Converted

iNt0 ASSEMDIY LaNQUAGE.......ccveoiriieieereiee ettt 9-75

MOTOROLA MC88110 USER’S MANUAL XXi

Figure Page
Number Title Number
9-52 First Pass LOOP UNIolliNg ..ottt eeese e 9-77
9-53 Unrolled Loop with SChedulingc.cooeeeierereree e 9-78
10-1. Instruction Description FOrmat ..ot 10-1
11-1 MECBBTTO PiNOUL....ceiiiiee et sttt ce bt s ee e 11-6
11-2 Memory Update Policy Selection ... 11-19
11-3 Cache Snoop Operation FIOW.........ccccevieeririenieeeceertete et 11-22
11-4 Initial State of SYSIEM ... 11-26
11-5 CPU2 Load, Data Cache MiSS........cccoirrrrreiniieeeeee ettt seev e 11-26
11-6 CPU1 Load, Data Cache MiSS ...t 11-27
11-7 CPU2 Store, Data Cache Hil........ccoiiiieeeeete e 11-27
11-8 CPU1 Load, Cache Miss, Line Read Retried..........cccoooveeeeeiieeceeeececeeeeeee. 11-28
11-9 CPU2 Line COPYDACK ...eouiiecirereciiree ettt ettt e snenas 11-28
11-10 Completion of CPU1 Load, Cache MiSS........cccocoeviieeiriicirereesie e 11-29
11-11 Data Cache in Write-Back Mode State Diagram (Four State).........cc.ccccce.ee... 11-31
11-12 Data Cache in Write-Through Mode State Diagram (Four State).................. 11-31
11-13 State Diagram for Data Cache in the Three-State Model...........ccccevurrenenn. 11-32
11-14 Bus Arbitration Example Timing........ccceeevereerinrnineeene e s 11-35
11-15 Data Bus Arbitration Example Timing.......ccoceeeeoreer e 11-37
11-16 BUS Parking.....c.cociiriirirrnieese ettt s st ce ettt et st 11-38
11-17 Address Bus CONtENtON..........cceeieeeeeeeeeeeee et 11-39
11-18 Split Bus Transactions Using AACK (One-Level)......c..ccoceeeniiniccnennncnneene. 11-40
11-19 Split Bus (FUll) TranSacCtions..........cceceiereirrienee ettt eaeas 11-41
11-20 Byte Strobe Generation..........cccciiirreereeenrereeee ettt eaessaesenenas 11-45
11-21 Data MURIPIEXINGcceoiiteeieeeee ettt st et aeas 11-46
11-22 Single-Beat Transaction Timing EXample ..o 11-47
11-23 Single-Beat Read Transaction FIOWccccoeoirirenneeiniescceecee e 11-49
11-24 Single-Beat Read Transaction Timing........ccccoeveeviererrneirnneneieeseceeeneseesrenens 11-50
11-25 Single-Beat Write Transaction FIOW.........c.ccccviiiniiiiinccccereecece e 11-51
11-26 Single-Beat Write Transaction Timing......ccccoeeirrerrnescee e 11-52
11-27 Single-Beat Read, Single-Beat Write,

and Invalidate Transactions TimMiNgccceeeierrceieereere et 11-53
11-28 xmem Transaction Timing—Unparked Case.........cccceovrrrvrueievencncnecennennns 11-55
11-29 xmem Transaction Timing—Parked Case.......ccocoveevevveienceneieneneeeeeeees 11-56
11-30 Critical-Word-First Operation EXample ...t 11-58
11-31 General Burst Transaction Timing........ccceverirrereeeenentneeeeeeeeie st seeeeesenene 11-59
11-32 Burst Transaction with Wait CyCles ... 11-61
11-33 Burst Read (Cache Line Fill) Transaction FIOW...........ccccoveioiiniiiiinininicnieens 11-64
11-34 Burst Write Transaction Flow.................. e e 11-66
11-35 Normal Transaction Terminations with TA.................... R R 11-71
11-36 Normal Termination of a Single-Beat Transaction with PTA and TA............ 11-73

XXii

LIST OF ILLUSTRATIONS (Continued)

MC88110 USER’S MANUAL MOTOROLA

LIST OF ILLUSTRATIONS (Concluded)

Figure
Number Title

11-37 Normal Termination of a Burst Transaction with PTAand TA
11-38 Single-Beat Transfer Retry Termination..........cooecevvrincccncnnccenceens
11-39 Transfer Retry Termination during Beat O of a Burst Transaction.............
11-40 Transfer Retry Termination after Beat 0 of a Burst Transaction.................
11-41 Transfer Error TermMiNation ...t e
11-42 Transfer Error Termination during Beat 1 of Burst Transaction.................
11-43 Snoop Hit/Miss Indication (SSTAT1-SSTATO).....oceiioiiieeereeeee
11-44 Snoop Status Negation Timing..........ccooeeeiiiiiiiiiiceee e
11-45 ARTRY Qualification with AACK...........cccoenniiiin s
11-46 BR Blocking ProtOCOL..........cooiiiiiiee e e
11-47 SNoOP MiISS TranSaCHONS..........ccooeieieieiiectieteere ettt
11-48 Snoop Hit Using ARTRY—NO Split BUS.......cccoeeeminrneireiereeece e
11-49 Split Bus (One-Level) Snoop Hit with ARTRY ..o,
11-50 Split Bus (Full) Snoop Hit with ARTRY e
11-51 Snoop ColliSion DeteCtion ... e
11-52 Hardware Table Search Operation Timing.......ccooveeciecimienienieieee e
11-53 Hardware Table Search with IndireCtion............coccovvivininniin e,
11-54 Hardware Table Search with TRTRY ..o
11-55 Hardware Table Search with Snoop Copyback.........ccccevreicieccineecnns
11-56 Initial Power-On Reset TiMiNgc.cooriiire et
11-57 Normal Reset TimMiNg.....ccooierereiee ettt et
11-58 IEEE 1149.1 Test Logic Block Diagram.........cccceevevieieennienneniecceeceeeeee
11-59 Instruction Register Implementation..........c.cco oo,
11-60 Input Signal Cell (LPIN)........ccooiireeeeereeere et
11-61 Active High Output Control Cell (I0.CtI1) ..o
11-62 Bi-Directional Data Cell (10.Cell)....cuieiercreee s
11-63 Bi-Directional Cell Arrangement...........co e
11-64 Bypass ReGISterottt

MOTOROLA MC88110 USER’S MANUAL

Page
Number

XXiii

LIST OF TABLES

Table Page
Number Title Number
2-1 General Control REGISIErS.......co.coiiriiii et s 2-6
2-2 Floating-Point Control RegiSters.........coueicicireceecec e e 2-11
3-1 Instruction Description NOtations........c..occeiiiiiiiiiii e 3-23
3-2 LOGICAl INSITUCHONS.ccveiieniieiet ettt a e eens 3-26
3-3 Integer Arithmetic INSrUCHIONScooociiiiiiiie e 3-27
3-4 Bit-Field INSIrUCHIONS ..o 3-28
3-5 Floating-Point INStrUCHIONS.c.ooiiiii e 3-29
3-6 GraphiCs INSTIUCHIONS......c.coouiiiert ettt e 3-30
3-7 Load/Store/Exchange INStruCtionscccocovreeninciineie e 3-31
3-8 Flow Control INSTIUCHIONScuiveieiiiiee ettt et e 3-32
4-1 Biased Exponent Value SUumMmaryccooooiriinineene e 4-3
4-2 Recognized Floating-Point Number Summaryccocoooevinvevennes eeeeneenet e 4-3
4-3 Summary of Results Generated by MC88110........ccccoiiiiniiniiiieeeeeee, 4-4
4-4 ROUNAING MOES........omiiiieee ettt 4-8
4-5 Exceptions Caused by Floating-Point Instructions...........cocoooeieciiiieiece e 4-11
4-6 Results for Reserved Operand Exception in TCFP Modec...ccoovveneenee. 4-27
5-1 Graphics INSTUCHIONS.......couiieree et e 5-2
5-2 8-Bit Saturation EXamples ..o e 5-9
5-3 PCMP RESUIt STHNG ..ottt s 5-20
6-1 ICMD Command COOES ..ottt ee e eraeeaas 6-36
6-2 Instruction MMU BATC Block Size Selection Settings.......ccccoceevivvieveviiiene. 6-37
6-3 DCMD Command COAESc.cviruruirirrieiririeinieeeteeeeeeeeeeee et ee s sesrens 6-39
6-4 Data MMU BATC Block Size Selection Settings.......ccovovvvvvvnniccnnnneine 6-40
6-5 Clock Cycles for Data Cache Flush/Invalidate Commands...........cccccueuc...... 6-44
7-1 EXCePION VECIOIS ...ttt s 7-4
7-2 Exceptions Caused by Floating-Point Instructions............ccccooieienciiincne, 7-20
8-1 MMU EXCeptions SUMMAIY ...cc.ooiimiieeeiececee ettt e 8-8
8-2 MMU/Cache Fault/Exception Mapping........ccuerreeirrcieeereieecese e 8-9
8-3 Instruction MMU/Cache Control Register Summaryccccoovoeeeevivec e, 8-10
8-4 Data MMU/Cache Control Register SUMmMaryccococeeevevennieeeceeneceree, 8-11
8-5 Address Mappings for Address Translation Modesccccococoeveiieeecrinene. 8-12

XXiv MC88110 USER’S MANUAL MOTOROLA

LIST OF TABLES (Continued)

Table Page
Number Title Number
8-6 BATC LBA Bit Definitionccooveeieeeeeee et 8-16
8-7 BATC PBA Bit Definition ..ottt 8-17
8-8 Block Size Mask Bits in ICTL and DCTL ..o 8-19
8-9 Table Search Fault Saved State Summary.........ccoocciiiiiniiiiiiiineneeceee 8-38
8-10 Hardware Table Search Operation Timing.........cccccceriiriiciiniinere e 8-44
8-11 Used/Valid Bit InterpretationS.........coveeeieceeire ettt 8-44
8-12 Modified/Write Protect Bit Interpretationsc.ccovveeieieviinineneeesrreee e 8-45
8-13 Example Address Mask Bits and Corresponding LBA Bits.........cccccecereeennne. 8-50
8-14 Saved State for All MMU/Cache Faults.........cccoeeeeneciineeieeeecee e 8-52
8-15 ATC Probe Command COdES.........cceceruiererrnuenieeeteeece ettt 8-54
8-16 ICMD Command COEScoeurmrmiuieiririeeeeet ettt et ee et e e sess 8-57
8-17 IMMU BATC Block Size Selection Settings........cceeveeeevircricnneeneereceeeens 8-58
8-18 IPAR Contents for MMU/Cache FaultS........ccoeeerreirniieenee e 8-64
8-19 DCMD Command COESccueuirurrrieiiirteeieeeset st eeee et ese e e seeaesen 8-65
8-20 DMMU BATC Block Size Selection Settings........eeecceeevecceeeecieeeeeieecee e 8-66
8-21 DPAR Contents for MMU/Cache Faults........ccoovviiiiiiinieeee e 8-73
8-22 MC88110 MMU and MC88200 MMU Differences...........cccceeuvevueeeveceesirnereneeneen 8-74
9-1 Integer, Logical, and Bit-Field Execution Timings in Clock Cycles............... 9-25
9-2 Data Unit Execution Timings in Clock CyClesccoviiinniinnniceeeeeens 9-27
9-3 Store-Through Format for st InStructions ..o 9-28
9-4 Floating-Point Execution Timings in Clock Cycles........ccoevveveicceernennne 9-42
9-5 Flow Control Instruction Execution Penalties........ccccoeevevevieiennnreiieiceeenns 9-45
9-6 Penalties Incurred by Branch Instructions When the Branch Is Taken.........9-50
9-7 Branch Predictions for Conditional Branch Instructions...........ccccocevveeeinnnnne 9-51
9-8 Graphics Instruction Execution Timings in Clock Cycles.........ccovveeeeennee. 9-64
10-1 Logical INSIUCHONS.ccouiueeeeeeieieeeeeeeece ettt 10-93
10-2 Integer ArithmetiC INSIIUCIONS ...t 10-94
10-3 Floating-Point INSIrUCHONS.......cccciirie ittt 10-96
10-4 Graphics INSTIUCHONS..........oieieeeeeee ettt aa e 10-97
10-5 Bit-Field INStIUCHIONS ..c.ceeeeie ettt 10-98
10-6 Load/Store/Exchange INStrUCHONSc.cooeieiierececiecee e 10-99
10-7 Flow Control INSIIUCHIONSooiiiieeceee ettt et 10-100
10-8 Instruction NUMENC LiStNG........ccvtrmrrtinieeeierree ettt ees 10-101

Single-Beat Transaction OVEIVIEW...........ccueeciviieiienriiieieie et 11-4
11-2 Burst Transaction OVEIVIEW.......cccveevinnnireee ettt se e seeneees 11-5
11-3 MC88110 Signal SUMMAIYc.coeiirerrieeie et e 11-7
11-4 Data Bus Byle Lanes........c..cocoeieiiciirece ettt e 11-9
11-5 Data Byte Parity SIgnals.........cecoerirmrrninnieenrc ettt eenes 11-9
11-6 Transfer Size Signal ENCOAINGScoceuvimieriireeecee sttt 11-11

MOTOROLA MC88110 USER’S MANUAL XXV

LIST OF TABLES (Concluded)

Table Page
Number Title Number
11-7 Transfer Code Signal ENCOAiNGSc.cocceivernennereneicec e 11-11
11-8 €Cache LiNe SIGNal.......coceuieiieieiieeeee ittt et eee e e ae e 11-12
11-9 SNOOP StatuS SIGNAIS.......c.ccererireeeeeieire ettt et en e 11-14
11-10 PSTAT2-PSTATO Functionality...........ccccoiireiiiniiiiccccrccccccicenee e 11-16
11-11 Bus Arbitration SignalS.......cco ittt 11-33
11-12 Transfer Attribute Signal SUMMATYcccoeverriercre e 11-42
11-13 Memory Transfer Size and TYPE....cccoovererieeerireieee et s 11-43
11-14 Data Bus Requirements for Read and Write Cycles.........cccoceriiiicenninncennns 11-44
11-15 Single-Beat Transaction Transfer Attribute Signal States..........cccccceeurunnnn.ce. 11-48
11-16 Burst Transaction Types and First Double Word Transferred........................ 11-62
11-17 Burst Transaction Transfer Attribute Signal Statesccccooveeieiceecceiennnee. 11-63
11-18 Back-to-Back Transfer Timing ...t 11-69
11-19 Transaction Termination ENCOAINGScccoeveeeeeeeeeieserireeereeieieie et 11-69
11-20 Snoop Control Signal SUMMANY ..o 11-81
11-21 MC88110 Actions for SN00P HitS ...c.ceeuveeeeeieeeeee e 11-81
11-22 Transfer Attribute Signals during Table Search.........ccoeeoceeiveneccciecee 11-96
11-23 Instruction Register ENCOAINGS......cceeviieieeieeeeee ettt 11-109
A-1 Bit Scan Bit Definitionc.cccoveeireceee ettt A-1

XXVi MC88110 USER’S MANUAL MOTOROLA

SECTION 1
OVERVIEW

The MC88110 is the second implementation of the 88000 family of reduced instruction
set computer (RISC) microprocessors. The MC88110 is a Symmetric Superscalar™
machine capable of issuing and retiring two instructions per clock without any special
alignment, ordering, or type restrictions on the instruction stream. Instructions are issued
to multiple execution units, execute in parallel, and can complete out of order, with the
machine automatically keeping results in the correct program sequence. This symmetric
superscalar design allows sustained performance to approach the peak performance
capability.

The MC88110 uses dual instruction issue and simple instructions with extremely rapid
execution times to yield maximum efficiency and throughput for 88000 systems.
Instructions either execute in one clock cycle, or effective one clock cycle execution is
achieved through internal pipelining. Ten independent execution units communicate
with a general register file and an extended register file through multiple 80-bit internal
buses. Each of the register files has sufficient bandwidth to supply four operands and
receive two results per clock cycle. Each of the pipelined execution units, including those
that execute floating-point and data movement instructions, can accept a new instruction
and retire a previous instruction on every clock cycle.

In a single chip implementation, the MC88110 integrates the central processing unit
(CPU), floating-point unit (FPU), graphics processing unit (GPU), virtual memory address
translation, instruction cache, and data cache.

The CPU contains two arithmetic logic units (ALUs) that allow two integer instructions to
issue and execute in each clock cycle. The multiply and floating-point add execution
units are fully pipelined and provide the same high performance for single-, double-, and
double-extended-precision floating-point operations.

The graphics processing unit provides dedicated hardware to allow direct manipulation
of pixel-oriented data types. This ability, combined with exceptional floating-point
performance and high data throughput, allows the MC88110 to provide high
performance three-dimensional (3D) graphics capability, including shading, Z-buffering,
and compositing.

Symmetric Superscalar is a trademark of Motorola, Inc.

MOTOROLA MC88110 USER’S MANUAL 1-1

The MC88110 also includes two on-chip 8K-byte caches and two on-chip memory
management units (MMUs): one cache and MMU for instructions and one cache and
MMU for data. Additionally, on-chip logic maintains data cache coherency in
multiprocessor applications.

The MC88110 maintains compatibility with MC88100 user application software. Also, a
full line of highly optimizing compilers, operating systems, application programs, and
development tools has been developed for the 88000 family.

This section provides an overview of the MC88110, including a feature list and an
overview of the 88000 family. In addition, there is a block diagram of the MC88110, a
description of each execution unit, the MC88110 execution model, and a brief summary
of the instruction set. Instruction mnemonics used in this section are defined in detail in
Section 10 Instruction Set.

1.1 FEATURE LIST

The major features of the MC88110 are as follows:

« Symmetric Superscalar Design Which Issues Two Instructions Per Clock

« Ten Independent Execution Units and Two Eight Ported Register Files:
—Superscalar Instruction Unit
—80-Bit Integer, Floating-Point, and Graphics Multiply Execution Unit
—80-Bit Integer and Floating-Point Divide Execution Unit
—80-Bit Extended-Precision Floating-Point Add Execution Unit
—Two 64-Bit 3D Graphics Execution Units
—Two 32-Bit Integer Arithmetic Logic Execution Units
—32-Bit Bit-Field Execution Unit
—Data Unit with Load Buffer and Store Reservation Station
—Thirty-Two 32-Bit General Registers for Operand Storage

—Thirty-Two 80-Bit Extended Registers for Additional Floating-Point Operand
Storage

» High Performance Instruction Execution
—Single-Clock Integer, Logical, Bit-Field, and Graphics Operations

—Single-, Double-, and Double-Extended-Precision IEEE 754 Floating-Point
Compatibility (Up to Two Operations Executed per Clock Cycle)

—Pipelined Load and Store Operations

1-2 MC88110 USER’S MANUAL MOTOROLA

- High Performance Instruction and Data Throughput
—Internal Harvard Architecture

—Separate 8K-byte Instruction and Data Caches: 2-Way Set-Associative, Physically
Addressed

—80-Bit Internal Data Paths
—32-Entry Branch Target Instruction Cache for Branch Acceleration
—Run-Time Reordering of Loads and Stores
—Speculative Instruction Execution
—Register Scoreboard Managing Data Dependencies in Hardware
—Decoupled Data Cache Accesses
—Data Cache Write-Through and Write-Back Operation
» Extensible Architecture Facility Through Special Function Units
« Facilities for Enhanced System Performance
—64-Bit Split-Transaction External Data Bus with Burst Transfers

—Hardware Enforced Data Cache Coherency (Bus Snooping) for Multiprocessor
Applications

—Critical-Word-First Burst Cache Line Fills with Instruction and Data Streaming
—Instruction and Data Address Translation Caches with Page and Block Entries
—High-Speed Interrupt Processing with Minimal Interrupt Latency

« System Software Flexibility
—Hardware or Software Address Translation Cache Refill
—Data Address Breakpoints for Software Debugging
—Selectable Big-Endian or Little-Endian Byte Ordering

+ JTAG Boundary Scan for In-System Testability

1.2 88000 FAMILY OVERVIEW

The following paragraphs give an overview of the features which are common to all
members of the 88000 family, including the register-to-register architecture, the
simplified addressing modes, the instruction formats, the special function units (SFUs),
and the optimizing software.

1.2.1 Register-to-Register Architecture

The 88000 family defines register-to-register operations for all computational
instructions. Source operands for these instructions are accessed from the on-chip
registers or are provided as immediate values embedded in the instruction opcode. The
computational instruction results are stored in separate on-chip registers, allowing
source operand registers to be reused in subsequent instructions. Data is transferred
between memory and registers with load and store instructions only.

MOTOROLA MC88110 USER’S MANUAL 1-3

1.2.2 Simplified Addressing Modes

The 88000 family has simplified addressing modes for memory and register accesses.
Address calculations are simple, efficient, and execute quickly. All computational
instructions are implemented as register-to-register or register-plus-immediate-value
instructions which eliminates memory access delays in these instructions.

1.2.3 Instruction Formats

All 88000 instructions are implemented as single-word (32-bit) opcodes. Formats are
consistent across all instruction types, allowing for efficient decoding in parallel with
operand accesses. This fixed instruction length and consistent format greatly simplifies
instruction pipelining.

1.2.4 Levels of Privilege

The 88000 family has two instruction execution modes: supervisor mode and user mode.
The supervisor mode is the higher privilege level. In supervisor mode, memory and
control register access is unrestricted. The supervisor mode is typically used by
operating systems and other system-level resources. The user mode is the lower
privilege level. In user mode, resource access is limited to the user memory space,
general registers, extended registers, and some floating-point control registers.
Application software is typically executed in user mode.

1.2.5 Special Function Units

The 88000 family provides the flexibility for extensions, as technology and applications
evolve, through the definition of special function units (SFUs) within the overall
instruction mapping. An SFU is defined as a set of instructions, with a common opcode
field, which provides additional functionality to the base architecture. The architecture
defines a base instruction set and seven reserved sets of opcodes to support up to
seven SFUs. These SFUs may or may not be included in an implementation of the
architecture. Any SFU can be added to, or removed from, a given implementation of the
88000 family with no impact on the base architecture.

In addition to the base instruction set, the MC88110 implements two SFUs: the floating-
point unit, which is SFU1, and the graphics processing unit, which is SFU2. Figure 1-1
illustrates how the concept of SFUs is integrated with the MC88110 hardware. In this
diagram, each of the boxes represent hardware on the MC88110. The top box,
representing the instruction fetch and decode circuitry, is part of the instruction unit. The
three ovals are a conceptual representation of the base instruction set and the two SFU
instruction sets. When an SFU is enabled, the instructions in that SFU's instruction set
can be issued.

1-4 MC88110 USER’S MANUAL MOTOROLA

INSTRUCTION FETCH
AND DECODE

Y

BASE SFUt SFU2
INSTRUCTION SET INSTRUCTIONS INSTRUCTIONS

EXECUTION UNITS
A A
Y Y
GENERAL EXTENDED
REGISTER REGISTER
FILE FILE

Figure 1-1. SFU Conceptual Diagram

The instruction unit fetches, decodes, and issues each instruction to the appropriate
execution unit. The instructions fall into one of three categories: those in the base
instruction set, SFU1, or SFU2. The execution units receive source data from the register
files or from the instruction opcode and perform the specified operation. When the results
are ready, they are written to the appropriate register file.

Figure 1-2 shows which execution units are used by each of the instruction sets. The
base instruction set uses the instruction, data, integer, bit-field, divide, and multiply
execution units. The SFU1 (floating-point) instruction set uses the divide, multiply, and
floating-point add execution units. The SFU2 (graphics) instruction set uses the multiply,
pixel add, and pixel pack execution units. Note that the general register file can provide
data for and receive data from all ten of the execution units and all three of the instruction
sets. The extended register file can only be accessed by the SFU1 instruction set and
those instructions in the base instruction set that transfer data to and from memory.

MOTOROLA MC88110 USER’S MANUAL 1-5

BASE
INSTRUCTION SET

SFU1 SFU2
INSTRUCTIONS INSTRUCTIONS

(TR kT, e o
INSTRUCTION | INTEGER
UNIT UNIT

ADD UNIT §

ii‘i

!
GENERAL EXTENDED
REGISTER REGISTER
FILE FILE

Figure 1-2. SFU Hardware Use

1.2.6 Optimizing Software

Optimizing compilers, linkers, and operating systems, which have been designed in
conjunction with the design of the MC88110, are essential contributors to its
performance. This software performs optimizations based on the multiple, independent
execution units of the MC88110; instructions are scheduled to maximize parallelism and
instruction throughput. This software also makes efficient use of the MC88110 instruction
set and register model.

A register usage convention has been established that supports the cross-linking of
procedures from various compilers and languages. With this convention, compilers and
linkers allocate the general registers in a manner that minimizes data movement to and
from memory, even during procedure calls.

1.3 MC88110 PROCESSOR OVERVIEW

The MCB88110 contains ten execution units (see Figure 1-3) which operate
independently and concurrently. The integer, floating-point, graphics, multiply, and
divide execution units perform computational operations. The data unit performs the data
memory accesses, while the instruction unit performs instruction fetches and many of the
control functions for the MC88110.

The integer execution units include two identical ALUs, which perform 32-bit arithmetic
and logic operations, and one bit-field execution unit, which performs all bit-field
operations. The multiply execution unit handles all integer, floating-point, and graphics
multiply instructions. The divide execution unit handles integer and floating-point divide
instructions. The floating-point add execution unit handles the remaining floating-point
arithmetic instructions. The graphics execution units include a pixel adder, which
performs the remaining graphics arithmetic instructions, and the pixel packer, which
performs pixel pack and unpack functions.

In addition to the execution units, the MC88110 contains a general register file and an
extended register file. The MC88110 also has six 80-bit internal buses that are used for
passing operands between the register files and the different execution units: four of the

1-6 MC88110 USER’S MANUAL MOTOROLA

buses provide the execution units with source data from the register files or the
instruction encoding, and two buses return the results from the execution units to the

register files.

To speed up memory accesses and instruction fetching, the MC88110 has one cache
and MMU for data accesses, and one cache and MMU for instruction fetches. The data
cache contains duplicate address tags to facilitate snooping in multiprocessor
environments. There is also a target instruction cache (TIC), which contains the target
instructions for recently taken branches.

The bus interface unit arbitrates between external instruction and data accesses and
controls the external bus.

INTEGER || INTEGER || BIT-FIELD || MuLTIPLY DIVIDE FLOATING || PIXELADD || PIXEL PACK
EXECUTION | | EXECUTION | | EXECUTION | | EXECUTION | | EXECUTION || POINT || EXECUTION | | EXECUTION
UNIT UNIT UNIT UNIT UNIT ADD UNIT UNIT UNIT

Y Y Y A Y A \ Y Y A Y
A l; A | A
Y ¥ \ Y \
DATA GENERAL || EXTENDED TARGET SUPERSCALAR
Nt REGISTER || REGISTER INSTRUCTION [<€—>> INSTRUCTION
FILE FILE CACHE UNIT
A A
Y Y \
TAGS
8KB 8KB
MMU Tshoop DATA CACHE INSTRUCTION CACHE TAGS | MMU
TAGS
T A
vy Iy Y
BUS INTERFACE UNIT
[EXTERNAL BUS INTERFACE]

MOTOROLA

y

64-BIT PIPELINED, BURST-MODE, SPLIT-TRANSACTION BUS

Figure 1-3. MC88110 Block Diagram

MC88110 USER’S MANUAL

1-7

1.3.1 Internal Buses

The MC88110 has two source 1 buses, two source 2 buses and two destination buses.
These 80-bit buses perform all internal data transfers between the register files and the
execution units. The source 1 and source 2 buses transfer source operands to the
execution units. All source data originates from the register files or from 16-bit immediate
values embedded in instructions. The destination buses transfer data from the execution
units to the register files.

Arbitration for the internal buses is performed by the sequencer, which is a part of the
instruction unit. The contents of the source registers for an instruction are gated onto the
source buses under control of the sequencer. When an execution unit completes an
instruction, it requests a slot on a destination bus. Since there are only two destination
buses and more than two instructions can complete at any time, the sequencer
prioritizes the data transfers on the destination buses.

1.3.2 General Register File

The general register file (GRF) consists of thirty-two 32-bit registers which are
designated as r0 through r31. The r0 register always contains the constant zero and
can be used by instructions requiring the constant zero as an operand. The GRF can
provide operands for all computational instructions, can serve as the data source or
destination for load and store instructions, and can provide addresses for branch and
memory-access instructions.

The GRF has six output ports and two input ports. Four of the six output ports allow
source operands to be simultaneously placed on the two source 1 and two source 2
buses so that two instructions can be executed per clock. The last two output ports are
used to write the contents of the destination registers for the current instructions into the
history buffer. (For more information on the history buffer, see Section 7 Exceptions.)
The input ports are used to move the results from completed instructions from the two
destination buses into destination registers.

1.3.3 Extended Register File

The extended register file (XRF) consists of thirty-two 80-bit extended registers which are
designated as x0 through x31. The x0 register always contains the constant zero and
can be used by instructions requiring the constant zero as an operand. The remaining
registers in the XRF can contain data objects of any of the three defined floating-point
data formats: single-, double-, or double-extended-precision. The extended registers can
provide operands for all floating-point instructions and can serve as the data source or
destination for load and store instructions.

The XRF has six output ports and two input ports. Four of the six output ports allow
source operands to be simultaneously placed on the two source 1 and two source 2
buses so that two instructions can be executed per clock. The last two output ports are
used to write the contents of the destination registers for the current instructions into the
history buffer. (For more information on the history buffer, see Section 7 Exceptions.)

1-8 MC88110 USER’S MANUAL MOTOROLA

The input ports are used to move the results from completed instructions from the two
destination buses into destination registers.

1.3.4 Integer Execution Units

There are three integer execution units: two identical ALUs and one bit-field unit. Each of
the integer execution units completes instruction execution in one clock cycle. Since
there are two identical ALUs, two ALU instructions can be issued simultaneously;
therefore, arithmetic and logical instructions are never stalled due to the execution units
being unavailable. Integer multiply and divide are multi-cycle instructions and are
executed by the multiply and divide execution units, not by the ALUs.

1.3.5 Multiply and Divide Execution Units

The multiply unit executes all integer, floating-point, and graphics multiplies; the divide
unit executes all integer and floating-point divides. The multiply unit is implemented as a
three-stage pipeline; therefore, since all multiplies are three-cycle instructions, one
multiply can be issued in each clock cycle. The divide unit is an iterative multi-cycle
execution unit, so only one divide instruction can be executing at any time.

1.3.6 Floating-Point Function Unit

The FPU, implemented as SFU1, provides high performance mixed-mode operations for
single-, double-, and double-extended-precision floating-point data. The FPU operations
are executed in either the multiply, divide, or floating-point add execution units. Floating-
point operands can be stored in either the general register file or the extended register
file. The MC88110 also implements three control registers to support the FPU.

The floating-point add execution unit performs the integer/floating-point conversion
instructions and all floating-point arithmetic instructions except the multiply and divide.
The floating-point add unit is implemented as a three-stage pipeline; therefore, since
floating-point adds are three-cycle instructions, one floating-point add can be issued in
each clock cycle. The floating-point multiply and divide instructions are executed by the
multiply and divide execution units.

The three control registers associated with the FPU are the floating-point exception
cause register (FPECR), the floating-point status register (FPSR), and the floating-point
control register (FPCR). Information about the cause of floating-point exceptions is
recorded in the FPECR. This register is privileged and can only be accessed by
supervisor code. The FPSR and FPCR contain information on IEEE exception conditions
(divide by zero, overflow, etc.) and control the floating-point rounding mode. The FPSR
and FPCR are not privileged and can be accessed by either user or supervisor code.
The FPU control registers are described in detail in Section 4 Floating-Point
Implementation.

MOTOROLA MC88110 USER’S MANUAL 1-9

1.3.7 Graphics Processing Function Unit

The process of rendering realistic animated 3D images in real time is computationally
intensive. The process has five major steps: 1) viewpoint transformation, 2) lighting, 3)
raster conversion, 4) image processing, and 5) display. Because of its exceptional
floating-point performance, the MC88110 is capable of rapidly performing viewpoint
transformation and lighting calculations on complex images. The flexible computational
instructions and high data throughput of the MC88110 allow efficient coding of the bit
block transfer algorithm (bitblt) and other algorithms necessary to achieve good display
system performance. To achieve good interactive performance, raster conversion, and
image processing phases requires hardware support beyond that found in most
conventional microprocessors. The graphics processing function unit (GPU),
implemented as SFU2, is targeted at improving the performance of these phases of the
rendering process.

The MC88110 includes two independent execution units to support the GPU: the pixel
add execution unit and the pixel pack execution unit. Graphics operands are made up of
multiple pixels of varying length, which are packed into 64-bit fields and stored in
register pairs in the general register file. The graphics instructions process the individual
fields within the 64-bit fields in parallel, avoiding the need to separate them and operate
on them individually. The graphics multiply instruction is executed by the multiply
execution unit.

1.3.8 Instruction Unit/Sequencer

The MC88110 contains an instruction unit/sequencer which provides centralized control
of data flow among the execution units and the register files. The instruction
unit/sequencer enforces data interlocks, directs data from the register files onto and off of
the buses, maintains a state history of the processor's actions, and performs the flow
control instructions. The following paragraphs describe the instruction unit and the
sequencer.

1.3.8.1 INSTRUCTION UNIT. The instruction unit fetches instruction pairs from the
instruction cache, performs the first steps of instruction decode, and provides instructions
to the appropriate execution units via encoded internal control signals. The instruction
unit also executes flow control instructions and performs other related tasks such as
exception processing. In addition, the register scoreboard and the general control
registers are contained in the instruction unit.

1.3.8.1.1 Program Flow. The instruction unit fetches instructions from the cache as
dictated by program flow. Program flow includes sequential accesses, jump and branch
instructions, and exception vectoring.

The instruction unit executes all flow control instructions. It calculates the return pointer
for jump to subroutine (jsr) and branch to subroutine (bsr) instructions and saves the
return pointer in register one (r1) of the general register file. The return pointer is either
the address of the first instruction after the jsr or bsr instruction, or the address of the
second instruction after the jsr.n or bsr.n instruction (.n indicates delayed branching).

1-10 MC88110 USER’S MANUAL MOTOROLA

1.3.8.1.2 Exception Processing. The instruction unit includes two features which
are used for exception processing: the vector base register (VBR) and the history buffer.
The VBR points to a memory page containing all of the exception vectors. When an
exception occurs, the exception target address is computed using the value in the VBR.

The history buffer is a first-in-first-out (FIFO) queue which records relevant machine state
information at the time each instruction is issued. Each instruction remains in the history
buffer until it completes execution and all instructions which were issued before it
complete execution. When an exception occurs, the effects of any instructions which
completed out of order before the faulting instruction are eliminated using the
information from the history buffer. Any instructions issued before the faulting instruction
are allowed to complete execution before exception processing begins.

1.3.8.1.3 Register Scoreboard. Instructions in a code sequence begin execution
sequentially but can complete out of order. To avoid register conflicts between
instructions which are executed out of order, the instruction unit contains a register
scoreboard for the general register file and the extended register file. The register
scoreboard keeps track of which registers are unavailable and which are ready for use.

Every register except registers r0 and x0 has a dedicated bit in the register scoreboard.
When an instruction is issued that takes longer than one clock cycle to execute, the
scoreboard bit corresponding to the destination register is set. When the instruction
finishes execution, the register becomes available, and the scoreboard bit is cleared.

When an instruction requires the contents of a register and/or needs to use a register as
a destination, the appropriate scoreboard bit or bits are checked to determine if the
register(s) are available. If the required registers for an instruction are flagged as in use
in the register scoreboard (i.e., one of the required registers is the destination register for
a previous instruction which is still executing), execution of the instruction is delayed
until the required registers become available. In this case, the appropriate scoreboard
bits are checked by the instruction unit on each clock cycle until all the registers are
available. If the second instruction of an issue pair requires a register which is specified
as the destination for the first instruction of that issue pair, then execution of the second
instruction is delayed until the first instruction completes execution.

1.3.8.1.4 General Control Registers. The instruction unit also contains the general
control registers which include supervisor-only storage registers, a processor
identification register (PID), and a processor status register (PSR). The function of the
storage registers is programmer defined. The general control registers also include
several exception-time registers and registers for the control of the data and instruction
caches and MMUs.

1.3.8.2 SEQUENCER. The sequencer performs register write-back arbitration and
exception arbitration, and generates control signals for the instruction unit and the
internal buses.

When an execution unit has a result to write to a register, the execution unit requests the
write-back arbiter to grant a slot on the destination bus. If an interrupt is pending, the

MOTOROLA MC88110 USER’S MANUAL 1-11

write-back arbiter prohibits register write-back grants except for memory-access results.
If no interrupt is pending, the write-back arbiter generates a control signal that gates the
data onto a destination bus and into the selected register. If three or more execution
units request a slot, the write-back arbiter grants the two available write-back slots
according to a defined priority scheme. In this scheme, one-cycle instructions have
priority over instructions from multi-stage pipeline execution units.

If data on the destination bus is needed immediately by another instruction, the
sequencer sends a control signal which causes the data to be forwarded directly from
the destination bus onto the selected source bus in addition to being written into the
appropriate register. This feature is called feed-forwarding.

The exception arbiter controls exception recognition and resolves recognition of multiple
exceptions according to the priority of the exceptions. Interrupts have priority over
internally generated exceptions (except for data access exceptions); however, there is
no priority associated with internally generated exceptions, so they are handled in order.
Exceptions are described fully in Section 7 Exceptions.

1.3.9 Instruction Cache

The MC88110 has an 8K-byte, 2-way set associative, physically addressed instruction
cache. The instruction cache is 2-way set associative to maximize the hit rate, and uses
physical address tags so the cache does not need to be flushed on a context switch.
Instruction cache coherency is maintained by software and supported by a fast hardware
invalidation capability.

The instruction cache is configured as 128 sets which contain two lines each. Each line
contains eight 32-bit words, an address tag, and a valid bit. A block diagram of the
instruction cache organization is shown in Figure 1-4.

128 SETS . .
L] L
—
I
LINEO | ADDRESS TAGO VALID | WORDO | WORD 1 | WORD 2 [WORD 3 | WORD 4 | WORD 5 | WORD 6 | WORD 7
LINE 1 ADDRESS TAG 1 VALID | WORDO | WORD 1 | WORD 2 [WORD 3 | WORD 4 | WORD 5 | WORD 6 | WORD 7
f= 8 WORDS/LINE >

Figure 1-4. Instruction Cache Organization

Each instruction cache line contains eight contiguous words from memory which are
loaded from an 8-word boundary (i.e., bits A4—AQ of the logical addresses are zero);
thus, a cache line will never cross a page boundary. All bus operations that load
instructions into the cache from memory are performed on a line basis (i.e., an entire line

1-12 MC88110 USER’S MANUAL MOTOROLA

is filled). New lines are allocated into empty cache lines if any are available. A
pseudorandom replacement algorithm is used to select a cache line when no empty
lines are available.

Bus transactions that load instructions into the cache always begin with the address of
the missed word, regardless of the word’s location within a cache line. The missed word
is transferred to the instruction unit as soon as it is received from the bus so that
instruction issue can be resumed as quickly as possible.

On each clock cycle, the instruction unit provides the cache with the address of the first
instruction of the next instruction pair to be executed. In the case of a cache hit, the
instruction cache returns both the referenced instruction and the one following it; thus,
the instruction unit is provided with two instructions in each clock cycle as long as a
cache miss does not occur.

1.3.10 Target Instruction Cache

The MC88110 has a TIC, which is a fully associative 32-entry logically addressed cache.
Each entry in the TIC contains the first two instructions of a branch target instruction
stream, a 31-bit logical address tag, and a valid bit. The 31-bit logical address tag holds
a supervisor/user bit and the upper 30 bits of the address of the branch instruction.

When a branch instruction occurs, the TIC is accessed (using the address of the branch)
in parallel with the decode of the branch instruction. If there is a TIC hit, the two
instructions corresponding to the branch instruction are sent from the TIC to the
instruction unit. The instruction unit can then issue those instructions if the branch is
taken, eliminating much of the delay associated with changes in instruction flow. The
details of the operation of the TIC are discussed in Section 9 Instruction Timing
and Code Scheduling Considerations.

1.3.11 Instruction MMU

The instruction MMU provides two 4G-byte logical address spaces: one for supervisor
code and one for user code. The MMU enforces access privileges for these spaces on
block and page levels. Used and modified status is maintained by software for each
page to assist implementation of a demand-paged virtual memory system.

Memory management performance is maximized by two instruction address translation
caches (ATCs) that provide address translation in parallel with no time penalty. The
ATCs consist of the page address translation cache (PATC) and the block address
translation cache (BATC). The PATC is a 32-entry, fully-associative cache which
contains translations for 4K-byte memory pages. The PATC is automatically maintained
by MC88110 hardware or can be maintained by system software. The BATC is an 8-
entry, fully-associative cache that contains translations for block sizes ranging from
512K-byte to 64M-byte. The BATC entries are managed by system software.

MOTOROLA MC88110 USER’S MANUAL 1-13

1.3.12 Data Unit

The data unit interfaces with the data cache and MMU and executes instructions that
access data memory. The data unit contains a dedicated calculation unit for address
computation. Addresses are formed by adding the source 1 register operand specified
by the instruction to either a source 2 register operand or a 16-bit immediate value
embedded in the instruction. This address is sent to the data cache, which performs the
memory access.

Memory accesses are pipelined in the data unit. The data unit contains a series of load
address buffers and store address/data buffers, which operate as two independent FIFO
queues. These queues are the load buffer and the store reservation station. After being
issued, all load (Id) and store (st) instructions pass through the appropriate buffer or
reservation station.

The data unit executes the buffered load and store instructions as cache, memory, and
data become available. The data unit always executes Id instructions in program order
with respect to other Id instructions. Likewise, st instructions are executed in program
order with respect to other st instructions. However, Id instructions are allowed to
execute out of order with respect to st instructions. In the event that a st instruction is
stalled in the store reservation station waiting for data from a previous computation,
subsequent Id instructions can bypass the pending st instruction and can have access
to the memory system. To ensure memory consistency, the MC88110 compares load
addresses to store addresses and does not allow Id instructions to run ahead of st
instructions for which there is an address match. If necessary, all loads and stores can
be forced to run in strict program sequence by setting a bit in the processor status
register (see Section 2 Programming Model).

1.3.13 Data Cache

The MC88110 includes an 8K-byte, 2-way set-associative, physically addressed data
cache. The data cache is 2-way set-associative to maximize the hit rate and uses
physical address tags so the cache does not need to be flushed on a process switch.
The data cache supports both write-through and write-back memory update policies
which are selectable on a page-by-page or block-by-block basis.

The data cache is configured as 128 sets which contain two lines each. Each line
contains eight 32-bit words, an address tag, and status bits. A block diagram of the data
cache organization is shown in the Figure 1-5.

1-14 MC88110 USER’S MANUAL MOTOROLA

/]

128 SETS N .
L L[]
—-
[[
LINEO | ADDRESSTAGO STATE | WORD O [WORD 1 | WORD 2 | WORD 3 | WORD 4 | WORD 5 | WORD 6 | WORD 7
LINE 1 ADDRESS TAG 1 STATE | WORD 0 | WORD 1 | WORD 2 | WORD 3 | WORD 4 | WORD 5 | WORD 6 [WORD 7
f 8 WORDS/LINE >

Figure 1-5. Data Cache Organization

Each data cache line contains eight contiguous words from memory which are loaded
from an 8-word boundary (i.e., bits A4—AO0 of the logical addresses are zero); thus, a
cache line will never cross a page boundary. All bus operations that load data into the
cache from memory are performed on a line basis (i.e., an entire line is filled). New lines
are allocated into empty cache lines if any are available. A pseudorandom replacement
algorithm is used to select a cache line when no empty lines are available.

Bus transactions that load data into the cache always begin with the address of the
missed word, regardless of the word’s location within a cache line. The missed word is
transferred to the data unit as soon as it is received from the bus so that instruction
execution can be resumed as quickly as possible.

The data cache provides a decoupling feature to improve cache performance. When the
decoupling feature is enabled, the data unit can continue making cache accesses while
the data cache is waiting to receive data from the bus. These cache accesses are called
decoupled cache accesses. If a decoupled cache access hits in the cache and does not
require an external bus transaction, the access is allowed to complete. If a decoupled
cache access requires an external bus transaction, no further decoupled accesses are
allowed, and the cache access is restarted when the cache is available.

Data cache coherency is automatically maintained by hardware bus snooping. There
are duplicate address tags and dual-ported state bits associated with each line in the
cache to prevent snooping traffic on the bus from interfering with processor operation
and degrading performance.

1.3.14 Data MMU

The data MMU provides two 4G-byte logical address spaces: one for supervisor data
and one for user data. The MMU enforces access privileges for these spaces on block
and page levels. Used and modified status is maintained by software for each page to
assist implementation of a demand-paged virtual memory system.

Memory management performance is increased by two data ATCs that provide address
translation with no time penalty. The ATCs consist of the PATC and the BATC. The PATC
is a 32-entry, fully-associative cache which contains translations for 4K-byte memory
pages. The PATC is automatically maintained by MC88110 hardware or can be

MOTOROLA MC88110 USER’S MANUAL 1-15

maintained by system software. The BATC is an eight-entry, fully-associative cache that
contains translations for block sizes ranging from 512K-byte to 64M-byte. The BATC
entries are managed by system software.

1.3.15 External Bus Overview

The MC88110 external bus interface includes a 32-bit address bus, a 64-bit data bus, 48
control and information signals, and 8 test pins (see Figure 1-6). The address of the
instruction or data needed by the processor is driven on the address bus. Similarly, the
requested instruction or data is transferred to the processor on the data bus. The bus
interface control and information signals include the byte parity, transfer attribute,
arbitration, transfer control, snoop control, processor status, and interrupt signals. There
are also eight test pins used to test selected internal circuitry.

TRANSFER CONTROL

ADDRESS <——> 32 B e LANSTE
> 5 SNOOPCONTROL
oA 64 s SIGNALS
BYTEPARITY <—»]g MOS80, PROCESSOR STATUS
SIGNALS
TRANSFER ATTRIBUTE 17 o > INTERRUPT SIGNALS
siGNALS & >
ARBITRATION
[c—>
siGNALls €8 8 TEST SIGNALS
65 73

|

+5V =

Figure 1-6. MC88110 External Bus Interface

The data bus can support transfer sizes of 8-, 16-, 32-, or 64- bits in one bus cycle. Data
transfers occur in either single-beat transactions or four-beat burst transactions. A single-
beat transaction is a data transfer of 64 bits or less. Single-beat transactions are caused
by noncached accesses which access memory directly (i.e. reads and writes when
caching is disabled, cache inhibited accesses, invalidation cycles, xmem transactions,
writes in write-through/store-through mode, and allocate loads). Burst transactions,
made up of four consecutive two-word transfers, are initiated when an entire line in the
cache is read from or written to memory.

The MC88110 bus supports multiple processors with a built-in cache coherency
mechanism called bus snooping. Bus snooping is a technique whereby all devices on
the bus monitor all transactions to ensure that all local copies of data (in caches) remain
consistent.

The MC88110 supports split bus transactions in which different processors can have
ownership of the address bus and data bus at the same time. This potentially increases

1-16 MC88110 USER’S MANUAL MOTOROLA

system performance by allowing multiple bus transactions to be in progress
simultaneously. The bus also supports pipelining, which allows the address phase of a
transaction to overlap the data phase of other transactions. The complexity of the
pipeline levels is dependent on external circuitry.

1.3.16 System Debugging Features

The MC88110 contains a debug signal, breakpoint registers, and dedicated user-
accessible test logic to facilitate the debugging of MC88110 systems. The debug signal,
when asserted, disables all caches, MMUs, and breakpoints. This forces all instruction
and data accesses to appear on the bus, making it easier to track program flow.

The data MMU contains two data breakpoint registers which can be used by a debugger
program to force an exception to occur when accesses are made to specified logical
addresses. If the data breakpoints are enabled, the MMU compares the logical address
of each access to the 32-bit logical address in each of the breakpoint registers. If there is
a match, then a data access exception is taken. For more information on the breakpoint
registers, see Section 8 Memory Management Units.

The dedicated user-accessible test logic is fully compatible with IEEE Standard 1149.1-
1990 Standard Test Access Port and Boundary Scan Architecture. The test logic is
implemented using static logic design and is independent of the system logic of the
device. The test logic includes a 16-state controller, two test data registers (the bypass
register and the boundary scan register), and a test access port that consists of five
dedicated signal pins. The boundary scan register links all device signal pins into a
single shift register.

The MC88110 test logic provides the capability to perform the following procedures:
1. Boundary scan operations to test circuit board electrical continuity.

2. Bypass the MC88110 for a given circuit board test by effectively replacing the test
data register by single cell (the bypass register).

3. Sample the MC88110 system pins during operation and transparently shift out the
result through the boundary scan register.

4. Disable the output drive of all input/output pins and output pins during circuit board
testing. The single-bit bypass register is selected when in the output drive disabled
mode.

1.4 EXECUTION MODEL

The following paragraphs briefly describe the register set and some general timing
considerations. This section also includes a listing of the MC88110 instruction set.

1.4.1 Register Set

The MC88110 has two programming models: one that corresponds to the supervisor
mode of operation and one that corresponds to the user mode of operation. The

programming models incorporate three types of registers that provide data and

MOTOROLA MC88110 USER’S MANUAL 1-17

execution information to the execution units. The following list briefly describes the three
types of registers:

1. General Registers (r31-r0)—These registers can contain program data (source
operands and instruction results). All of these registers have read/write access.
Register r0 contains the constant zero, and writing to r0 has no effect on the
register.

2. Extended Registers (x31-x0)—These registers can contain floating-point data

(source operands and instruction results). All of these registers have read/write
access. Register x0 contains the constant zero, and writing to X0 has no effect.

3. Control Registers—These registers contain status, execution control, and
exception processing information. Some of these registers have read/write access,
while others are read-only. Most control registers can be accessed only in
supervisor mode.

1.4.2 General Timing Considerations

A superscalar machine is one which can issue multiple instructions concurrently from a
conventional linear instruction stream. The MC88110 is a superscalar implementation of
the 88000 architecture in which two instructions are decoded and issued to multiple
execution units during each clock cycle. Any complications due to the superscalar
implementation are transparent to the software.

There are several factors which affect instruction issue timing. These factors include the
following:

+ Whether instructions can be prefetched from the instruction cache (a cache hit), or
must be fetched from main memory (a cache miss).

+ Whether data dependencies exist which will force an instruction stall while source
data is being generated.

« Whether execution units are available to accept additional instructions.
« Whether the history buffer is full.

Instructions are issued to the execution units in strict program sequence. If the first
instruction in an issue pair cannot be issued, then neither instruction in the pair is issued.
If the first instruction in the pair is issued but the second cannot, then the second
instruction is moved into the vacated first-issue position, and a new instruction is placed
in the second-issue position. If both instructions in the pair are issued, then two new
instructions are fetched from the instruction cache to be issued in the next clock cycle.

When two instructions are considered for issue in the same clock cycle, there are no
restrictions placed on instruction type or address alignment for either instruction in the
issue pair. In other words, instructions in either slot can be from any word-aligned
memory location and can be issued to any execution unit (provided it is available and
there are no data dependencies). This is known as symmetric superscalar instruction
issue.

1-18 MC88110 USER’S MANUAL MOTOROLA

Figure 1-7 illustrates symmetric superscalar instruction issue. In this illustration,
instruction N is not bound to be issued to any particular execution unit. Similarly,
instruction N+1 is free to be issued to any available execution unit. This feature frees the
compiler/programmer from the limitations of specific instruction ordering or alignment.

INSTRUCTIONN

INSTRUCTION N + 1

INSTRUCTION g
UNIT

el -
INTEGER INTEGER
UNIT UNIT

DIVIDE
UNIT

3] ADDUNIT PACKUNIT E

Figure 1-7. Symmetric Superscalar Instruction Issue

The execution unit pipelines are fully hardware interlocked via a scoreboard
mechanism; therefore, data dependencies automatically delay instruction issue. The
register scoreboard eliminates the need to schedule wasteful no operation (NOP)
instructions into empty pipeline delay slots.

1.4.2.1 SOURCE AND DESTINATION DATA CONSIDERATIONS. If an
instruction attempts to use a source operand which is still being computed by a previous
instruction, a data dependency exists. When a data dependency exists, instruction issue
is stalled until all of the necessary source data is available. The MC88110 employs the
register scoreboard as an efficient method for keeping track of when source data is
available for an instruction.

The MC88110 implements several design features to reduce data-dependency
overhead. The first feature, feed forwarding, allows the results from a previous instruction
to be forwarded directly to a waiting instruction while simultaneously being written to the
destination register. The second feature, branch prediction, reduces the delay caused by
a data dependency for a branch instruction. In this case, the branch instruction is issued
to a branch reservation station and instruction execution continues along the predicted
path. Finally, a store instruction can be issued to the store reservation station even if
source data is not yet available. For more information on these features, refer to
Section 9 Instruction Timing and Code Scheduling Considerations.

Since the MC88110 allows instructions to complete out of order, there is the potential for
an instruction's result to be overwritten by an instruction which issued earlier but
completed later. To preclude this possibility, the scoreboard bit corresponding to the
destination register is automatically checked as a condition for instruction issue. This
ensures that updates to any given register are always completed in the order specified
by the program and thus no data is ever incorrectly overwritten in the register files.

MOTOROLA MC88110 USER’S MANUAL 1-19

1.4.2.2 EXECUTION UNIT CONSIDERATIONS. For an instruction to be issued,
the required execution unit must be available to begin execution of the instruction. The
sequencer monitors the availability of all execution units and suspends instruction issue
if the required execution unit is not available. An execution unit may not be available
under the following circumstances:
1. A multi-cycle, nonpipelined unit can have only one instruction in execution at a
time. Such a unit becomes busy when an instruction is issued to it, and it can not

accept another instruction until the previous one completes. The divide unit is the
only such unit on the MC88110.

2. An execution unit may become unavailable for additional instructions if its pipeline:
becomes full. This situation may occur if execution takes more clock cycles than the
number of pipeline stages in the unit. This situation can only occur in the data unit.
In addition, if the execution unit can not get access to a write-back slot while
additional instructions continue to fill its pipeline, the pipeline may become full.

3. Execution units can accept only one instruction per clock. Issuing two instructions
to the same unit on the same clock is prohibited.

Figure 1-8 illustrates which instruction pairs can and cannot be issued simultaneously
due to the one instruction per execution unit per clock restriction. For example, if the first
instruction in an issue pair is an integer arithmetic instruction, then the top row of the grid
in Figure 1-8 shows that any type of instruction can be issued concurrently provided
there are no data dependencies. On the other hand, if the first instruction in an issue pair
were an integer multiply, then the fourth row of the grid in Figure 1-8 shows that another
multiply (integer, graphics, or floating-point shown as the three white boxes on row four)
cannot be issued concurrently. Note that the diagram is symmetric along the diagonal
axis from the upper left to the lower right corner, indicating that this is a symmetric
superscalar design. Note that Figure 1-8 is a condensed diagram which groups like
instructions together. For a complete diagram listing each instruction, refer to Section 9
Instruction Timing and Code Scheduling Considerations.

1-20 MC88110 USER’S MANUAL MOTOROLA

[-%
§]
= - 3
8 58 .33 %
] z > 2 % 8 E & a
E§ses gt E 3% 2 <
£ = E 2 £ o 2 T = a8 a
=§.LE';E¢‘5E5'BEEE
E-BE%AS‘G&&&U,QQ
arithmetic
logical
INTEGER — bit-field
multiply
L divide
FLOW CONTROL —E branch
— load
MEMORY —
store
fp multiply
FLOATING POINT — fp add/sub/emp
fp divide
graph. mult.
GRAPHICS —| graph. add/sub
graph. pack

LEGEND:

CAN BE ISSUED SIMULTANEOUSLY (PROVIDED NO DATA DEPENDENCIES EXIST)

D CANNOT BE ISSUED SIMULTANEOUSLY
Figure 1-8. Simultaneous Instruction Issue Restrictions

1.4.2.3 HISTORY BUFFER. Although the MC88110 issues instructions in strict
sequential order, it is possible for instructions to complete execution out of order. The
MC88110 keeps an internal FIFO queue of all instructions that are executing. This
feature, the history buffer, keeps all details of out-of-order execution internal to the
processor.

At the time of issue, an instruction is placed at the tail of the queue. The instructions
move through the history buffer until they reach the head of the queue. An instruction
reaches the head when all of the instructions in front of it have finished execution.
However, since instructions can be executed out of order, it is possible for an instruction
to have finished execution, but still be in the middle of the queue. An instruction is retired
from the history buffer when it reaches the head and has finished execution.

The history buffer has 12 cells. If a multi-cycle instruction reaches the head of the buffer
and takes a very long time to complete execution, it is possible to fill the history buffer to
capacity. In this case, the MC88110 stalls instruction issue until the instruction at the
head of the buffer completes execution and is retired from the queue.

MOTOROLA MC88110 USER’S MANUAL 1-21

1.5 INSTRUCTION SET SUMMARY

The MC88110 instruction set is divided into seven categories: integer arithmetic,
floating-point arithmetic, graphics, logical, bit field, load/store/exchange, and flow control.
The MC88110 instruction set is summarized in Figure 1-9.

1-22 MC88110 USER’S MANUAL MOTOROLA

MOTOROLA

Integer Arithmetic Instructions Flow Control Instructions
Mnemonk Description | Mnemonk Description
add Signed Add bbo Branch on Bit Clear
addu Unsigned Add bb1 Branch on Bit Set
cmp Integer Compare bend Conditional Branch
divs Signed Divide br Unconditional Branch
divu Unsigned Divide bsr Branch to Subroutine
nuls Signed Multiply fllop llegal Operation
mulu Unsigned Multiply jmp Unconditional Jump
sub Signed Subtract jsr Jump to Subroutine
subu Unsigned Subtract rte Retum from Exception
tbo Trap on Bit Clear
Bit-Field Instructions tbt Trap on Bit Set
Memonk Description tbnd Trap on Bounds Check
cir Clear Bit Field tend Conditional Trap
ext Extract Bit Field
extu Unsigned Extract Bit Field Load/Store/Exchange Instructions
ffo Find First Bit Clear Mhemonk Description
ff1 Find First Bit Set Id Load Register From Memory
mak Make Bit Field Ida Load Address
rot Rotate Register lder Load from Control Register
set Set Bit Field st Store R egister to Memory
ster Store to Control Register
Log'g;al Instructions xer Exchange Control Register
Mhemoric Description xmem Exchange Register with Memory
and And
mask Logical Mask mmediate Floating-Point Instructions
or Or Mhemonk: Description
xor Exclusive Or fadd Floating-Point Add
femp Floating-P oint Compare
Graphics Instructions fempu Unordered Floating- Point Compare
Mremonic Description fevt Convert Floating- Point P recision
padd Pixel Add fdiv Floating-Point Divide
padds Pixel Add and S aturate fider Load from Floating-P cint Control R egister
pemp Pixel Compare fit Convert Integer to Floating-Point
pmul Pixel Multiply fmul Floating-Point Multiply
ppack Pixel T runcate, Insert, and Pack fsqrt Floating-P oint Square R oot
prot Pixel Rotate Left fster Store to Floating-Point Control Register
psub Pixel Subtract fsub Floating-Point Subtract
psubs Pixel Subtract and Saturate fxer Exchange Floating-Point Control Register
punpk Pixel Unpack int Round Floating-P oint to Integer
mov Register-to-Register Move
nint Round Floating-P oint to Nearest I nteger
trnc Truncate Floating-Point to Integer

Figure 1-9. MC88110 Instruction Set

MC88110 USER’S MANUAL

1-23

1-24 MC88110 USER’S MANUAL MOTOROLA

SECTION 2
PROGRAMMING MODEL

This section briefly describes the MC88110 processor states, registers and operand
conventions. Exceptions are also briefly described in this section, but the details of
individual exceptions (including exception recovery) are given in Section 7
Exceptions. Instruction mnemonics used in this section can be identified by referring to
Section 3 Addressing Modes and Instruction Set Summary.

2.1 PROCESSOR STATES

The MC88110 is always in one of three states: normal instruction execution, exception,
or reset. The reset state is entered when the RST signal is asserted. The exception state
is entered when any of the following conditions occurs: external interrupts, memory
access errors, internally recognized errors, or trap instructions. The following paragraphs
describe the three states of the MC88110.

2.1.1 Reset State

When RST is recognized as asserted, all current processor operations are aborted, the
control registers are initialized appropriately, and external signals are placed in the high-
impedance state. When RST is negated the processor begins instruction execution at
address zero.

2.1.2 Exception State

Exceptions are conditions that cause the processor to suspend execution of the current
instruction stream and perform exception processing. Exception processing provides an
efficient context switch so that system software can handle the exception condition while
maintaining the integrity of the hardware and other software. Exception conditions
include the following:

« External interrupts, signaled by the INT or NMI signals

» Memory access errors such as page faults and bus errors

« Internally recognized errors, such as divide-by-zero and arithmetic overflow
« Trap instructions

« lllegal instructions

« Privilege violations

MOTOROLA MC88110 USER’S MANUAL 2-1

When an exception is recognized by the processor, the execution context is saved into
exception-time registers, the special function units are disabled, and the machine is
placed in supervisor mode. Control is then passed to a designated exception handler
routine. The exception handler routine processes the condition that caused the
exception. The handler routine performs specific functions (e.g., fixing internal errors,
aborting operations, or servicing interrupts) based on the type of exception that has
occurred. The exception handler routine then restores the processor to normal
operation.

The MC88110 implements a precise exception model. This means that the precise
address of the faulting instruction is provided to the exception handler and that neither
the faulting instruction nor any instructions logically following it in the code stream will
appear to have been issued. Because of the precise exception model, it is not necessary
for the internal pipeline states of the processor to be made visible to the software
handlers.

Refer to Section 7 Exceptions for detailed information on exceptions.

2.1.3 Normal Instruction Execution State

During normal instruction execution, the MC88110 operates in one of two levels of
privilege: supervisor mode or user mode. These levels define which address space is
accessed and which registers are available to the programmer. The level of privilege is
determined by the MODE bit in the processor status register (PSR). The following
paragraphs describe the levels of privilege.

2.1.3.1 SUPERVISOR LEVEL OF PRIVILEGE. The supervisor mode is the higher
level of privilege. The processor operates in this mode when the MODE bit is set. When
operating in the supervisor mode, memory accesses reference the supervisor address
space in data or instruction memory; however, the programmer can specify the .usr
option for memory-access instructions to force access to user data address space. The
supervisor mode allows execution of all instructions and allows access to all control
registers and general registers.

Operating system software typically executes in supervisor mode. Among the operating
system services provided are resource allocation (memory and peripherals), exception
handling, and software execution control (task initiation, scheduling, etc.). Execution
control normally includes controlling user programs and protecting the system from
accidental or malicious corruption by a user program.

The MODE bit is set automatically when an exception is recognized so that the exception
handler executes in supervisor mode. All bus transactions performed during exception
processing reference supervisor address space. Reset also causes the MODE bit to be
set, thus placing the processor in supervisor mode.

2-2 MC88110 USER’S MANUAL MOTOROLA

2.1.3.2 USER LEVEL OF PRIVILEGE. The processor operates in user mode when
the MODE bit in the PSR is clear. Memory accesses in user mode can only reference
user data and user instruction memory. Control register access is restricted in user
mode. The only control registers accessible in this mode are the floating-point control
and status registers. Attempting to access other control registers while in uset mode
causes an exception.

2.1.3.3 CHANGING LEVELS OF PRIVILEGE. The processor switches from user
mode to supervisor mode under the following four conditions:

1. An exception occurs. Exceptions place the processor into the exception processing
state, which includes switching to supervisor mode.

2. Areset is signaled.
3. A user program executes a trap instruction.
4. Aninterrupt or memory access fault occurs.

The processor switches from supervisor mode to user mode under the following two
conditions:
1. The processor executes an rte instruction. The rte instruction restores the PSR,

which returns the processor to user mode if the MODE bit of the restored PSR is
clear.

2. A ster or xcr instruction explicitly clears the MODE bit in the PSR. This method of
clearing the MODE bit may cause the MC88110 to fetch the next few instructions
from either supervisor or user space, and thus usually causes undesired program
execution results.

2.2 REGISTER DESCRIPTION

The MC88110 contains three types of registers which provide data and execution
information to the execution units and to software. Register access depends on the
register type and current level of privilege. The following paragraphs describe
programming model and the programmer's view of the general, extended, and control
registers. Refer to Section 4 Floating-Point Implementation for more information
on floating-point control registers and Section 7 Exceptions for more information on
exception control registers.

2.2.1 Supervisor/User Programming Model

The supervisor programming model includes all general, extended, and control
registers. The user programming model includes all general and extended registers, but
only two of the control registers: the floating-point control register (FPCR) and floating-
point status register (FPSR). Figure 2-1 illustrates the programming model.

The contents of the general control registers can be copied to and from the general
registers using the Idcr, ster, and xcr instructions. However, these instructions are
privileged and therefore restrict access of the general control registers to supervisor
mode software.

MOTOROLA MC88110 USER’S MANUAL 2-3

LT R T P

"""""""""""""""""""""""""""" { e PID PROCESSOR IDENTIFICATION
i et PSR PROCESSOR STATUS REGISTER
GENERAL REGISTERS ! o2 EPSR EXCEPTION PROCESSOR STATUS REGISTER
0 ZERO i o4 EXIP | EXCEPTION EXECUTING INSTRUCTION POINTER
" SUBROUTINE RETURN POINTER E crs ENIP EXCEPTION NEXT INSTRUCTION POINTER
2 {oe VR VECTOR BASE REGISTER
i cr6 SRO STORAGE REGISTER 0
! e7 SRt STORAGE REGISTER 1
4 TEMPORARYSTORAGEREGISTERS /7 1 gpy STORAGE REGISTER 2
i or9 SR3 STORAGE REGISTER 3
31 ! er20 SR4 STORAGE REGISTER 4
! or25 ICMD INSTRUGTION MMU/CACHE/TIC COMMAND
1o ICTL INSTRUCTION MMU/CACHE CONTROL
i er27 ISAR INSTRUCTION SYSTEM ADDRESS
EXTENDED REGISTERS i o8 ISAP | INSTRUCTION MMU SUPERVISOR AREA POINTER
© R0 i o9 uap INSTRUCTION MMU USER AREA POINTER
. ioed IR INSTRUCTION MMU ATC INDEX REGISTER
Uoest 1BP INSTRUCTION MMU BATC RAW PORT
i o322 IPPU INSTRUCTION MMU PATC R/W PORT (UPPER)
Z TEMPORARY STORAGE REGISTERS Ve i o33 IPPL INSTRUCTION MMU PATC RAW PORT (LOWER)
! oM ISR INSTRUCTION ACCESS STATUS REGISTER
| o35 ILAR INSTRUCTION ACCESS LOGICAL ADDRESS
a1 i 3% IPAR INSTRUCTION ACCESS PHYSICAL ADDRESS
| o0 DCMD DATA MMUICACHE COMMAND
i et DCTL DATA MMU/CACHE CONTROL
| ord2 DSAR DATA SYSTEM ADDRESS REGISTER
fer62 FPSR FLOATING POINT STATUS REGISTER i o3 DSAP DATA MMU SUPERVISOR AREA POINTER
fer63 FPCR | FLOATING POINT CONTROL REGISTER i crdd DUAP DATA MMU USER AREA POINTER
! o5 DR DATA MMU ATC INDEX REGISTER
i ord6 DBP DATA MMU BATC RW PORT
USER PROGRAMMING MODEL e crd7 DPPU DATA MMU PATC RW PORT (UPPER)
__ i cd8 DPPL DATA MMU PATC RAW PORT (LOWER)
crd9 DSR DATA ACCESS STATUS REGISTER
cr50 DLAR DATA ACCESS LOGICAL ADDRESS
51 DPAR DATA ACCESS PHYSICAL ADDRESS
fer0 FPECR [FLOATING-POINT EXCEPTION CAUSE REGISTER |

SUPERVISOR PROGRAMMING MODEL

Figure 2-1. Programming Model

The contents of the floating-point control registers can be copied to and from the general
registers using the fldcr, fster, and fxcr instructions. These instructions allow access of
fcr63 and fcr62 to user mode software but restrict access of fcr0 to supervisor mode
software. Refer to Section 4 Floating-Point Implementation for a detailed
description of the floating-point control registers.

24

MC88110 USER’S MANUAL

MOTOROLA

2.2.2 General Register File

The general register file (GRF) consists of 32 general registers, each of which is 32 bits
wide (see Figure 2-2). These registers can contain instruction operands and results and
can provide address and bit-field information. All general registers have read/write
access.

3 0
] CONTAINS ZERO
4] SUBROUTINE RETURN POINTER
7]
{ TEMPORARY STORAGE REGISTERS {
31

Figure 2-2. General Register File

There are two hardware restrictions on the use of certain general registers, which are as
follows:

1. Register r0—This register always contains the constant zero and is always read as
positive zero. Register r0 can be used by instructions requiring the constant zero as
an operand (e.g., compare to zero). Writing to r0 is permissible but causes no
modification to the contents of the register and, depending on the implementation,
may or may not cause normal instruction side effects.

2. Register ri—The return pointer generated by the bsr and jsr instructions is stored
in this register each time either of these instructions execute. Register r1 is not
protected; therefore, the return pointer (or any other data) contained in r1 can be
read or overwritten by software.

2.2.3 Extended Register File

The extended register file (XRF) consists of 32 extended registers, each of which is 80
bits wide. These registers can contain 32 data objects of any of the defined floating-point
data formats: single, double, or double-extended precision. The extended registers can
provide operands for all floating-point instructions and can serve as the data source or
destination for st and Id instructions. See Figure 2-3 for an illustration of the XRF.

The extended register file has only one hardware restriction, which is on register x0.
This register always contains the constant zero and is always read as positive zero.
Register x0 can be used by instructions requiring the constant zero as an operand.
Writing to x0 is permissible but causes no modification to the contents of the register,
and, depending on the implementation, may or may not cause normal instruction side.
effects.

MOTOROLA MC88110 USER’S MANUAL 2-5

x0 CONTAINS ZERO

Z TEMPORARY STORAGE REGISTERS Z

x31

Figure 2-3. Extended Register File

2.2.4 Control Registers

The following paragraphs describe the general control registers and the floating-point
control registers.

2.2.4.1 GENERAL CONTROL REGISTERS. The MC88110 contains 35 general
control registers (see Table 2-1). These registers are accessible only in supervisor
mode. Twelve of the general control registers are for the instruction cache and memory
management unit (MMU), and twelve are for the data cache and MMU. The remaining
registers provide status information, the base address of the exception vector table, and
general-purpose storage.

The general control registers can be read using the Idcr instruction, and can be written
using the ster instruction. The xcr instruction exchanges the contents of a control
register with the contents of the specified general register. When a control register is
read, reserved bits are returned as zeros. Writes to reserved bits are ignored. When a
read or write to an unimplemented control register is attempted, an unimplemented
opcode exception is taken. When a register specified as “Motorola internal use only” is
read, undefined data is returned. Writes to these registers will not cause an exception;
however, subsequent reads are not guaranteed to return the previously written data.

The following paragraphs describe the processor identification (PID) register, the PSR,
and the supervisor storage registers. Refer to Section 4 Floating-Point
Implementation, Section 6 Instruction and Data Caches, Section 7
Exceptions, and Section 8 Memory Management Units for more detailed
information on the other control registers.

Table 2-1. General Control Registers

Register Number Acronym Register Name
cro PID Processor Identification Register
cri PSR Processor Status Register
cr2 EPSR Exception Processor Status Register
cr3 — Unimplemented
crd4 EXIP Exception Executing Instruction Pointer

2-6 MC88110 USER’S MANUAL MOTOROLA

Table 2-1. General Control Registers (Continued)

Register Number Acronym Register Name
crs ENIP Exception Next Instruction Pointer
crbé — Unimplemented
cr7 VBR Vector Base Register

c8-cr13 —_ Unimplemented
cri4—-cri5 —_ Motorola Internal Use Only
cri6 SRo Storage Register 0
cr17 SR1 Storage Register 1
cri8 SR2 Storage Register 2
cri9 SR3 Storage Register 3
cr20 SR4 Storage Register 4
cr2i-cr24 — Unimplemented
cr2s ICMD Instruction MMU/Cache/TIC Command
cr26 ICTL Instruction MMU/Cache Control
cr27 ISAR Instruction System Address
cr28 ISAP Instruction MMU Supervisor Area Pointer
cr29 IUAP Instruction MMU User Area Pointer
cr30 IR Instruction MMU ATC Index Register
cr3t IBP Instruction MMU BATC RAW Port
cr32 IPPU Instruction MMU PATC RAW Port (Upper)
cr33 IPPL Instruction MMU PATC RAW Port (Lower)
cr34 ISR Instruction Access Status Register
cr35 ILAR Instruction Access Logical Address
cr36 IPAR Instruction Access Physical Address
cr37-cr39 — Unimplemented
cra0 'DCMD | Data MMU/Cache Command
cra1 DCTL Data MMU/Cache Control
cr42 DSAR Data System Address
cr43 DSAP Data MMU Supervisor Area Pointer
cra4 DUAP Data MMU User Area Pointer
cr4s DIR Data MMU ATC index Register
cra6 DBP Data MMU BATC RW Port
cra7 DPPU Data MMU PATC RW Port (Upper)
cras DPPL Data MMU PATC RW Port (Lower)
cr4a9 DSR Data Access Status Register
cr50 DLAR Data Access Logical Address
cr51 DPAR Data Access Physical Address
cr52-cr63 — Unimplemented

MOTOROLA

MC88110 USER’S MANUAL

2-7

2.2.4.1.1 Processor Identification Register. The PID (cr0) contains the processor
version number. This register is read only. The PID is shown in Figure 2-4.

31 16 15 8 7 10
o 0 0 o 0o o 0 0o o 0 o 0 o 0 o of ARCHTECTURALREVISION | VERSION NUMBER 11]

Figure 2-4. Processor Identification Register

Bits 31—16—Reserved
Read as zero; not guaranteed to be zero in future implementations.

ARCH REVISION—Architectural Revision Number

Identifies the particular processor (MC88100, MC88110, future generations, special
purpose processors). The revision number changes when a major architectural
change is made that warrants a new part number. The revision number for the
MC88110is 1.

VERSION #—Version Number

Identifies the particular mask version of the MC88110 processor. The version number
is changed by Motorola when mask changes are made that affect the functionality of
the device.

Bit 0—Reserved
Read as one; not guaranteed to be one.in future implementations.

2-8 MC88110 USER'S MANUAL MOTOROLA

2.2.4.1.2 Processor Status Register. The bits in the PSR (cr1) are set by
hardware or software to report the status of processor operations or to control processor
operation. The operation of the various bits in the PSR depends on the value of the
shadow freeze bit (EFRZ, bit 0) in the PSR. For a detailed explanation of the implications
and effects of the EFRZ, refer to Section 7 Exceptions. In the paragraphs that follow,
an asterisk (*) denotes the default state after reset. Figure 2-5 shows the PSR.

31 3 20 2 % 2 9 3 2 1 0
[Mooe| 8o [ser| ¢ ? sFup |mxu| no [errz]

UNDEFINED-RESERVED FOR FUTURE USE

Figure 2-5. Processor Status Register

Mode—Supervisor/User Mode

This bit is set by hardware when the processor changes to supervisor mode due to an
exception condition or trap instruction. The mode bit may be cleared by software to
return the MC88110 to user mode.

0 = User Mode
1 = Supervisor Mode*

BO—Byte Ordering

This bit is set by software to indicate the current byte ordering. See 2.3.4.2 Byte
Ordering for a full description of byte ordering.

0 = Big Endian Byte Ordering*
1 = Little Endian Byte Ordering

SER—Serial Mode

The serial mode is generally used for debugging purposes since it significantly
reduces machine throughput. This bit is set by software.

0 = Concurrent Instruction Execution
1 = Serial Instruction Execution*

C—Carry

This bit is modified by hardware according to the results of and add or subtract
instruction. It is only modified when the instruction explicitly requests the use of the
carry bit.

0 = Carry Not Generated by an Add or Subtract Instruction*
1 = Carry Generated by an Add or Subtract Instruction

Bit 27—Reserved
Read as zero; not guaranteed in future implementations. Writes are ignored.

MOTOROLA MC88110 USER’S MANUAL 2-9

SGN—Signed Immediate Mode

This bit is set by software to determine whether immediate offsets and constants are
signed or unsigned.

0 = Immediate Offsets and Constants are Unsigned*
1 = Immediate Offsets and Constants are Signed Two's Complement

SRM—Serialize Memory

This bit is set by software to force serialization of the processor prior to load or store
instruction execution.

0 = Concurrent Memory Instruction Execution
1 = Serialize Memory Instructions*

Bit 24-10—Reserved
Read as zero; not guaranteed in future implementations. Writes are ignored.

Bits 9-5—Special Function Unit Disable

These bits will be used to enable additional SFUs in future 88000 implementations.
These bits are hardwired to “one” in the MC88110.

1 = Unimplemented SFUs Always Disabled

SFD2—Special Function Unit Two (SFU2) Disable
This bit disables SFU2, the graphics unit. This bit is automatically set by hardware
when an exception or reset occurs, and can also be set or cleared explicitly by
software.

0 = SFU2 Enabled
1 = SFU2 Disabled*

SFD1—Special Function Unit One (SFU1) Disable

This bit disables SFU1, the floating point unit. This bit is automatically set by hardware
when an exception or reset occurs, and can also be set or cleared explicitly by
software.

0 = SFU1 Enabled

1= SFU1 Disabled*

MXM—Misaligned Access Exception Mask

This bit is set by software to disable the misaligned access exception. When this bit is
set and a misaligned access is attempted, the processor truncates the address to a
consistent boundary (see 2.3.4.1 Misaligned Access).

0 = Misaligned Access Exception Mode Enabled

1 = Misaligned Access Exception Mode Disabled*

2-10 MC88110 USER’S MANUAL MOTOROLA

IND—Interrupt Disable

This bit is automatically set by hardware to disable interrupts when an exception
occurs. This bit can also be set or cleared explicitly by software to specifically
disable/enable interrupts. Interrupts must be disabled when shadowing is frozen to
avoid an error exception.

0 = External Interrupt Enabled
1 = External Interrupt Disabled*

EFRZ—Exceptions Freeze
This bit is set by hardware when an exception occurs to preserve the processor
context for the exception. This bit can also be set or cleared explicitly by the stcr or
xcr instructions or implicitly by an rte instruction. If this bit is set and any exception
occurs, the MC88110 takes the error exception. Setting the EFRZ bit in the PSR with
an ster or xcr instruction does not cause the EFRZ bit to be set in the EPSR.

0 = Exceptions Enabled
1 = Exceptions Disabled*

2.2.4.1.3 Supervisor Storage Registers. The integer unit contains five 32-bit
supervisor storage registers which have read/write access. These registers provide high-
speed storage space where supervisor software can store data and pointers without
referencing memory. The use and content of these registers are determined by software.

2.2.4.2 FLOATING-POINT CONTROL REGISTERS. The floating-point control
registers provide exception recovery and status and control information for the floating-
point unit (FPU). Table 2-2 lists the floating-point control registers. Refer to Section 4
Floating-Point Implementation for detailed descriptions of these registers.

Table 2-2. Floating-Point Control Registers

Number Acronym Register Name
fcro FPECR Floating-Point Exception Cause Register
fer1-fcré1 — Unimplemented
feré62 FPSR Floating-Point Status Register
fcr63 FPCR Floating-Point Control Register

MOTOROLA MC88110 USER’S MANUAL 2-11

2.3 OPERAND CONVENTIONS

The following paragraphs describe the operand conventions for the MC88110, including
a definition of the operand types and a description of how operands are organized in
registers and in memory.

2.3.1 Operand Types
The MC88110 supports the following operand types:
Integer Operands:
Byte—8 Bits
Half Word—16 Bits
Word—32 Bits
Double Word—64 Bits
Bit-Field Operands:
Bit Field—1 to 32 Bits in a 32-Bit Register
Floating-Point Operands:
Single-Precision Floating-Point—32 Bits
Double-Precision Floating-Point—64 Bits
Double-Extended-Precision Floating-Point—80 Bits
Graphics Operands:
32-Bit Packed Nibbles
32-Bit Packed Bytes
64-Bit Packed Bytes
64-Bit Packed Half-Words
64-Bit Packed Half-Words
64-Bit Packed Words
The operand size for each instruction is either explicitly encoded in the instruction or
implicitly defined by the instruction operation. Bit fields are defined by width and offset
values given in the instruction or in a source register specified by the instruction. For
more information on floating-point and graphics operands, refer to Section 4

Floating-Point Implementation and Section 5 Graphics Unit Implementation,
respectively.

2.3.2 Data Organization in General Registers

The GRF can contain all types of operands except double-extended-precision floating-
point operands. Graphics operand sizes range from 8 to 32 bits. These operands are
packed into double words (64 bits), which are contained in a register pair.

2-12 MC88110 USER’'S MANUAL MOTOROLA

Since the memory interface supports operand types other than 32-bit words, the
MC88110 incorporates the following rules for placing memory data into registers or
extracting data from registers for storing to memory (see Figure 2-6):

1.

2.

Byte operands are always contained in the lowest eight bits of a register. When a
byte is loaded into a register, it is either sign- or zero-extended to 32 bits.

Half-word operands are always contained in the lowest 16 bits of a register. When
a half word is loaded into a register, it is either sign- or zero-extended to 32 bits.

Word operands are contained in the entire 32 bits of a register.

Double-word operands are loaded to or extracted from two adjacent registers (rn
and rn+1), with rn always even and always containing the higher order word.

Bit-field operands are defined by an offset and a width. The most significant bit
(MSB) of a bit field is the bit closest to bit 31; the least significant bit (LSB) is the bit
closest to bit 0. The value of the offset equals the bit number of the LSB of the bit
field, and [offset + width —1] equals the bit number of the MSB of the bit field.

Single-precision floating-point operands are contained in the entire 32 bits of a
register. Bit 31 contains the sign bit, bits 30-23 contain the exponent, and the
remaining bits comprise the mantissa.

Double-precision floating-point operands are contained in two adjacent registers
(rn and rn+1), with rn always even and always containing the higher order bits. In
the upper order register (rn), bit 31 contains the sign bit, bits 30—20 contain the
exponent, and bits 19-0 contain the upper bits of the mantissa. Bits 31-0 of the
lower order register (rn+1) contain the lower bits of the mantissa.

Any double-word and double-precision floating-point operands aligned on odd-
numbered register pairs (i.e., r5:r6 instead of r4:r5) will cause the following exceptions
to occur:

1.

2.

3.

Floating-point instructions referencing an odd-numbered register pair will cause an
SFU1 floating-point unimplemented exception.

Graphics instructions referencing an odd-numbered register pair will cause an
SFU2 exception.

All other instructions referencing an odd-numbered register pair will cause an
unimplemented opcode exception.

The exception handler will implement double-word alignment on odd-numbered register
pairs in software. Since the software implementation will result in slower execution time,
it is recommended that software and compilers align such data to even-numbered
registers to guarantee the best performance.

MOTOROLA MC88110 USER’S MANUAL 2-13

31 87 0

INTEGERS: SIGNED BYTE [ssssssssss55555555555555 5] BYTE |
31 87 0
UNSIGNED BYTE Fooooooooooooooooooooooo| BYTE]
31 1615 0
SIGNED HALF WORD [fssssssssssssssy] HALF WORD)
31 16 15 0
UNSIGNED HALF WORD |o 00000000000000 ol HALF WORD |
3 0
WORD [WORD |
63 32
N WORD 0 (MOST SIGNIFICANT WORD; REGISTER N)
DOUBLE WORD
N+t WORD 1 (LEAST SIGNIFICANT WORD; REGISTERN + 1)
31 0

BIT NUMBER = BIT NUMBER =
OFFSET + WIDTH OFFSET

3 y y 0
BIT FIELDS: BIT FIELD [BIT FIELD
|~ WIDTH D1~ OFFSET —»
3 2423 0
FLOATING-POINT OPERANDS: SINGLE-PRECISION
FLOATING POINT [s]exeonent | MANTISSA
6362 5251 - 32
oousLEPRECiSIoN N s| EXPONENT | HIGH-ORDER BITS OF MANTISSA
FLOATING POINT 4 LOW-ORDER BITS OF MANTISSA
3 0
31 2827 2423 2019 1615 1211 87 43 0
GRAPHICS OPERANDS: 32-BIT PACKED NIBBLES [eeie T weeie | wesLe | wissie | wiesie | weate | meste | weste |
31 2428 1615 87 0
32.BIT PACKED BYTES [BYTE | BYTE [BYTE | BYTE |
63 5655 4847 4039 2
BYTE BYTE BYTE BYTE
64-BIT PACKED BYTES
BYTE BYTE BYTE BYTE
3l 242 1615 87 0
31 1615 0
32-BIT PACKED HALF-WORDS [HALF-WORD | HALF-WORD |
63 4847 32
HALF-WORD HALF-WORD
64-BIT PACKED HALF-WORDS
HALF-WORD HALF-WORD
3l 615 0
63 32
WORD
64-BIT PACKED WORDS
WORD
3 0

Figure 2-6. Data Organization in General Registers

2.3.3 Data Organization in Extended Registers

The XRF can contain all types of floating-point operands (see Figure 2-7). When data is
placed in an extended register, the value given to unused bits is not defined; for
example, if single-precision data is placed in an 80-bit extended register, then all 80 bits
are overwritten, but the value of the least significant 48 bits is undefined.

2-14 MC88110 USER’S MANUAL MOTOROLA

7978 770 4847 0
SINGLE-PRECISION
NOLE PRECISION rs] EXPONENT | MANTISSA UNDEFINED |
7978 6867 1615 0
DOUBLE-PRECISION
UBLE PRECISION [s] EXPONENT | MANTISSA [unoEFNED |
7978 636261 0
DOUBLE-EXTENDED-PRECISION
entne hont 5] EXPONENT 1L MANTISSA |
S: SIGN BIT
L LEADING BIT
Figure 2-7. Operands in Extended Register File

2.3.4 Data Organization in Memory and Data Transfers

Data transfers are required to be aligned to the appropriately sized boundary in memory
(i.e., byte, half word, or word), and bit fields are represented in memory as part of bytes,

half words, and words.

Single-precision floating-point values are stored in memory on word boundaries;
double-precision values are stored on even-word boundaries. Double-extended-
precision values are stored on quad-word boundaries with all data left justified and all
extra space filled with zeros when writing and ignored when reading to ensure that data
stored in memory will be compatible with future implementations. Figure 2-8 illustrates
how data is organized in memory.

SINGLE-PRECISION
FLOATING POINT

| DOUBLE-PRECISION

FLOATING POINT

| _ DOUBLE-EXTENDED-PRECISION
FLOATING POINT

MsB LSB
0 0 f 2 ; 3
4 BYIE : BTE } BYIE | BYEE
; |
12 HALF WORD ; HALF WORD
16
2 WORD
2
8 [s| Exponent | MANTISSA
32
% [s] EXPONENT | MANTISSA]
4 MANTISSA
4 -
a [s| EXPONENT 1] MANTISSA N
52 MANTISSA
5 MANTISSA [0
60 0
S: SIGNBIT
L: LEADING BIT

Figure 2-8. Floating-Point Memory Storage Alignment

MOTOROLA

MC88110 USER’S MANUAL

2-15

2.3.4.1 MISALIGNED ACCESS. Attempting an incorrectly aligned data transfer will
cause a misaligned reference exception if the misaligned access exception is not
masked. If the Exceptions:misaligned access exception is masked and a misaligned
transfer is attempted, the least significant bits of the address will be ignored, and the
transfer will be performed to the next lower aligned boundary.

Figure 2-9 shows the results of several memory accesses with the misaligned access
exception masked. In this illustration, the lightly shaded accesses are correctly aligned,
and the darkly shaded accesses are not correctly aligned. The shaded areas in memory
(light and dark) show the resulting alignment for each access. Note that in each case the
arrows point to the specified memory location.

MEMORY
0 1 2 3
$00000000
REGISTERS
< 4
$0100 TORE HALF WORD @ $0100
$0104 STORE HALF WORD @ $0105
$0108 TORE HALF WORD @ $010A
$o10C STORE HALF WORD @ $010F
$o110
$011 TORE WORD @ $0114
$0118 STORE WORD @ $011A
$011C

$0120 | TORE DOUBLE WORD @ $0120

$0128
$012C STORE DOUBLE WORD @ $012A

$0130

$FFFFFFFC

Figure 2-9. Memory Accesses with Misaligned Access Exceptions Disabled

2.3.4.2 BYTE ORDERING. The 88000 base architecture supports two byte-ordering
configurations for data operands in memory: the Big-Endian configuration and the Little-
Endian configuration. The processor defaults to Big-Endian byte ordering. Additionally,
instruction addressing is performed in the Big-Endian configuration regardless of the
byte ordering mode of the processor. Figure 2-10 illustrates the Big-Endian and Little-
Endian byte-ordering memory configurations.

Note that when a Big-Endian memory system is drawn, the lowest addresses are
depicted at the top of the memory system, with the addresses increasing toward the

2-16 MC88110 USER’S MANUAL MOTOROLA

bottom of the page. In the Big-Endian configuration, lower addresses correspond to
more significant bytes, and the address of a word points to the most significant byte of
the word.

When a Little-Endian memory system is drawn, the lowest address is depicted at the
bottom of the page, with the addresses increasing toward the top of the page. In the
Little-Endian configuration, lower addresses correspond to less significant bytes, and the
address of a word points to the least significant byte of the word.

@ $oo000000 [[T |2 .’3— BYTE "$2° $FFFFFFFC
@ $00000004 [T |5 [¥ W|” [J| HALFWORD "$6" SFFFFFFF8
& 500000008 [* W[° O]* [° | HALFWORD"$8"
2 sooc0000C |© WP BE BIF 0| WORD "$C” @
2 soooocoto [0 [T |7 [B | a
€ 00000014 [P[E[E| 7 E| DOUBLEWORD "$1¢" DOUBLE-WORD "$14* g
E $o0o00018 [BE| P RAIARE|BO Q
N = WORD "$C" D o
o :j — -s 3 5 g
HALF-WORD "$8" =

SFFFFFFFS HALF-WORD's6™ [B[° OO ¢ &

$FFFFFFFC BYTE'$z [[2W[" [° |soocoo000 &
NOTE: Address points to MSB NOTE: Address points to LSB
LEGEND:

MOST SIGNIFICANT BYTE INTERMEDIATE BYTE LEAST SIGNIFICANT BYTE
(a) 32-Bit Big-Endian (b) 32-Bit Little-Endian
Memory Layout Memory Layout

Figure 2-10. Byte-Ordering Configuration in Memory

The example byte ordering environment shown in Figure 2-11 illustrates how to interface
a Little-Endian device with an MC88110 based system using a Big-Endian memory
configuration.

In Figure 2-11, latches are used to transfer the data from the Little-Endian processor to
the correct byte lane of the 64-bit bus. A similar circuit is used inside the MC88110, to
align the bytes from the bus and write the correct data in the destination register. When
the MC88110 is in Little-Endian mode, a byte-swap correction circuit is enabled which
reverses the order of the bytes before they are aligned to be written to the registers.

MOTOROLA MC88110 USER’S MANUAL 2-17

WITH 32-BIT EXTERNAL BUS

EXTERNAL BUS IN BIG-ENDIAN MODE

MC88110 USER’'S MANUAL

Figure 2-11. Example Byte-Ordering Environment Using
Big-Endian Memory and 64-Bit Bus

0 1 5 6
$00000000 [33 [22 ss[alor] SHETWOE
$00000008 [AB | 89 EF[CD| MEMORY
$00000010 [["W
$00000018
$00000020
7/ L
A) \ J 64-BIT BUS
¥ 0
1
2
3
4
5
8
7
Je—n2 jo yi y2 y3 7 0 Y1 Y2 y3 7
1 10 lc— A2 fc— A2
A YV ¥V ¥V VY Y v ¥
01 67 33[22]11Joo[6745 [23Jo1]1d.dso [o1]23[45]67 00 11]22]33] 1d.ds0
33 | st.d $0
3322 11] o] Idwso [oo] 11]22]33] Id.w $0
wwss awss s
sth$s idhss [| [es]as] Idh$8
SthSE ldhsE | [[co[EF] Id.h SE
I wenf T T assr
stbs12| | | i'x'l Id.b$12 jﬁ] 1d.b $12
stbs1a] [| [v] 1d.b$13 id.b $13
stbstal | [[7] dbs1a| [[[Z] 1d.b $14
LITTLE-ENDIAN PROCESSOR BIG-ENDIAN MC88110 WITH 64-8IT IG-ENDIAN MC88110 WITH 64-BIT

EXTERNAL BUS IN LITTLE-ENDIAN MODE

MOTOROLA

Figure 2-11 shows the results of a Little-Endian processor writing a series of data to a
Big-Endian Memory, and the MC88110 reading in the same data in both Big Endian and
Little-Endian modes. When the Little-Endian processor stores a double-word
(0123456700112233) to memory at address $0, the data is stored with the least
significant byte at memory location $0, and the most significant byte at memory location
$7. When the double-word at memory address $0 is read in by the MC88110 in Big-
Endian mode, the data in byte $0 is considered to be the most significant byte, the data
in byte $7 is considered to be the least significant byte, and the entire double-word is
loaded into the register backwards. However, if the MC88110 is placed in Little-Endian
mode, a byte-swap correction is applied to the data as it is read into the registers, and
the correct integer is loaded into the registers.

Figure 2-11 also illustrates the storage of words, half-words, and bytes. Notice that
whenever the data being transferred is more than one byte wide, the data read by the
Big-Endian processor is backwards when compared to the data written to memory from
the Little-Endian processor. In each of these cases, however, the problem is solved by
placing the Big-Endian processor in Little-Endian mode. Also notice that the data being
transferred on the bus is the same, regardless of the size of the transfer and regardless
of the byte ordering mode.

Figure 2-12 shows how the previous example is affected by replacing the Big-Endian
memory system with a Little-Endian memory system and replacing the 64-bit bus with a
32-bit bus. In this case, external circuitry is required to interface the 64-bit bus of the
MC88110 with the 32-bit bus. Note that the configuration of the actual memory system
has no effect on the operation of the processors.

MOTOROLA MC88110 USER’S MANUAL 2-19

2-20

3 2 1 0
RBTWIDE [D
LITTLE-ENDIAN
MEMORY
*Z | $00000014
v [*x[w|] so00000t0
CD | EF $0000000C
89 | AB | $00000008
01 | 23 | 45 | 67 | $00000004
00 [11 | 22 | 33 | $00000000
) 32-BITBUS
Y 3
2
1
0
[Y fere [E V<
Vor123¢4ske7 0 Y1 Y2 Y3 Y4 ¥5 Y6 Y7
3 {2 |1 |o r’":’?@
=== f ==l
1 4 EEEREER EEERER
ot [23]45]67 33[22[11Joo 67452301 |id.dso fo1[23[45]67Joo]11]22]33] 1d.ds0
00 [11[22]33] st.dso
33[22[11] 00 id.w $0 id.w $0
o1 [23 [45 [67 | stwsa [67]4s5[23]o1 | Idws4 Jo1 [23]45]67] Id.w$4
[[eo]a8] sthss l iAB 8] 1d.h $8 Id.h$8
[Tcp[Er] sthsE T TerJco] Id.h $E HRE Id.h $E
[T [w]stbst1] [[[w] 1d.b $11 1d.b $11
[T Ix]swwsi2] [1 _['x] Id.bS12:L__[L5%] 1d.b $12
T Iovjswsis] T T Tv] Id.b813 Id.b $13
[T [Zlstosa]l [| [7] dbsial [[[7] 1d.b $14
LITTLE-ENDIAN BIG-ENDIAN MC88110 WITH 64-BIT BIG-ENDIAN MC88110 WITH 64-BIT
PROCESSOR WITH 32.81T EXTERNAL BUS IN BIG-ENDIAN MODE EXTERNAL BUS IN LITTLE-ENDIAN MODE

Figure 2-12. Example Byte-Ordering Environment Using
Little-Endian Memory and 32-Bit Bus

MC88110 USER’S MANUAL

MOTOROLA

SECTION 3
ADDRESSING MODES AND INSTRUCTION SET
SUMMARY

This section describes the addressing modes available in the MC88110 and gives a n
summary of the instruction set. For complete instruction descriptions, including the
exceptions caused by each instruction, refer to Section 10 Instruction Set.

The MC88110 instruction set is divided into seven categories, as shown in Figure 3-1:
integer arithmetic, logical, bit-field, floating-point, graphics, flow control, and
load/store/exchange instructions. The MC88110 addressing modes are defined in terms
of three types of instructions: computational, load/store/exchange, and flow control
instructions. Computational instructions include the integer arithmetic, logical, bit-field,
floating-point, and graphics instructions.

MOTOROLA MC88110 USER’S MANUAL 3-1

Integer Arithmetic Instructions

Flow Control Instructions

Mnemonic Description Mnemoric Description
add Signed Add bbo Branch on Bit Clear
addu Unsigned Add bb1 Branch on Bit Set
cmp Integer Compare bend Conditional Branch
divs Signed Divide br Unconditional Branch
divu Unsigned Divide bsr Branch to Subroutine
nuls Signed Multiply illop llegal Operation
mulu Unsigned Multiply jmp Unconditional Jump
sub Signed Subtract jsr Jump to Subroutine
subu Unsigned Subtract rte Retum from Exception
’ tbo Trap on Bit Clear
Bit-Field Instructions tbi Trap on Bit Set
Memoric Description tbnd Trap on Bounds Check
cir Clear Bit Fiold tend Conditional Trap
ext Extract Bit Field
extu Unsigned Extract Bit Fiald Load/Store/Exchange Instructions
ffo Find First Bit Clear Mhemonk Description
tf1 Find First Bit Set d Load Register From Memory
mak Make Bit Field Ida Load Address
rot Rotate Register Ider Load from Control Register
set Set Bit Field st Store Register to Memory
ster Store to Control Register
Log|ca| Instructions xer Exchange Control Register
Mhemornic Description xmem Exchange Register with Memory
and And
ma sk Logical Mask Inmediate Floating-Point Instructions
or Oor Mnemonic Description
xor Exclusive Or fadd Floating-P oint Add
foemp Floating-P oint Compare
Graphics Instructions fempu Unordered Floating-Point Compare
Mrermorke Description fevt Convert Floating-Point P recision
padd Pixel Add fdiv Floating-P oint Divide
padds Pixel Add and S aturate fider Load from Floating-P oint Control Register
pemp Pixel Compare fit Convert Integer to Floating- Point
prul Pixel Multiply fmul Floating-P oint Multiply
ppack Pixel T runcate, Insert, and Pack fsqrt Floating-P oint Square R oot
prot Pixel Rotate Left fster Store to Floating-Point Control Register
psub Pixel Subtract fsub Floating-P oint Subtract
psubs Pixel Subtract and Saturate fxer Exchange Floating-Point Control Register
punpk Pixel Unpack int Round Floating-P oint to Integer
nmov Register-to-Register Move
nint Round Floating-Point to Nearest Integer
trnc Truncate Floating-Point to Integer

3-2

Figure 3-1. MC88110 Instruction Set

MC88110 USER’S MANUAL

MOTOROLA

3.1 ADDRESSING MODES

The MC88110 addressing modes are defined in terms of three types of instructions:
computational, load/store/exchange, and flow control instructions. The computational
instructions manipulate data stored in the general or extended registers. The
load/store/exchange instructions can load data into the general and extended registers,
store data to memory, exchange a memory location with a general or extended register,
or compute effective addresses. Flow control instructions alter the sequential flow of
instructions through the processor.

Each instruction type has unique addressing capabilities. Computational instructions
access data in the general-purpose registers, the extended registers, or in certain cases,
the control registers. Load/store/exchange instructions use the data unit to access data
in main memory. Flow control instructions use the instruction unit to reference
instructions in main memory.

The following paragraphs describe the addressing modes and instruction formats
available for the MC88110.

3.1.1 Computational Addressing Modes

The MC88110 supports three types of addressing modes for computational instructions:
triadic register, immediate, and control register addressing. These addressing modes
are described in the following paragraphs.

3.1.1.1 TRIADIC REGISTER ADDRESSING. Triadic register addressing uses
three 5-bit fields encoded in the instruction word to specify two source registers (rS1 and
rS2) and a destination register (rD). This addressing mode is common to all
computational instructions, but some instructions do not use all three register selection
fields. All bits in unused fields must be zero for upward compatibility. The following
paragraphs explain triadic register addressing for ALU instructions, floating-point
instructions, and graphics instructions.

3.1.1.1.1 ALU Instructions. The ALU instructions consist of the integer arithmetic,
logical, and bit-field instructions. For the integer arithmetic and logical instructions, the
data in rS1 and rS2 is processed by an integer unit and the result is placed in rD. The
arithmetic and logical instructions are add, addu, and, cmp, divs, divu, muls, mulu,
or, sub, subu, and xor.

All bit-field instructions except the bit-scan instructions (ff1 and ff0) use the triadic
register addressing mode by designating a bit-field operand in rS1. This operand is
defined by two 5-bit values contained in the lower 10 bits of rS2: the 5-bit value
contained in bits 9-5 of rS2 specifies the width of the bit field, and the 5-bit value
contained in bits 4-0 of rS2 specifies the offset of the bit field from bit 0 of rS1. The
upper 22 bits of rS2 are ignored. For the rot instruction, bits 9-5 are also ignored, but
they must be zero to ensure upward compatibility. The bit-field operand in rS1 is
processed by the integer unit according to the specified instruction and the result is
placed in rD. The bit-field instructions are clr, ext, extu, mak, rot, and set. The width

MOTOROLA MC88110 USER’'S MANUAL 3-3

and offset values for bit-field instructions can also be specified as immediate operands,

as described in 3.1.1.2.2 Register with 10-Bit Immediate Addressing.

For bit-scan instructions (ff1 and ff0), the operand in rS2 is searched by the integer unit
to find either the first bit set (ff1) or the first bit clear (ff0). The register is scanned from
most significant bit (bit 31) to least significant bit (bit 0). The result is returned to rD. The
S1 field is not used and must contain zeros.

1S2

31 0
[SOURCE 1 REGISTER
31 0
SOURCE 2 REGISTER
INTEGER ARITHMETIC OPERATION
BIT-FIELD OPERATION
LOGICALOPERATION
a4 Y 0
| DESTINATION REGISTER |

D

The following is the instruction format for arithmetic, Iogiéal, and bit-field instructions
using triadic register addressing:

31

% 5

21 2 1615 5

r 111101

|)

| st SUBOPCODE

§2

Fleld Description
D Specifies the destination register, rD.
St Spaecifies the source 1 register, rS1. For the bit-scan
instructions, this field is not used.

SUBOPCODE | Identifies the operation to be performed (add, addu, and, clr,
cmp, divs, divu, ext, extu, ff1, ff0, mak, muls, mulu, or,
rot, set, sub, subu, or xor).

S2 Spacifies the source 2 register, rS2.

3.1.1.1.2 Floating-Point Instructions. The operands for floating-point operations
can be taken from the general register file or the extended register file. The extended
register file contains single-, double-, or double-extended-precision numbers. For
instructions using the extended register file, the source 1, source 2, and destination
registers are denoted xS1, xS2, and xD, respectively.

For floating-point instructions, the data in the source 1 registers (rS1 or xS1) and source
2 registers (rS2 or xS2) is processed by the floating-point unit (FPU), and the result is
placed in the destination register (rD or xD). The floating point-instructions include fmul,

3-4

MC88110 USER’S MANUAL

MOTOROLA

fadd, fsub, fcmp, fcmpu, and fdiv. In addition, the fecvt, fit, fsqrt, int, nint, mov, and
trnc instructions use floating-point triadic register addressing, but the S1 field is not
used by these instructions and must be filled with zeros.

The source 1 and source 2 operands must always originate from the same register file;
however, depending on the instruction, the destination register may or may not have to
be located in the same register file as the source registers. For the fmul, fcvt, fadd,
fsub, fsqrt, and fdiv instructions, the source and destination registers must always be in
the same register file. The destination for the femp, fcmpu, int, nint, and trnc
instructions must always be in the general register file, but the source operands can be
from either the general or extended register files. For the mov instruction, the source and
destination registers cannot both be in the general register file; however, any other
combination is allowed.

TR 0
IS1, 1S1: 15141, or xS1 i SOURCE 1 REGISTER
Ln---
TN 0
152, 152: 15241, 0rxS2 | | SOURCE 2 REGISTER |
[N }
FLOATING-POINT
OPERATION
79 3 Y 0
A -
1D, 1D 1D+1, or xD : I DESTINATION REGISTER |
e J\l’ .ea

The following is the instruction format for floating-point instructions using triadic register
addressing:

31 % 5 2 2 16 15 5 4 0
| 100001 | D | s | SUBOPCODE | 52
Field Description
D Specifies the destination register, rD or xD.
S1 Specifies the source 1 register, rS1 or xS1. For the fevt, fsqrt,

mov, int, nint, fit, and trne instructions, S1 must be zero.

SUBOPCODE | Identifies the operation to be performed (fmul, fadd, fsub,
fecmp, fcmpu, fevt, fdiv, fit, fsqrt, int, mov, nint, or
trnec).

S2 Specifies the source 2 register, rS2 or xS2.

MOTOROLA MC88110 USER’S MANUAL 3-5

3.1.1.1.3 Graphics Instructions. Graphics data is more efficiently processed in
double-words, so the operands for most graphics instructions are contained in register
pairs. The data in the source 1 (rS1:rS1+1) and source 2 (rS2:rS2+1) register pairs is
processed by the graphics unit, and the result is placed in the destination register pair
(rD:rD+1). The graphics instructions which process double-word data are padd,
padds, psub, psubs, pcmp, prot, and ppack.

The source 1 operands for the pmul and punpk instructions are only one word in
length. For the pmul instruction, the 64-bit value in the source 1 register pair
(rS1:rS1+1) is multiplied by the 32-bit value in the source 2 register and the 64 least
significant bits of the product are placed in the 64-bit destination register pair (rD:rD+1).
For the punpk instruction, nibble, byte, or half-word fields from rS1 are placed into fields
of twice their size and zero-extended. These fields are concatenated to form a 64-bit
result which is placed in the destination register pair (rD:rD+1). The punpk instruction
does not use the S2 field, so it must be filled with zeros.

The source 2 operand of the prot instruction is only one word in length. For this
instruction, the value in the source 1 register pair (rS1:rS1+1) is rotated to the left by the
number of bits specified by bits 5-2 of rS2, and the result is placed in the destination
register pair (rD:rD+1). The number of bits to be rotated can also be specified as
immediate operands, as described in 3.1.1.2.1 Register with 6-Bit Immediate
Addressing.

For the pcmp instruction, the value in the source 1 register pair (rS1:rS1+1) is
compared to the value in the source 2 register pair (rS2:rS2+1) and the resulting bit
string is returned to the destination register (rD).

63 3 0
£S1or 1S1: 15141 I : SOURCE 1 REGISTER
63 31 0
152 0r 1S2: 1S2+1 [: SOURCE 2 REGISTER J
GRAPHICS
- OPERATION
63 31 0
1D or rD: 1D+1 I : DESTINATION REGISTER —]
3-6 MC88110 USER’S MANUAL MOTOROLA

The following is the instruction format for graphics instructions using triadic register
addressing:

31 2% 25 21 20 16 15 5 4 0
[100010 | D | st | SUBOPCODE s2
Field Description
D Specifies the destination register, rD.
S1 Specifies the source 1 register, rS1.

SUBOPCODE | Identifies the operation to be performed (padd, padds, pcmp,
pmul, ppack, prot, psub, psubs, or punpk).

S2 Spacifies the source 2 register, rS2.

3.1.1.2 IMMEDIATE ADDRESSING. This type of addressing is used by instructions
which require an immediate source value. The following paragraphs describe the 6-bit
immediate, 10-bit immediate, 16-bit signed immediate, and 16-bit unsigned immediate
addressing modes.

3.1.1.2.1 Register with 6-Bit Immediate Addressing. Register with 6-bit
immediate addressing is used by the prot instruction. For this instruction, the value in
the source 1 register pair (rS1:rS1+1) is rotated to the left by the number of bits specified
by the immediate value in the offset (O6) field, and the result is placed in the destination
register pair (rD:rD+1). The S2 field is not used and must be filled with zeros.

The O6 field is made up of the 4-bit rotate (R) field concatenated with the zeros in
opcode bits 5 and 6. Concatenating the R field with the zeros in opcode bits 5 and 6
effectively multiplies the R field by four; therefore, the value in the O6 field is the value in
the R field times four. Bits 5 and 6 of the instruction word must be zero for upward
compatibility.

a 10 76 0
INSTRUCTION | [n] I

63 0

rS1:181+1 | SOURCE 1 REGISTER I

ROTATE LEFT <06>

63
tD: rD+1 | DESTINATION REGISTER l

N

MOTOROLA MC88110 USER’S MANUAL 3-7

The following is the instruction format for the prot instruction using register with 6-bit

immediate addressing:

31 2% 5 2 2 16 15 1110 7 6 5 4 0
[100010 | D | st 01110 | R Joo]| 00000
Fleld Description
D Specifies the destination register, rD.
S1 Speacifies the source 1 register, rS1.
R Specifies the number of bits to be rotated divided by four;

therefore, the number of bits to be rotated equals R times 4.

3.1.1.2.2 Register with 10-Bit Immediate Addressing. This mode of addressing
is used by bit-field instructions (clr, ext, extu, mak, rot, set). The bit field is contained
in rS1 and is defined by a 10-bit immediate field in the instruction. The 10-bit immediate
field consists of two 5-bit fields which define the width and offset of the bit field from bit 0
of rS1. The bit field is processed according to the specified instruction, and the result is

placed in rD.

3 9 0

INSTRUCTION [rmmo(waosj
3 0
st [SOURCE 1 REGISTER
BIT-FIELD
B OPERATION
31 v 0
DESTINATION REGISTER

MC88110 USER’S MANUAL

MOTOROLA

The following is the instruction format for instructions using register with 10-bit immediate

addressing:
31 % 25 21 20 16 15 110 0
[111100 | D st | susopcone IMM10 (W5, 05) |
Fileld Description
D Specifies the destination register, rD.
S1 Specifies the source 1 register, rS1.
SUBOPCODE | Identifies the operation to be performed (clr, ext, extu, mak,
rot, set).
IMM10 Contains a ten-bit immediate value which defines the width and
offset of the bit field in rS1:
(W5) Bits 9-5 define the width of the bit field
(05) Bits 4-0 define the offset of the bit field from bit 0 of rS1

3.1.1.2.3 Register with 16-Bit Signed Immediate Addressing. This form of
addressing is used by signed arithmetic instructions which require an immediate source
value. In this addressing mode, the data in rS1 and the 16-bit immediate operand are
processed by an integer unit (for add, sub, and cmp), the multiply unit (for muls), or the

divide unit (for divs), and the result is placed in rD.

The processor either sign- or zero-extends the immediate operand based on the SGN bit
(bit 26) in the processor status register. If the SGN bit is clear, the processor is operating
in unsigned mode and the immediate operands are zero-extended to 32-bits before
being used. If the SGN bit is set, the processor is operating in signed-immediate mode
and the immediate operands are sign-extended to 32-bits.

3 15 0
INSTRUCTION | | SIMM 16]
31 15 0
___EXTENDED__ | SMM16
a1 0
SIGN-EXTENDED ONLY
st [SOURCE 1 REGISTER | N SIGNED-IMMEDIATE
MODE
SIGNED INTEGER ARITHMETIC
OPERATION
3 Y 0
) [DESTINATION REGISTER
MOTOROLA MC88110 USER’'S MANUAL 3-9

The following is the instruction format for instructions using register with 16-bit signed

immediate addressing:

31 % 5 21 20 16 15 0
[opcone | D | st | SMMI6
Field Description
OPCODE Identifies the operation to be performed (add, cmp, divs,
muls, or sub).

D Specifies the destination register, rD.
S1 Spacifies the source 1 register, rS1.

SIMM16 Contains a 16-bit immediate value.

3.1.1.2.4 Register with 16-Bit Unsigned Immediate Addressing. This form of
addressing is used by logical and unsigned arithmetic instructions which require an
immediate source value.

In this addressing mode, the data in rS1 and the 16-bit immediate operand are
processed by an integer unit (for addu, and, mask, or, subu, and xor), the multiply
unit (for mulu), or the divide unit (for divu), and the result is placed in rD. Unsigned
arithmetic instructions operate identically in both the signed and unsigned immediate
modes. The operands for unsigned integer arithmetic operations are zero-extended to
32-bits before being used. The operands for logical instructions are contained in the
lower 16 bits of rS1 and do not need to be extended regardless of the processor mode.

INSTRUCTION

$1

D

31

3t 15 0
| | IMM16 |

]

L y1s 0
i ZERO EXTENDED IMM16 l

0 NOT ZERO-EXTENDED

FOR LOGICAL OPERATIONS
SOURCE 1 REGISTER | (USED WITH 16 BITS OF rS1/IMM16)

/
UNSIGNED INTEGER ARITHMETIC
OPERATION
LOGICAL OPERATION

31 Y 0

DESTINATION REGISTER

MC88110 USER’'S MANUAL

MOTOROLA

The following is the instruction format for instructions using register with 16-bit unsigned
immediate addressing:

3t % % 2 2 16 15 0
| OPCODE [D st [M6]

Field Description

OPCODE Identifies the operation to be performed (addu, and, divu,
mask, mulu, or, subu, or xor).

D Specifies the destination register, rD.
S1 Specifies the source 1 register, rS1.
IMM16 Contains a 16-bit unsigned immediate value.

3.1.1.3 CONTROL REGISTER ADDRESSING. Control register addressing is used
for referencing the general control registers and FPU control registers. In this addressing
mode, general-purpose registers are loaded from, stored to, or exchanged with the
control registers using the Idcr, ster, xcr, fider, fster, and fxcr instructions.

31 15 0
INSTRUCTION I | si1e |
1
A 15 0
SIGNED IMMEDIATE I ZERO EXTENDED sité I
3 0
51 L SOURCE 2 REGISTER +
3 0
MEMORY ADDRESS 1514152 j
MEMORY
ACCESS
3 % STORE
) [DESTINATION REGISTER
LOAD

MOTOROLA MC88110 USER’'S MANUAL 3-11

The following is the instruction format for instructions using control register addressing:

31 % 2 21 X 16 15 14 13 1110 5 4 0
[100000 | D | st | oo | sru | crscrp | 82 |
Field Description
D For load and exchange instructions, specifies the general

register that is to be loaded with the contents of the specified
control register. Must be zero for store instructions.

S1 For store and exchange instructions, specifies the general
register containing the data to be transferred to the specified
control register. Must be zero for load instructions.

OoP Identifies whether a load, store or exchange is to be performed
(ider, ster, xcr, flder, fster, or fxer).

SFU This field specifies which special function unit (SFU) registers are
to be accessed by the instruction: a value of zero specifies the
integer unit control registers; a value one specifies the floating-
point unit control registers. A value of two through seven in this
field causes an SFU exception for the addressed SFU.

CRS/CRD Specifies the control register to be used. For load instructions,
the control register is the source; for store instructions, the
control register is the destination.

S2 Must contain the same value as the S1 field. Serves the same
purpose as the S1 field.

3.1.2 Load/Store/Exchange Addressing Modes

The MC88110 supports three addressing modes for accessing data memory: register
indirect with immediate index addressing, register indirect with index addressing, and
register indirect with scaled index addressing. Each of these addressing modes can load
data from or store data to the general register file or the extended register file. Overflow
conditions in the address calculations are not detected, and results are truncated to 32
bits.

The Id and st instructions can access either the general register file (GRF) or the
extended register file (XRF), as specified in the opcode. If the memory access involves
data in the GRF, the operand can be a byte, half-word, word, or double-word. If the
memory access involves data in the XRF, the operand can be a word, double-word, or
quad-word.

3.1.2.1 REGISTER INDIRECT WITH IMMEDIATE INDEX ADDRESSING. For
this type of addressing, a 16-bit immediate index is contained in the instruction. When
the processor is in unsigned mode, the index is zero-extended to 32-bits, and when the
processor is in signed-immediate mode, it is sign-extended. The extended immediate
index is then added to the contents of rS1 and the result is truncated to 32 bits, resulting
in a data memory address. For load instructions, the data at the calculated address is
loaded into rD. For store instructions, the data in rD is stored to the calculated address.

3-12 MC88110 USER’S MANUAL MOTOROLA

INSTRUCTION

St

MEMORY ADDRESS

D orxD

The following is the instruction format for instructions using register indirect with

31 15

31 15

SIGNOR ZERO
EXTENDED sis

31 0

MODE
31

SIGN-EXTENDED ONLY
[SOURCE 1 REGISTER +) IN SIGNED-IMMEDIATE

0

[1514516

!

MEMORY
ACCESS

TN % sToRE
: | DESTINATION REGISTER
LoNg--

LOAD

extended immediate index addressing:

31 % 25 21 2 16 15
| OPCODE | D | st | Site
Field Description
OPCODE Identifies the operation to be performed (Id or st), the register file
to be used (general or extended), and the data format (unsigned,
single-word, double-word, quad-word, half-word, unsigned half-
word, byte, unsigned byte).
D Specifies the destination register for load instructions and the
source register for store instructions.
S1 Specifies the source 1 register, rS1.
SIé Contains a 16-bit immediate index.

3.1.2.2 REGISTER INDIRECT WITH INDEX ADDRESSING. In this addressing
mode, the contents of rS1 are added to the contents of rS2 and the result is truncated to
32 bits, resulting in a data memory address. For load instructions, the memory data from
the calculated address is loaded into rD. For store instructions, the data in rD is stored to
the calculated address. For xmem instructions, the memory data from the calculated

address is exchanged with the data in rD.

MOTOROLA

MC88110 USER’S MANUAL

31 0

st SOURCE 1 REGISTER
3t 0
152 [SOURCE 2 REGISTER
31 0
MEMORY ADDRESS 1514152 |
MEMORY
ACCESS
LI | 0 sTORE
DorxD | | DESTINATION REGISTER
bt U LOAD

The following is the instruction format for instructions using register indirect with index
addressing:

31 27 26 5 21 20 16 15 5 4 0
[11110 |R] D | st | SUBOPCODE [52 |
Fleld Description
R Identifies the type of register file to be used (general or

extended). For the xmem and Ida instructions, this must be one.

D Specifies the destination register, rD or xD; rD or xD is the
destination register for load instructions and the source register
for store or exchange memory instructions.

S1 Specifies the source 1 register, rS1.

SUBOPCODE | Identifies the operation to be performed (Id, st, xmem, Ida), the
rS2 scaling factor, the size of the data being transferred, whether
the data is to be transferred using user or supervisor space, and
whether the store-through option should be used.

S§2 Specifies the source 2 register, rS2.

3.1.2.3 REGISTER INDIRECT WITH SCALED INDEX ADDRESSING. In this
addressing mode, the contents of rS2 are first scaled according to the size of the access
(i.e., byte, half-word, word, double-word, or quad-word). The scaled contents of rS2 are
then added to the contents of rS1 and the result is truncated to 32 bits, resulting in a data
memory address. For load instructions, the data from the calculated address is loaded
into rD. For store instructions, the data in rD is stored to the memory address. For the
Ida instruction, the calculated address is loaded into rD. For xmem instructions, the
memory data from the calculated address is exchanged with the data in rD.

Scaling the rS2 operand causes it to shift by 0, 1, 2, 3 or 4 bits (i.e., the operand is
scaled by factor of 1, 2, 4, 8 or 16) for byte, half-word, word, double-word, or quad-word

3-14 MC88110 USER’S MANUAL MOTOROLA

accesses, respectively. For byte accesses, the result of this type of addressing is
identical to the result achieved by the register indirect with index addressing (unscaled)
mode, even though the SUBOPCODE fields are distinctly different for the two addressing
modes.

3 0
1St I SOURCE 1 REGISTER]

574

SCALE
0
MEMORY ADDRESS [151+ (rS2* SCALE)
MEMORY
ACCESS
Bon 0 sTORE
D orxD H DESTINATION REGISTER
TN LOAD

The following is the instruction format for instructions using register indirect with scaled
index addressing:

31 27 26 5 21 2 16 15 5 4 0
[11110 |&] D | st | SUBOPCODE | 82 |
Fleld Description
R Identifies the type of register file to be used (general or

extended). For the xmem and Ida instructions, R must be one.

D Specifies the destination register, rD or xD; rD or xD is the
destination register for load instructions and the source register
for store or exchange memory instructions.

S1 Specifies the source 1 register, rS1.

SUBOPCODE | Identifies the operation to be performed (Id, st, xmem, Ida), the
rS2 scaling factor, the size of the data being transferred, whether
the data is to be transferred using user or supervisor space, and
whether the store-through option should be used.

S2 Specifies the source 2 register, rS2.

MOTOROLA MC88110 USER’S MANUAL 3-15

3.1.3 Flow Control Addressing Modes

Flow control instructions can address or reference instruction memory using four
different addressing modes: triadic register addressing, register with 9-bit vector table
index addressing, register with 16-bit displacement/immediate addressing, and 26-bit
branch displacement addressing. Address calculations for flow control addressing are
performed using signed arithmetic. Overflows are not detected, and resuilts are truncated
to 32 bits. The following paragraphs describe the flow control addressing modes.

3.1.3.1 TRIADIC REGISTER ADDRESSING. This addressing mode is used to
specify the target for jmp and jsr or the operands for the tbnd instruction. These flow
control instructions have the same format as computational instructions which use triadic
register addressing: the instruction word has three 5-bit fields which specify two source
registers and a destination register. Also, as with the computational instructions, some
instructions do not use all three of the register selection fields. All bits in unused fields
must be zero for upward compatibility. Triadic register addressing provides access to the
entire 32-bit address space.

3.1.3.1.1 Jump Instructions (jmp, jsr). For jump instructions, rS2 contains the
target address of the jmp or jsr instruction. The two least significant bits of rS2 are
cleared to ensure that the address is aligned to a word boundary, and program flow is
transferred to the resulting address. The S1 and D fields are not used and must be filled
with zeros. ‘

3 0
s2 | SOURCE 2 REGISTER]
3 0

TARGET INSTRUCTION
TRUCTION [SOURCE 2 REGISTER CONTENTS |

The following is the instruction format for the jmp and jsr instructions:

3t % > 2 18 15 5 4 0
[111101 | oo0000 | 00000 | SUBOPCODE | s2 |

Field Description

SUBOPCODE | Identifies the operation to be performed (jmp, Jjmp.n, jsr, or
jsr.n).

S2 Specifies the source 2 register, rS2, which contains the target
address of the jmp or Jsr instruction to be executed.

3.1.3.1.2 Trap-Generating Bounds-Check Instruction (tbnd). For the tbnd
instruction, the data in rS1 is compared to the data in rS2 using unsigned arithmetic,
and a trap is taken if the rS1 data is greater than the rS2 data. If the trap is taken, the 20-
bit address in the vector base register (VBR) is concatenated with the bounds check

3-16 MC88110 USER’'S MANUAL MOTOROLA

exception vector and with three trailing zeros resulting in a 32-bit instruction address.
Program flow begins at the resulting address. The D field is not used and must be filled
with zeros.

31 0

1St [SOURCE 1 REGISTER J
31 0

152 SOURCE 2 REGISTER

tond INSTRUCTION
EXCEPTION VECTOR

31 12

VECTOR BASE | VECTOR TABLE BASE l --------------
REGISTER ADDRESS

NEXT INSTRUCTION
ADDRESS

The following is the instruction format for the tbnd instruction when using triadic register
addressing:

31 % X 2120 16 15 5 4 0
l 111101 ! 00000 S1 SUBOPCODE l S2 I
Field Description
S1 Specifies the source 1 register, rS1.

SUBOPCODE | Identifies the operation to be performed (tbnd).

S2 Specifiés the source 2 register, rS2.

MOTOROLA MC88110 USER’S MANUAL 3-17

3.1.3.2 REGISTER WITH 9-BIT VECTOR TABLE INDEX ADDRESSING. This
addressing mode is used by the trap-generating instructions tb0, tb1, and tend (not
tbnd).

For the bit-test trap instructions (tb0 and tb1), the bit in rS1 specified by the B5 field of
the instruction is tested for either a set or clear condition. For the conditional trap
instruction (tend), rS1 is tested for the condition(s) specified in the M5 field of the
instruction. For both instruction types, if the test condition is true, the trap is taken, the 20-
bit address in the vector base register (VBR) is concatenated with the VEC9 field of the
opcode and with three trailing zeros resulting in a 32-bit instruction address. Program
flow begins at the resulting address.

31 %5 2 0
INSTRUCTION r [esms[

31
81 SOURCE 1 REGISTER

8 0
INSTRUCTION [[VECS]
31 12 0
VECTOR BASE VECTORTABLEBASE | ~~~""""""""™"1
REGISTER ADDRESS | M TRAILING ZEROS

VECTOR TABLE BA:

NEXT INSTRUCTION
ADDI ADDRESS

RESS

3-18 MC88110 USER’S MANUAL MOTOROLA

The following is the instruction format for instructions using 9-bit vector table index
addressing:

3t ® = 2 » 1615 9 8 0
[111100 | msms | st] SUBOPCODE | VECD

Field Description

B5/M5 For bit tests, the B5 field specifies which bit in rS1 is to be tested.

For conditional tests, the M5 field specifies which of the following conditions
for which to test the contents of rS1:
Bit 25: Reserved; unused by the branch selection logic; must be zero
for upward compatibility.

Bit 24: Maximum negative number [Sign and Zero]

Bit 23: Less than zero (not max) [Sign and (not Zero)]

Bit 22: Equal to zero [(not Sign) and Zero]

Bit 21: Greater than zero [(not Sign) and (not Zero)]

Multiple conditions can be specified by setting more than one bit in the M5
field as shown in the following table. The most common combinations are
shown, but all combinations are possible.

Bit: 26 24 23 22 21

eq0 (equals zero) 0 0 0 1 0
ne0 (not equal to zero) 0 1 1 0 1
gto (greater than zero) 0 0 0 0 1
1t0 (less than zero) 0 1 1 0 0
ge0 (greater than/equals zero) 0 0 0 1 1
160 (less than/equals zero) 0 1 1 1 0
S1 Specifies the source 1 register, rS1.
SUBOPCODE | Identifies the operation to be performed (tb0, tb1, tend).
VEC9 Contains a 9-bit vector number.
3.1.3.3 REGISTER WITH 16-BIT DISPLACEMENT/IMMEDIATE

ADDRESSING. This form of addressing is used by branch (bb0, bb1, and bend) and
trap on bound (tbnd) instructions to generate target addresses and test conditions.

3.1.3.3.1 Bit-Test and Conditional Branch Instructions. For the bit-test branch
instructions (bb0 and bb1), the bit in rS1 specified by the B5 field of the instruction is
tested for either a set or clear condition. For the conditional branch instruction (bend),
rS1 is tested for the condition(s) specified in the M5 field of the instruction. For both types
of instructions, if the test condition is true, the 16-bit displacement specified in the
instruction is shifted left two positions and sign-extended to 32 bits, and the two least
significant bits are cleared to force word alignment. This 32-bit displacement value is
then added to the branch instruction address, and program flow begins at the resulting
address.

MOTOROLA MC88110 USER’S MANUAL 3-19

31 2% 2 0

INSTRUCTION | |55/M5|

rS1 SOURCE 1 REGISTER

31 0

0
INSTRUCTION [] D16 |
31 18 y 210
DISPLACEMENT ISIGN EXTENDED | D16 o]
3 0
BRANCH
INSTRUCTION BRANCH INSTRUCTION ADDRESS
ADDRESS
31 210
TARGET INSTRUCTION
e DREoS || BRANCH INSTRUCTION ADDRESS+D16 foo]

The following is the instruction format for the bb0, bb1, and bend instructions:

31 2% 5 21 22 16 15 0
| opcooe [s | st | D16
Fleld Description
OPCODE Identifies the operation to be performed (bb0, bb0.n, bb1, bb1.n,
bend, or bend.n)
B5/MS For bit tests, the B5 field specifies which bit in rS1 is to be tested.
For conditional tests, the M5 field specifies which of the following
conditions for which to test the contents of rS1:
Bit 25: Reserved; unused by the branch selection logic; must be zero
for upward compatibility.
Bit 24: Maximum negative number [Sign and Zero)
Bit 23: Less than zero (not max) [Sign and (not Zero)]
Bit 22: Equal to zero [(not Sign) and Zero]
Bit 21: Greater than zero [(not Sign) and (not Zero)]
Multiple conditions can be specified by setting more than one bit in the M5
field as shown in the following table. The most common combinations are
shown, but all combinations are possible.
Bit: 26 24 23 22 21
eq0 (equals zero) 0 0 0 1 0
ne0 (not equal to zero) 0 1 1 0 1
ot0 (greater than zero) 0 0 0 0 1
1t (less than zero) 0 1 1 0 0
ge0 (greater than/equals zero) 0 0 0 1 1
le0 (less than/equals zero) 0 1 1 1 0
S1 Specifies the source 1 register, rS1.
D16 Specifies a signed 16-bit displacement
3-20 MC88110 USER’'S MANUAL MOTOROLA

3.1.3.3.2 Trap-Generating Bounds-Check Instruction (tbnd). For tbnd, the 16-
bit immediate operand (unsigned) specified in the instruction is zero-extended and then
compared with the data in rS1. A trap is taken if the data in rS1 is greater than the
immediate operand. If the trap is taken, the 20-bit address in the VBR is concatenated
with the bounds-check exception vector and three trailing zeros resulting in d 32-bit
instruction address. Program flow begins at this resulting address.

31 15 0
INSTRUCTION [[IMM16 J
31 15 0
| zeroextenoep | mwis |
31 0
st SOURCE 1 REGISTER]

tbnd INSTRUCTION
EXCEPTION VECTOR

31

VECTOR BASE l VECTOR TABLE BASE I
REGISTER ADDRESS

NEXT INSTRUCTION
ADDRESS

The following is the instruction format for the tbnd instruction when using register with
16-bit displacement/immediate addressing:

31 2% 25 21 2 16 15 0
| 111110 | 00000 | st | MM
Field Description
St Specifies the source 1 register, rS1.
IMM16 Specifies a 16-bit inmediate operand.

3.1.3.4 26-BIT BRANCH DISPLACEMENT ADDRESSING. This form of
addressing is used to specify the branch target address for unconditional branch
instructions (br and bsr). The 26-bit displacement specified in the instruction word is
shifted left by two bits, sign-extended to 32 bits, and added to the address of the branch.
Program flow is transferred to the resulting address.

MOTOROLA MC88110 USER’S MANUAL 3-21

INSTRUCTION

DISPLACEMENT

BRANCH
INSTRUCTION
ADDRESS

TARGET INSTRUCTION
ADDRESS

31

31 25 0

| mos |

31 2827 Y 210
B o d

210

BRANCH INSTRUCTION ADDRESS PO

3t 210
BRANCH INSTRUCTION ADDRESS+D26 ool

The following is the instruction format for instructions using 26-bit branch displacement

addressing:
31 % 5 0
[OPCODE L D26
Field Description
OPCODE Identifies the operation to be performed (br, br.n, bsr, or
bsr.n)
° D26 Specifies a 26-bit displacement.

3.1.3.5 RETURN FROM EXCEPTION (rte) AND ILLEGAL OPERATION (illop)
INSTRUCTION ADDRESSING. The rte and illop instructions use an addressing
mode in which no operands are specified. The illop instructions (illop1, illop2, and
illop3) perform no user-visible operation but cause an unimplemented opcode
exception. When the rte instruction executes, the instruction unit restores the machine
state saved in the exception-time registers and resumes normal program execution.

The following is the instruction format for the rte instruction addressing:

31 % 5

1615 5 4

0

I 111101 L 00000000CO0TCO

11111100000 IOOOOO

The following is the instruction format for the illop instruction addressing:

31 % 25

1615

[111101 I 0000000000 l 11111100000000

[v]

Field

Description

IL

Identifies the illegal opcode instruction
01—illegal opcode 1
10—illegal opcode 2
11—illegal opcode 3

3-22

MC88110 USER’S MANUAL

MOTOROLA

3.2 INSTRUCTION SET SUMMARY

MC88110 instructions fall into seven categories: logical, integer arithmetic, floating-point,
graphics, bit-field, load/store/exchange, and flow control. The following paragraphs
describe these categories and provide operand syntax and operational descriptions for
the instructions in each category. Table 3-1 identifies the abbreviations and symbols
used in the instruction set.

Table 3-1. Instruction Description Notations

Abbreviation/Symbol Description
ri General register 1
rS1 Source 1 register—General register containing the first source operand
rS2 Source 2 register —General register containing the second source operand
D Destination register—Register destination that will be modified by the operation or
source of data on a store operation
xS1 Source 1 extended register—Extended register containing the first source operand.
xS2 Source 2 extended register —Extended register containing the second source operand
xD Destination extended register —Extended register destination that will be modified by
the operation or source of data on a store operation
crS Source control register
crD Destination control register
crS/D Source and destination control registers for xer instruction
ferS Source floating-point control register
ferD Destination floating-point control register
ferS/D Source and destination floating-point control registers for fxer instruction
D16, D26 Sixteen and twenty-six bit signed instruction address displacement
IMM16 Unsigned 16-bit immediate operand
SIMM16 Signed 16-bit immediate operand; this operand is sign-extended when the processor is
operating in signed mode, zero-extended when operating in unsigned mode.
Si16 Signed 16-bit immediate index; this operand is sign-extended when the processor is
operating in signed mode, zero-extended when operating in unsigned mode.
VEC9 Offset from the page address contained in the vector base register
M5 Five-bit condition match field. The bits indicate the following conditions:
Bit 25: Reserved
Bit24:S and Z
Bit 23: S and (not Z)
Bit 22: (not S) and Z
Bit 21: (not S) and (not 2)
S: Sign bit (bit 31 of the tested register)
Z: Zero bit (logical NOR of bits 30 through 0 of the tested register)
Unsigned 5-bit integer denoting a bit number within a word
05 Unsigned 5-bit integer denoting a bit-field offset within a word
W5 Unsigned 5-bit integer denoting a bit-field width within a word (0 denotes a width of 32)

MOTOROLA

MC88110 USER’S MANUAL 3-23

Table 3-1 Instruction Description Notations (Continued)

Abbreviation Description
06 Unsigned 6-bit integer denoting the number of bits to rotate a pixel
{-n} Delayed branch option. If specified, the next sequential instruction is executed before

the branch target instruction.

{.c} Complement option. If specified, the second operand is ones-complemented before it is
used in the operation.

{.d} Double-word option. If specified for the divu instruction, double register rS:rS+1 is
used for source 1, and rD:rD+1 is used for the destination register. If specified for the
mulu instruction, double register rD:rD+1 is used for the destination register.

{-u} Upper half word option. If specified, the 16-bit logical operation is performed with the
upper 16 bits of the source register .
.car Carry
{.ci} Carry in option. If specified, includes the processor status register (PSR) carry bit in
the arithmetic operation.
{.co} Carry out option. If specified, sets or clears the PSR carry bit based on the result of
the arithmetic operation.
{.clo} Carry in/carry out option. If specified, includes the PSR carry bit in the arithmetic
operation and sets or clears the carry bit based on the resulit.
.S2Z Memory size for general register file (default = word):
.b Byte(8 bits).
.bu Unsigned byte (8 bits).
.h Half word (16 bits).
.hu Unsigned half word (16 bits).
.d Double word (64 bits)
.XSZ Memory size for extended register file (default = word)
.d Double word (64 bits).
. X Quad word (128 bits).
fsz Floating-point operand size. The .fsz is a 3-letter designator that corresponds to the

sizes of the D, S1, and S2 operands, respectively (2-letter designator for D and S2
operands for the conversion instructions). Floating-point operations support mixed
operand sizes; two or three register operands can use two or three of the ".s" or ".d"
qualifiers in any combination to support the operand size mix.

For example: fadd.dds r3,r5,r9

r3 and r5 are double precision, r9 is single precision, .8 is single precision, .d is

double precision, and .x is extended precision

.r Graphics pack result field size:

.8 8 bits

.16 16 bits

.32 32 bits

.t Graphics field size (default = word):
.b Byte (8 bits)

.h Half word (16 bits)

3-24 MC88110 USER’S MANUAL MOTOROLA

Table 3-1 Instruction Description Notations (Continued)

Abbreviation Description
X Graphics saturation option:
.u unsigned + unsigned = unsigned
.8 signed + signed = signed
.us unsigned + signed = unsigned
{-usr} User memory option. This option pertains to memory access instructions, allowing the
user memory space to be accessed while in the supervisor mode.
{.wt} Store-through option. This option pertains to the store (st) instruction, forcing the store
to write to the cache and to memory.
[rS2] Scaled index
X "Don't care” bit.
+ Add
- Subtract
. Multiply
Compare
/ Divide
[l Concatenate
<< Shift Left
Replaced by
A AND
v OR
<) EXCLUSIVE OR
< Relational test; true if left operand is less than right operand
Relational test; true if left operand is greater than right operand
{} Optional

MOTOROLA MC88110 USER’S MANUAL 3-25

3.2.1 Logical Instructions

The logical instructions provide three common logical operations: AND, OR, and XOR.
An immediate mask instruction is also provided. These instructions operate on the entire
rS1 operand when triadic register addressing is used or on either the lower or upper half
word of the rS1 operand when register with 16-bit immediate addressing is used. In
addition, when triadic register addressing is used, the logical instructions can optionally
complement the rS2 operand before the operation occurs. Table 3-2 lists the logical

instructions.
Table 3-2. Logical Instructions
Instruction Name Operand Operation
Syntax
and{.u} Logical AND rD,rS1,IMM16 rDe rS1 (lower or upper 16 bits) A IMM16.
Remaining 16 bits of rS1 are copied to rD.
and{.c} Logical AND rD,rS1,rS2 rD « rS1 A rS2 (normal or complemented)
mask{.u} Logical Mask rD,rS1,IMM16 rD (lower or upper 16 bits) < rS1 (lower or upper
Immediate 16 bits) A IMM16. Remaining bits « zero.
or{.u} Logical OR rD,rS1,IMM16 rS1 (lower or upper 16 bits) V IMM16. Remaining
16 bits of rS1 are copied to rD.
or{.c} Logical OR rD,rS1,rS2 rD « rS1 V rS2 (normal or complemented)
xor{.u} Logical Exclusive |rD,rS1,IMM16 rD« rS1 (lower or upper 16 bits) ® IMM16.
Or (XOR) Remaining 16 bits of rS1 are copied to rD.
xor{.c} Logical Exclusive |rD,rS1,rS2 rD « rS1 @ rS2 (normal or complemented)
Or (XOR)

3-26

MC88110 USER’S MANUAL

MOTOROLA

3.2.2 Integer Arithmetic Instructions

nteger arithmetic instructions provide the standard arithmetic operations and an integer
compare operation. Signed and unsigned add and subtract, multiply and divide
operations are available. Various combinations of carry bits can be specified for the add
and subtract instructions. Table 3-3 lists the integer arithmetic instructions.

Table 3-3. Integer Arithmetic Instructions

Instruction Name Operand Operation
Syntax
add{.car} Integer Add rD,rS1,SIMM16 D « rS1 + SIMM16
rD,rS1,rs2 D «rS1 +1S2
addu{.car} Unsigned Integer | rD,rS1,iIMM16 D «rS1 + IMM16
Add rD,rS1,rs2 D «rS1 +1S2
cmp Integer Compare | rD,rS1,SIMM16 rD « rS1 :: SIMM16
rD,rS1,rS2 tD «rS1::1S2
divs Integer Divide rD,rS1,SIMM16 D « rS1/SIMM16
rD,rS1,rS2 rD « rS1/S2
divu Unsigned Integer | rD,rS1,IMM16 rD « rS1/IMM16
Divide
divu{.d} Unsigned Integer | rD,rS1,rS2 rD « (rS1 or rS1:rS1+1)AS2
Divide
muls Integer Multiply tD,rS1,SIMM16 rD «rS1 « SIMM16
rD,rS1,rS2 D « rS1 +1S2
mulu Unsigned Integer | rD,rS1,IMM16 D «rS1 +« IMM16
Multiply
mulu{.d} Unsigned Integer | rD,rS1,rS2 (rD or rD:rD+1) « rS1 + rS2
Multiply
sub{.car} Integer Subtract | rD,rS1,SIMM16 D «rS1 - SIMM16
rD,rS1,rs2 rD «rS1-rS82
subu{.car} Unsigned Integer | rD,rS1,IMM16 D «rS1 - IMM16
Subtract rD,rS1,rS2 D «rS1-rS2
MOTOROLA MC88110 USER’'S MANUAL 3-27

3.2.3 Bit-Field Instructions

The bit-field instructions set, clear, make, extract, rotate, and find bit fields in the source
operand. Certain bit-field instructions (ext, extu, and mak) can be used to perform right
or left shift operations in addition to their normal functions. A bit field is defined by the
width of the bit field and by the offset of the bit field from bit 0 of the source operand.
Depending on the instruction, the width and offset are specified either in the instruction
word or in the lower ten bits of the rS2 operand. The lower ten bits of rS2 are divided
into two 5-bit fields: bits 4-0 specify the offset (<O5>) and bits 9-5 specify the width
(<W5>). A width of zero specifies all 32 bits. Table 3-4 lists the bit-field instructions.

Table 3-4. Bit-Field Instructions

Instruction Name Operand Operation
Syntax
clr Clear Bit Field rD,rS1,W5<05> | rD« rS1 with bit field clear. Bit field is O5 bits
rD,rS1,rS2 from bit zero, W5 bits wide.
ext Extract Bit Field rD,rS1,W5<05> | rD « rS1 bit field. rS1 bit field is O5 bits from bit
rD,rS1,rS2 zero, W5 bits wide, sign-extended. The resulting
bit field is placed in rD starting at bit 0.
extu Extract Bit Field D,rS1,W5<05»> D « rS1 bit field. rS1 bit field is O5 bits from bit
Unsigned rD,rS$1,rS2 zero, W5 bits wide, zero-extended. The resulting
bit field is placed in rD starting at bit 0.
ffo Find First Bit Clear | rD,rS2 rD« position of rS2 first zero bit (32 if none
found). The search begins at bit 31 of rS2 (the
most significant bit).
ff1 Find First Bit Set rD,rS2 rDe position of rS2 first one bit (32 if none
found). The search begins at bit 31 of rS2 (the
most significant bit).
mak Make Bit Field rD,rS1,W5<05> | rS1 bit field is W5 bits wide starting at bit zero.
rD,rS1,rs2 rDe rS1 bit field shifted left by offset OS5.
Remaining rD bits cleared.
rot Rotate Register rD,r$1,<05> rD « rS1 rotated right by O5 bits.
rD,rS1,rS2
set Set Bit Field rD,rS1,W5<05> | D « rS1 with bit field set. Bit field is O5 bits from
rD,rS1,rS2 bit zero, W5 bits wide.

3.2.4 Floating-Point Instructions

The floating-point instructions provide standard floating-point arithmetic operations and
integer/floating-point conversions for various operand sizes (single-, double-, and
double-extended-precision). These instructions meet the IEEE standard for binary
floating-point arithmetic (ANSI-IEEE 754-1985). Included in the floating-point instruction
category are instructions which access the floating-point control registers. Table 3-5 lists
the floating-point instructions.

3-28 MC88110 USER’S MANUAL MOTOROLA

Table 3-5.

Floating-Point Instructions

Instruction Name Operand Operation
Syntax
fadd.fsz Floating-Point Add | rD,rS1,rS2 D « rS1 +182
xD,xS1,xS2 XD « xS1 +xS2
femp.fsz Floating-Point rD,rS1,rS2 D« rS1:: 1582
Compare rD,xS1,xS2 D « xS1:: xS2
fempu.fsz Unordered rD,rS1,rs2 rD «rSt1 ::rS2
Floating-Point rD,xS1,xS2 D « xS1:: xS2
Compare
fevt.fsz Convert Floating- | rD,rS2 D « convert(rS2)
Point Precision xD,xS2 xD « convert(xS2)
fdiv.fsz Floating-Point rD,rS1,rS2 rD « rS1/S2
Divide xD,xS1,xS2 xD « xS1/xS2
fider Load From rD,ferS D « ferS
Floating-Point
Control Register
fit.fsz Convert Integer to | rD,rS2 D « float(rS2)
Floating Point xD,rS2 XD « float(rS2)
fmul.fsz Floating-Point rD,rS1,r82 rD «rS1*rS2
Multiply xD,xS1,xS2 xD « xS1*xS2
fster Store to Floating- | rS1,ferD ferD « 1St
Point Control
Register
fsub.fsz Floating-Point rD,rS1,rS2 rD «rS1-rS2
Subtract xD,xS1,xS2 XD « xS1 - xS2
fxecr Exchange rD,rS,fcrS/D temp « ferS/D
Floating-Point ferS/D « S
Control Register D « temp
mov{.s} Register-to- rD,xS2 Move the contents of rS2 (xS2) to rD (xD).
mov{.d} Register Move xD,rs2
xD,xS2
int.fsz Round Floating rD,rS2 rD « round(rS2)
Point to Integer rD,xS2 D « round(xS2)
nint.fsz Round Floating rD,rs2 rD.« round_nearest(rS2)
Point to Nearest | rD,xS2 D « round_nearest(xS2)
Integer
trnc.fsz Truncate Floating | rD,rS2 rD.« trunc(rS2)
Point to Integer rD,xS2 rD.« trunc(xS2)
MOTOROLA MC88110 USER’S MANUAL 3-29

3.2.5 Graphics Instructions

The graphics instructions accelerate 3D graphics rendering algorithms. Multiple pixels of
varying length are packed into 64-bit fields stored in register pairs. The graphics
instructions process the individual fields within the 64-bit fields in parallel, avoiding the
need to pull them apart and operate on them separately. Table 3-6 lists the graphics
instructions.

Table 3-6. Graphics Instructions

Instruction Name Operand Operation
Syntax
padd.t Pixel Add tD, 1S1, 1S2 rDrD+1 « rS1:rS1+1 + rS2: rS2+1 modulo 2t
add
padds.x.t Pixel Add and D, rS1, rS2 tD:rD+1 « rS1:rS1+1 + rS2: rS2+1 modulo 2t
Saturate add and saturate
pcmp Z-Compare D, rS1,rS2 D «rS1:rS1+1 :: rS2: rS2+1
pmul Pixel Multiply D, rS1, rS2 rD:rD+1 « rS1 * rS2: rS2+1
ppack.r.t Pixel Truncate, D, rS1, rS2 rD:rD+1 « fields of size t from rS2: rS2+1
Insert, and Pack truncated to t*r/64, packed together, and
concatenated with rS1:rS14+1
prot Pixel Rotate D, r$1,<06> rD:rD+1 « rS1:rS1+1 rotated left by rS2 or O6
D, rS1, 1S2 bits. rS2 or O6 should be an even multiple of 4
psub.t Pixel Subtract rD, rS1, rS2 rDD+1 « rS1:rS14+1 - rS2: rS2+ modulo 2t
subtract
psubs.x.t Pixel Subtract and | rD, rS1, rS2 rD:rD+1 « rS1:rS1+1 - rS2: rS2+1 modulo 2t
Saturate subtract and saturate
punpk.t Pixel Unpack tD, rS1 rD:rD+1 « fields of size t from rS1 are put in
fields of size 2t and placed in rD:rD+1

3-30 MC88110 USER’S MANUAL MOTOROLA

3.2.6 Load/Store/Exchange Instructions

The load/store/exchange instructions perform memory accesses that move data of
various sizes between memory and general registers. Also, this category includes the
instructions that access the integer unit control registers. Table 3-7 lists the
load/store/exchange instructions.

Table 3-7. Load/Store/Exchange Instructions

Instruction Name Operand Operation
Syntax
Id {.s2} Load Register from | rD,rS1,S116 (rD or xD) « contents of memory location.
Id {.xsz} Memory xD,rS1,S116 Memory address is rS1 + SI16
Id {.sz}{.usr} Load Register from | rD,rS1,rS2 (rD or xD) « contents of memory location.

Id {.xsz}{.usr} Memory rD,rS1,[rS2] Memory address is rS1 +rS2, orrS1 + (rS2 <<
xD,rS1,rs2 scale). Scale factor = 0, 1, 2, 3, or 4 for byte, half
xD,r$1,[rS2] word, word, double word, or quad word,

respectively
Ida (.h) Load Address rD,rS1,[rS2] rD « rS1 +(rS2 << scale) Scale factor = 1, 2, 3,
Ida {.xsz} or 4 for half word, word, double word, or quad

word, respactively. Note that the .b size option
is not available for the Ida instruction

Ider Load from Control | rD,crS D «ecrS
Register
st {.sz} Store Registerto | rD,rS1,S116 Contents of memory location « (rD or xD).
st {.xsz} Memory xD,rS1,S116 Memory address is rS1 + SI16
st {.sz}{.usr}{.wt} Store Register to |rD,rs1,rs2 Contents of memory location « (rD or xD).
st {.xsz}{.usr}{.wt} | Memory rD,rs1,[rS2] Memory address is rS1 + rS2, or rS1 + (rS2 <<
xD,rs1,rs2 scale). Scale factor = 0, 1, 2, 3, or 4 for byte, half
xD,rS1,[rS2] word, word, double word, or quad word,
respectively
ster Store to Control rS1,erD crD « rS1
Register
xmem{.bu}l{.usr} Exchange rD,rS1,rS2 rD« contents of memory location. Contents of
Register With rD,rS1,[rS2] memory location « rD. Memory address is rS1 +
Memory rS2, orrS1 + (rS2 << scale). Scale factor = 0 or 2
for byte or word, respectively
xer Exchange rD,rS,erS/D temp« rS; rD « ¢rS/D; ferS/D « temp Control
Register

3.2.7 Flow Control Instructions

The flow control instructions alter the sequential execution stream. These instructions
include jump, branch and trap instructions. Table 3-8 lists the flow control instructions.

MOTOROLA MC88110 USER’S MANUAL 3-31

Table 3-8. Flow Control Instructions
Instruction Name Operand Operation
Syntax
jmp {.n} Unconditional rs2 Program flow is transferred to the address in
Jump rS2.
jsr {.n} Jump to rS2 Program flow is transferred to the address in
Subroutine 1S2, and the address of the first instruction after
the Jsr (second if .n) is written to r1.
bbo {.n} Branch on Bit B5,r$1,D16 If bit BS of rS1 clear, (D16 << 2) is sign-extended
Clear and added to the branch instruction address.
Program flow is transferred to the resulting
address.
bb1 {.n} Branch on Bit Set | B5,r51,D16 If bit BS of rS1 set, (D16 << 2) is sign-extended
and added to the branch instruction address.
Program flow is transferred to the resulting
address.
bend {.n} Conditional Branch | M5,rS1,D16 If rS1 meets condition(s) M5, (D16 << 2) is sign-
extended and added to the branch instruction
address. Program flow is transferred to the
resulting address.
br {.n} Unconditional D26 (D26 << 2) is sign-extended and added to the
Branch branch instruction address. Program flow is
transferred to the resulting address.
bsr {.n} Branch to D26 The address of the first instruction after the bsr
Subroutine (second if .n) is written to r1. (D26 << 2) is sign-
extended and added to the branch instruction
address. Program flow is transferred to the
resulting address.
illop1 llegal Operation none An unimplemented opcode exception is
illop2 unconditionally taken.
illop3
tbo Trap on Bit Clear B5,rS1,VEC9 If bit B5 of rS1 clear, save execution context;
program flow is transferred to VBR || VEC9 || 3
trailing zeros
tb1 Trap on Bit Set B5,rS1,VEC9 If bit B5 of rS1 set, save execution context;
program flow is transferred to VBR || VEC9 || 3
trailing zeros
tbnd Trap on Bounds rsS1,rS2 i rS1 > IMM16 or rS1 > rS2 (unsigned rS1,rS2
rS1.IMM16 comparison) save execution context; program
! flow is transferred to VBR || bounds check vector
|| 3 trailing zeros
tend Conditional Trap M5,rS1,VEC9 If rS1 meets condition(s) M5, save execution
context; program flow is transferred to VBR ||
VECS || 3 trailing zeros
rte Return from none Restore saved context

Exception

3-32

MC88110 USER’S MANUAL

MOTOROLA

SECTION 4
FLOATING-POINT IMPLEMENTATION

This section describes the MC88110 floating-point function unit (FPU), implemented as
special function unit one (SFU1), and how it conforms to the ANSI/IEEE Standard 754-
1985 for binary floating-point arithmetic. Floating-point numeric representations, floating-
point status and control registers, and exception handling for floating-point instructions
are discussed. For more information on the specific operation of floating-point
instructions and their timing, refer to Section 9 Instruction Timing and Code
Scheduling Considerations and Section 10 Instruction Set.

NOTE

The MC88110 provides the capability to conform to
ANSV/IEEE Standard 754-1985. Although the information
presented in the following paragraphs will aid in
understanding the MC88110 floating-point implementation,
this information is not intended as a complete definition of the
ANSV/IEEE floating-point functionality. The ANSI/IEEE
standard is the governing document for this information.

The MC88110 completely conforms to the ANSI/IEEE standard when used with the
software envelope supplied by Motorola. In addition to providing full conformance with
the exception specification of the ANSI/IEEE standard, the software envelope
implements those features of the ANSI/IEEE standard that are important functionally, but
occur rarely in practice (e.g. NaNs, denormalized numbers). However, the MC88110
floating-point implementation has many features, such as support for mixed-mode
arithmetic, that extend beyond the IEEE standard.

For applications that do not require strict adherence to the IEEE standard, there also is a
time-critical floating-point (TCFP) mode that may be selected that provides default results
for conditions that otherwise cause exceptions. For more information on exception
processing with the MC88110, refer to Section 7 Exceptions. For a complete
description of the software envelope and its interaction with the system software, refer to
the MC88110 Floating-Point Exception Envelope (FPEE) User’s Guide.

MOTOROLA MC88110 USER’S MANUAL 4-1

4.1

FLOATING-POINT NUMERIC REPRESENTATION

The following paragraphs describe floating-point numeric representations in the
MC88110. Numeric formats, denormalized numbers, unnormalized double-extended-
precision numbers, and not-a-numbers (NaNs) are discussed.

4.1.1 Floating-Point Numeric Formats

The MC88110 architecture supports three IEEE 754 standard floating-point data formats
(see Figure 4-1): single-precision, double-precision, and double-extended-precision. In
all three formats, numbers are encoded with the following four fields:

1.

o -

4-2

Sign field—a one-bit field which is 0 for positive numbers and 1 for negative
numbers.

Exponent field—a bit field which represents the exponent of the floating-point
number. The exponent is contained in 8 bits for single-precision numbers, 11 bits
for double-precision numbers, and 15 bits for double-extended-precision numbers.
The exponent is represented in excess 127 notation for single-precision numbers,
in excess 1023 notation for double-precision numbers and in excess 16,383
notation for double-extended-precision numbers. Exponents are converted to
excess 127, 1023, or 16,383 notation by adding a bias of 127, 1023, or 16,383,
respectively, to the true exponent of the number.

Two exponent values are reserved for special representations. A biased exponent
value of zero indicates that the floating-point number is a denormalized number
(mantissa nonzero or mantissa zero and leading bit one) or zero (mantissa zero
and leading bit zero). A biased exponent value of all ones (binary) indicates infinity
(mantissa zero) or a NaN (mantissa nonzero).

Leading Bit—a bit which represents the integer portion of the floating-point
number. For single- and double-precision numbers this bit is implied and is
referenced as the hidden bit. When the exponent is a nonzero number (but not all
ones), then the leading bit is one for normalized numbers and zero for
unnormalized numbers (see 4.1.4 Unnormalized Double-Extended-
Precision Numbers). When the exponent and the mantissa are zero and the
leading bit is zero, the value is zero; however, if the leading bit is one, the value is
denormalized (see 4.1.3 Denormalized Numbers). For single- and double-
precision numbers, the hidden bit is assumed to be a one when the exponent is a
nonzero number and a zero when the exponent is zero.

Mantissa—a bit field which represents the fractional binary portion of both
normalized and unnormalized floating-point numbers. The mantissa is contained in
23 bits for single-precision numbers, 52 bits for double-precision numbers, and 63
bits for double-extended-precision numbers. In addition, the most significant bit
(MSB), which is the left-most bit, of the mantissa also distinguishes between
signaling and nonsignaling NaNs (see 4.1.5 Not-a-Numbers (NaN’s)).

MC88110 USER’S MANUAL MOTOROLA

1 8 23
SINGLE-PRECISION I S l EXP] MANTISSA

1 il 52
DOUBLE-PRECISION | S I EXP I MANTISSA —l

1 15 1 63
DOUBLE-EXTENDED-PRECISION I S] EXP LL I MANTISSA
S: SIGN BIT

EXP: EXPONENT
L: LEADING BIT

Figure 4-1. Floating-Point Data Formats

Table 4-1 contains a summary of biased exponent values and Table 4-2 contains a n
summary of the floating-point numbers which are recognized by the MC88110.

Table 4-1. Biased Exponent Value Summary

Exponent Single-Precision Double-Precision Double-Extended-
Precision
Maximum Exponent (Unbiased) +127 +1023 +16,383
Minimum Exponent (Unbiased) -126 -1022 -16,382
Exponent Bias +127 +1023 +16,383
Exponent Width 8 bits 11 bits 15 bits

Table 4-2. Recognized Floating-Point Number Summary

Sign Bit | Exponent (Biased) | Leading Bit | Mantissa Value
0 Maximum b Nonzero +NaN
0 Maximum X Zero +Infinity
0 0 < Exponent < Maximum 0 Nonzero +Unnormalized
0 0 < Exponent < Maximum 1* Nonzero +Normalized
0 0 X Nonzero +Denormalized
0 0 1 Zero +Denormalized
0 0 * Zero +0
1 0 * Zero -0
1 0 1 Zero —Denormalized
1 0 X Nonzero —Denormalized
1 0 < Exponent < Maximum 0 Nonzero —Unnormalized
1 0 < Exponent < Maximum 1* Nonzero —Normalized
1 Maximum X Zero ~Infinity
1 Maximum X Nonzero —NaN

x: don't care

* not visible for single- and double-precision numbers (hidden)

MOTOROLA MC88110 USER’S MANUAL 4-3

NOTE

All floating-point operands should be explicitly converted to
the desired precision before use. Explicit conversion does not
carry an associated performance penalty since all floating-
point instructions support full mixed-mode operations.
Specifying a precision for an operand that is different from the
precision used to originally generate the operand, without
explicit conversion, is a programming error.

Table 4-3 summarizes the values of the numbers generated by the MC88110 that differ
from the representations that are recognized by the MC88110. All values in Table 4-3,
except for positive and negative infinity, are generated by the MC88110 only in TCFP
mode (see 4.3.3 Time-Critical Floating-Point (TCFP) Mode).

Table 4-3. Summary of Results Generated by MC88110

Sign | Exponent (Biased) Leading Mantissa Results
Bit Bit

0 Maximum 1* 110...0 +Universal NaN (nonsignaling)
0 Maximum 0 Zero +Infinity
0 N/A™* NA** 100...0 +Large Integer
1 Maximum 1" 110...0 —Universal NaN (nonsignaling)
1 Maximum 0 Zero ~Infinity
1 N/A** N/A** Zero ~Large Integer

not visible for single- and double-precision numbers (hidden)

not applicable because the result is an integer, i.e., the +large integer is 01000...0 and the —
large integer is 10000...0

4.1.2 Normalized Floating-Point Numbers

The positive and negative normalized number formats are used to represent real
floating-point numbers. The four fields that define normalized floating-point numbers are
derived from the floating-point value as shown in Example 1. This example shows the
normalized representation of the number 1.04q in single-precision format (see Figure 4-
2). Note that the mantissa represents all digits to the right of the binary point.

Example 1:
Value = 1.049= 1.0 =1.0* 20
SignBit=0
Exponent = 0
Biased Exponent (= exponent+127) = +127
Hidden Bit = 1
Mantissa = 0

4-4 MC88110 USER'S MANUAL MOTOROLA

HIDDEN

sicn exponent o' (M
(POSITIVE) (+127) ¢ MANTISSA (0)
| |
| Il |
[o|o1111111|ooooooooooooooooooooooo
BINARY
POINT

Figure 4-2. Single-Precision Floating-Point Representation of 1.0

Example 2 shows the normalized representation of the number 1/8 (0.125) in single-
precision format (see Figure 4-3): n
Value = 0.12549 = 0.001, = 1.0 * 2-3
Sign bit =0
Exponent = -3
Biased Exponent (= exponent +127) = +124
Hidden Bit = 1
Mantissa = 0

HIDDEN

sicn_ exponent DT ()
(POSITIVE) (+124) \L MANTISSA (0)

| |
| ']
[o|b11111oo|oooooooooooooooooooooool

T

BINARY
POINT

Figure 4-3. Single-Precision Floating-Point Representation of 1/8 (.125)

4.1.3 Denormalized Numbers

Denormalization occurs when a number is too small to be represented as a normalized
number in the specified format. For example, the smallest single-precision normalized
number that can be normally represented is 1.0 * 2-126, If this number is divided by four,
the result cannot be represented as a single-precision normalized number.

Denormalized numbers are represented by a biased exponent of zero with a nonzero
mantissa. Also, the double-extended-precision number with the biased exponent zero,

MOTOROLA MC88110 USER’S MANUAL 4-5

the mantissa zero, and the leading bit one is treated as a denormalized number. The
value of the denormalized number can be calculated from the nonzero mantissa using
the following equation:

denormalized number = leading bit.<mantissa> x 2-minimum exponent
where the leading bit is zero for single- and double-precision numbers.

Therefore, to represent 1.0 * 2-126 + 4, the following conversion is made:
(1.0 * 2-126) + (1.0 * 22) = (1.0 * 2-128) = (0.01 * 2-126)

The denormalized result of the preceding calculation is represented with a sign bit of
zero, an exponent of zero (indicating a denormalized number), and a mantissa of .01,
(see Figure 4-4). Since the mantissa is 2-2 (.012), the format indicates that the desired
result was 2-128,

SIGN EXPONENT
(POSITIVE) (-126) MANTISSA (01,)

1 | |

|o[oooooooo|o1ooooooooooooooooooooo]

Figure 4-4. Example of a Denormalized Number

When the MC88110 is not operating in TCFP mode and an instruction specifies a
denormalized source operand, a floating-point reserved operand exception occurs when
the instruction begins execution. If the exception handler provided in the software
envelope is used, the handler performs the operation and returns the result to the
destination register of the instruction that caused the exception. The denormalized
source is not affected by this process and remains denormalized.

When the result of an operation is too small to be represented as a normalized number
in the specified format, a floating-point underflow exception occurs upon completion of
the instruction. Refer to 4.3 Floating-Point Exceptions for a definition of IEEE
exception conditions and descriptions of the functions performed by the software
envelope for the various exception conditions.

When the MC88110 is operating in TCFP mode and a denormalized number is specified
as a source operand, a nonsignaling NaN is returned to the destination register.

4.1.4 Unnormalized Double-Extended-Precision Numbers

Because double-extended-precision numbers have an explicit leading bit of either 1 or
0, there is the possibility of more than one encoding for a given number. For example:
1.1001 * 2011 = 0.1101 * 2100

where the first number is normalized and the second number is unnormalized. Note that
unnormalized numbers are distinguished from denormalized numbers by the fact that
unnormalized numbers have a nonzero biased exponent.

4-6 MC88110 USER’S MANUAL MOTOROLA

The IEEE standard requires that redundant encodings either be disallowed or that they
be indistinguishable from each other. The MC88110 accommodates the second
alternative. When an instruction specifies an unnormalized source operand, a floating-
point reserved operand exception occurs when the instruction begins execution. The
exception handler provided in the software envelope then normalizes the number,
performs the operation, and returns the result to the destination register of the instruction
that caused the exception. The unnormalized source is not affected by this process and
remains unnormalized. The MC88110 never generates unnormalized results.

4.1.5 Not-a-Numbers (NaNs)

The IEEE standard provides for the representation of NaNs. There are two types of
NaNs: signaling and nonsignaling. When an instruction specifies either type of NaN as a
source operand, a floating-point reserved operand exception occurs when the
instruction begins to execute; however, signaling NaNs cause the IEEE invalid operation
user exception handler to be invoked when enabled (see 4.3 Floating-Point
Exceptions).

Signaling NaNs are useful for representing uninitialized variables and uninitialized
memory. The MSB of the mantissa contains a zero for signaling NaNs. Nonsignaling
NaNs are useful for representing the results of invalid operations such as 0/0. The MSB
of the mantissa contains a one for nonsignaling NaNs. The MC88110 only generates
NaNs while in TCFP mode (see 4.3.3 Time-Critical Floating-Point (TCFP) Mode)
and these NaNs are nonsignaling.

4.2 ROUNDING

The FPU supports four rounding modes that can be used for floating-point calculations:
round-to-nearest, round-toward-zero, round-toward-negative-infinity, and round-toward-
positive-infinity. Bits 15 and 14 in the floating-point control register (FPCR) (see 4.3.1.2
Floating-Point Control Register (FPCR)) are used to select the desired rounding
mode as shown in Table 4-4. To determine the outcome of a rounding operation, the
rounding modes rely on three extra bits of precision which are generated from the
floating-point result being rounded. The rounding modes and extra bits of precision are
consistent with the IEEE standard. The nint and trnc instructions always round as
specified in the instruction description (see Section 10 Instruction Set), regardless
of the current rounding mode.

MOTOROLA MC88110 USER’S MANUAL 4-7

Table 4-4. Rounding Modes

FPCR Bits
15 14 Rounding Modes
0 0 | Round-to-Nearest—The result is rounded up to the next higher number when the extra bits
of precision make the result closer to the higher number than to the original result. If there
is a tie, round to even.
0 1 Round-toward-Zero—Extra bits of precision are truncated.
1 0 | Round-toward-Negative-Infinity—A negative result is rounded down to the next more
negative number if any of the extra bits of precision are set. Positive results are truncated.
1 1 Round-toward-Positive-Infinity—A positive result is rounded up to the next more positive
number if any of the extra bits of precision are set. Negative results are truncated.

The three extra bits of precision are defined as follows (see Figure 4-5):

1. The Guard Bit (G)—The bit immediately to the right of the least significant bit (LSB)
of the number being rounded.

2. The Round Bit (R)—The bit immediately to the right of the guard bit.

3. The Sticky Bit (Sy—The logical OR of all the bits that would be to the right of the
round bit if the result was infinitely precise.

Note that these bits are not visible in the MC88110 programming model.

EXTRA BITS OF PRECISION

3130 2322 MANTISSA of I

|1|oto1o1o1|o1o1o1o1o1o1o1o1o1o1o1o]1]1|o1ooo--

LOGICAL

OR

3130 2822 oYy
|1|o1o1o1o1|o1o1o1o1o1o1o1o1o1o1o1o[1[1|1]
GRS

Figure 4-5. The Guard, Round, and Sticky Bits

NOTE

Note that mixed-mode operations, except in the round-
toward-zero mode, can produce more accurate results than
specified by the |IEEE standard. Therefore, the round-toward-
zero mode should be used when strict compliance with the
IEEE standard is required.

4-8 MC88110 USER’S MANUAL MOTOROLA

4.2.1 Round-to-Nearest

Round-to-nearest is the default rounding mode after the MC88110 is reset. In this mode,
a result is rounded up to the next higher number when the guard, round, and sticky bits
make the result closer to the higher number than to the intermediate result.

A tie situation occurs when the guard bit is one and the round and sticky bits are zero. In
the case of a tie, rounding depends on the LSB of the result: the result is rounded up if
the LSB is one and is unchanged if the LSB is zero (G, R, and S are truncated).

The following statements summarize the round-to-nearest rounding mode:
If G=0—Do Not Round
If G=1 and (R=1 and/or S=1)—Round Up
If G=1, R=0, and S=0
and LSB = 0—Do Not Round
and LSB = 1—Round Up

4.2.2 Round-toward-Zero

When the round-toward-zero rounding mode is selected, the guard, round, and sticky
bits are truncated.

4.2.3 Round-toward-Positive-Infinity

In the round-toward-positive-infinity mode, only positive results require the use of the
extra bits of precision. If a result is positive and any of the extra bits of precision are set,
the result is rounded up to the next higher number. After rounding, the guard, round, and
sticky bits are discarded. Negative numbers are truncated in this mode.

4.2.4 Round-toward-Negative-Infinity

In the round-toward-negative-infinity mode, only negative results require the use of the
extra bits of precision. If a result is negative and any of the extra bits of precision are set,
the result is rounded down to the next lower number. After rounding, the guard, round,
and sticky bits are discarded. Positive numbers are truncated in this mode.

4.3 FLOATING-POINT EXCEPTIONS

There are three definitions of floating-point exceptions that are referenced in this
manual: (1) the SFU1 exception, (2) floating-point exceptions, and, (3) IEEE exception
conditions. First, the MC88110 hardware automatically uses one exception vector,
defined by the exception vector table to be the SFU1 exception vector (see Section 7
Exceptions), for all floating-point exceptions detected by the MC88110. Second,
floating-point exceptions are the eight events (privilege violation, underflow, overfiow,
etc.) that cause the SFU1 exception to occur under the default operation (out of reset) of
the MC88110. The program residing at the location of the SFU1 exception vector may

MOTOROLA MC88110 USER’S MANUAL 4-9

then use the bits in the floating-point exception cause register (FPECR) to explicitly
branch to the appropriate routine for each of the eight floating-point exceptions. Third,
there are five exception conditions that are defined by the IEEE standard and are
referenced as IEEE exception conditions.

The software envelope maps seven of the eight floating-point exceptions into the five
IEEE exception conditions as shown in Figure 4-6 in order to provide IEEE conformance.
Note from Figure 4-6 that the software envelope maps the floating-point exceptions
depicted with a dashed line to the corresponding IEEE exception conditions only in
certain cases, whereas it always maps the floating-point exceptions depicted with a solid
line to the specified IEEE exception conditions.

The floating-point privilege violation exception is specific to the MC88110 and does not
map into an IEEE exception condition. The floating-point unimplemented opcode and
floating-point reserved operand exceptions may or may not map to IEEE exception
conditions, depending on the cause. However, handlers for the floating-point privilege
violation, floating-point unimplemented opcode, and floating-point reserved operand
exceptions are also provided in the software envelope.

UNIMPLEI:él‘?‘I/'gII)Ng!:"%%gE — COULD MAP TO ANY
PR:VlTé?séT\I/lNgJTom ———— NEVER MAPS TO ANY
FéSﬁ?é‘Sg%’,‘.’EJS;Eng — > |EEE INVALID OPERATION
RESERVED OSERAND —————————— COULD MAP TO ANY

P P > IEEE DIVIDE-BY-ZERO
FLOATING POINT i > |EEE UNDERFLOW
AT oT Z IEEE INEXACT
FL°’“3\“,‘§F}',Z‘L’('§\‘I, IEEE OVERFLOW

LEGEND:

—» ALWAYS MAPS
-==--> SOMETIMES MAPS

Figure 4-6. Mapping of Floating-Point Exceptions
to IEEE Exception Conditions

The MC88110 has the ability to enable user-specified handlers for each of the five IEEE
exception conditions. The software envelope explicitly checks the bits in the FPCR and
passes parameters to the system software for branches to the appropriate user routine
when it is enabled and the corresponding IEEE exception condition occurs. The system
software should then perform the branch to the user handler. These routines are
referenced as user routines in this section, but this does not imply that they necessarily

4-10 MC88110 USER’S MANUAL MOTOROLA

execute in user mode as defined by the supervisor/user mode bit of the PSR (see
Section 2 Programming Model).

The system software can use the eight floating-point exceptions and the software
envelope to provide full binary floating-point exception compatibility with the IEEE
standard. However, supervisor software can also enable time-critical floating-point
(TCFP) mode when strict IEEE conformance is not required. In TCFP mode, the
hardware generates default results instead of taking the SFU1 exception when |IEEE
exception conditions occur. The software envelope is invoked only if non-IEEE exception
conditions cause the exception.

When the SFU1 exception occurs, the MC88110 suspends all operations, signals the
floating-point exception in the FPECR, and branches to the address specified by the
vector base register and exception vector table (see Section 7 Exceptions). The
software envelope can then be invoked to process the exception in a predefined way.

Table 4-5 depicts a summary of all the floating-point instructions of the MC88110 and the
exceptions that each of these instructions can cause. The exceptions are itemized by
setting the corresponding bit in the FPECR. Refer to Section 7 Exceptions for a more
detailed description of exception processing for all exceptions.

Table 4-5. Exceptions Caused by Floating-Point Instructions

Instructions FIOV FUNIMP FROP FDVZ FUNF FOVF FINX | FPRV
fmul SFU1 NaN,
disabled, invalid, Underflow Overflow Inexact

odd reg. pair | denorm, or
unnorm

fadd SFU1 NaN,
disabled, invalid, Underflow Overflow Inexact
odd reg. pair | denorm, or
unnorm

fsub SFU1 NaN,
disabled, invalid, Underflow Overflow | Inexact
odd reg. pair | denorm, or
unnorm

fevt SFU1 NaN,

disabled, denorm, or Underflow Overflow Inexact
odd reg. pair | unnorm

fcmp SFU1 NaN,
disabled, denorm, or
odd reg. pair | unnorm

fempu SFU1 NaN,
disabled, denorm, or
odd reg. pair | unnorm

fit SFU1

disabled, Inexact
odd reg. pair

MOTOROLA MC88110 USER’S MANUAL 4-11

Table 4-5. Exceptions Caused by Floating-Point Instructions (Continued)

Instructions Flov FUNIMP FROP FDVZ FUNF FOVF FINX | FPRYV
int 1Ss2<-231, | SFU1 NaN,
rs$2>231-1 | disabled, denorm, or Inexact
odd reg. pair | unnorm
nint rS2<-231, | SFU1 NaN,
rS2> 2311 | disabled, denorm, or Inexact
odd reg. pair | unnorm
trnc rs2<-231, | sFu1 NaN,
rS2> 2311 | disabled, denorm, or Inexact
odd reg. pair | unnorm
idiv SFU1 NaN,
disabled, invalid, rS2=0 | Underflow Overflow Inexact
odd reg. pair | denorm, or
unnorm
fsqrt Always
mov SFU1
disabled,
odd reg. pair
fider, SFU1
fster, disabled *
fxcr bl
other FP** Always

* FPRV set when any of these instructions specify any of fcrO—fcr61 while operating in the user mode (as
determined by supervisor/user mode bit of PSR—see Section 2 Programming Model). Note that when fer1-—
fcré1 are referenced while operating in user mode, the FPRV bit is set but the FUNIMP bit is not.

** »Other FP" refers to all other opcodes (not described above) that map into the SFU1 opcode space.

*** FUNIMP set when any of these instructions specify any of feri—fcr61 while operating in the supervisor mode (as
determined by the supervisor/user mode bit of PSR—see Section 2 Programming Model).

The following paragraphs describe the floating-point registers, the handling of floating-
point exceptions by the software envelope and the operation of TCFP mode.

4.3.1 Floating-Point Control Registers

The MC88110 implements three floating-point control registers as follows:
fcro—floating-point exception cause register (FPECR)
fcr62—floating-point status register (FPSR)
fcr63—floating-point control register (FPCR)

The floating-point control registers are accessed using the flder, fster, fxcr instructions
(see Section 10 Instruction Set).

4.3.1.1 FLOATING-POINT EXCEPTION CAUSE REGISTER (FPECR). The
FPECR is written by the hardware whenever floating-point exceptions occur to indicate
which floating-point exception has occurred when the SFU1 exception is taken. Each of
the possible eight MC88110 floating-point exceptions has a corresponding bit in the
FPECR which is set by the hardware when that exception occurs. Some exceptions,
such as overflow and inexact, occur simultaneously and thus multiple bits may be set in

4-12 MC88110 USER’S MANUAL MOTOROLA

the FPECR. If the floating-point unimplemented instruction blt is set, then all other bits in
the FPECR are undefined.

The FPECR is read by the software envelope to determine which floating-point exception
occurred. The FPECR has read/write access and is accessible from supervisor mode
only. The FPECR and its defined bits are shown in Figure 4-7. Refer to section 4.3.2
IEEE Exceptions Conformance for more detail on the causes of these eight
exceptions and actions performed by the software envelope in response to these various
conditions. In the paragraphs that follow, an asterisk (*) denotes the default state after
reset.

31 8 7 6 5 4 3 2 1 0
[Fiov | FUNIMP IFPRVIFROPlFDVZIFUNFI FOVFI FINX |

RESERVED FOR FUTURE USE

Figure 4-7. Floating-Point Exception Cause Register

Bits 31—-8—Reserved

Always read as zero but not guaranteed to be zeros in future implementations; writes
are ignored.

FIOV—Floating-Point to Integer Conversion Overflow
This bit is set by the MC88110 to indicate that the exception was caused by a floating-
point to integer conversion overflow.
0—No floating-point to integer conversion overflow*
1—Exception caused by floating-point to integer conversion overflow

FUNIMP—Floating-Point Unimplemented Instruction
This bit is set by the MC88110 to indicate that the exception was caused by a floating-
point instruction opcode that is unimplemented in the MC88110 hardware. In addition,
when SFU1 opcodes are attempted to be executed when SFU1 is disabled in the PSR
(see Section 2 Programming Model), the FUNIMP bit is set.
0—No floating-point unimplemented instruction*
1—Exception caused by a floating-point unimplemented instruction

FPRV—Floating-Point Privilege Violation

This bit is set by the MC88110 to indicate that the exception was caused by an attempt
to access a privileged (implemented or unimplemented) floating-point control register
while in user mode.

0—No floating-point privilege violation*

1—Exception caused by a floating-point privilege violation

MOTOROLA MC88110 USER’S MANUAL 4-13

FROP—Floating-Point Reserved Operand

This bit is set by the MC88110 to indicate that the exception was caused by either a
floating-point reserved operand check (nonsignaling NaN, denormalized operand, or
double-extended-precision unnormalized operand was specified) or by an invalid
operation with zero, infinity, or signaling NaN (see 4.3.2.4 Floating-Point
Reserved Operand).

0—No floating-point reserved operand®

1—Exception caused by a floating-point reserved operand

FDVZ—FIloating-Point Divide-by-Zero
This bit is set by the MC88110 to indicate that the exception was caused by the
division of a normalized nonzero number by zero or the division of infinity by zero.
Note that the division of zero by zero and division of NaN by zero do not cause the
FDVZ bit to be set, but instead cause the FROP bit of FPECR to be set.
0—No floating-point divide-by-zero*
1—Exception caused by floating-point divide-by-zero

FUNF—Floating-Point Underflow
This bit is set by the MC88110 to indicate that the exception was caused by a floating-
point underflow.

0—No floating-point underflow*
1—Exception caused by floating-point underflow

FOVF—Floating-Point Overflow
This bit is set by the MC88110 to indicate that the exception was caused by a floating-
point overflow.

0—No floating-point overflow*
1—Exception caused by floating-point overflow

FINX—FIloating-Point Inexact

This bit is set by the MC88110 to indicate that the exception was caused by a floating-
point inexact condition. A floating-point overflow condition also causes this bit to be
set.

0—No floating-point inexact condition*

1—Exception caused by floating-point inexact condition

4.3.1.2 FLOATING-POINT CONTROL REGISTER (FPCR). The FPCR is used to
specify the desired rounding mode and to specify which IEEE floating-point exception
conditions should branch to a user software exception handler. The FPCR defines one
bit for each of the five user-enabled IEEE floating-point exception conditions, two bits for
specifying the rounding mode, and three bits for enabling TCFP mode (see 4.3.3 Time-
Critical Floating-Point (TCFP) Mode). The FPCR has read/write access and is
accessible from both user and supervisor modes. The FPCR and its defined bits are
shown in Figure 4-8. In the following paragraphs, an asterisk (*) denotes the default state
after reset.

4-14 MC88110 USER’S MANUAL MOTOROLA

16 15 14 13 5 4 3 2 1 0

| ermv |erovz]erune|rove| erinx |

RESERVED FOR FUTURE USE

Figure 4-8. Floating-Point Control Register

Bits 31—22— Reserved

Always read as zero but not guaranteed to be zeros in future implementations; writes
are ignored.

TCFP—Time-Critical Floating-Point Mode

This bit enables TCFP mode. If this bit is set, the TCFPUNF and TCFPOVF bits are
ignored.

0—Take SFU1 exception for all IEEE floating-point exception conditions*
1—Return TCFP mode default results for all IEEE floating-point exception conditions
and do not cause SFU1 exception

Bits 20,19—Reserved

Always read as zero but not guaranteed to be zeros in future implementations; writes
are ignored.

TCFPUNF—Time-Critical Floating-Point Underflow

This bit enables TCFP mode for underflow conditions; it is ignored if the TCFP bit is
set.

0—Take SFU1 exception for floating-point underflow condition*
1—Return correctly signed zero for floating-point underflow and do not cause SFU1
exception

TCFPOVF—Time-Critical Floating-Point Overflow
This bit enables TCFP mode for overflow conditions; it is ignored if the TCFP bit is set.

0—Take SFU1 exception for floating-point overflow conditions*
1—Return correctly signed infinity for floating-point overflow and do not cause SFU1
exception

Bit 16—Reserved

Always read as zero but not guaranteed to be zeros in future implementations; writes
are ignored.

RM—Rounding Mode
These two bits are used to by the hardware for rounding floating-point calculations.

00—Round-to-nearest*
01—Round-toward-zero
10—Round-toward-negative-infinity
11—Round-toward-positive-infinity

MOTOROLA MC88110 USER’S MANUAL 4-15

Bits 13—5—Reserved

Always read as zero but not guaranteed to be zeros in future implementations; writes
are ignored.

EFINV—Enable Invalid Operation User Exception Handler

0—Disable invalid operation user exception handler*
1—Enable invalid operation user exception handler

EFDVZ—Enable Divide-by-Zero User Exception Handler

0—Disable divide-by-zero user exception handler*
1—Enable divide-by-zero user exception handler

EFUNF—Enable Underflow User Exception Handler

0—Disable underflow user exception handler*
1—Enable underflow user exception handler

EFOVF—Enable Overflow User Exception Handler

0—Disable overflow user exception handler*
1—Enable overflow user exception handler

EFINX—Enable Inexact Exception Handler

0—Disable inexact user exception handler*
1—Enable inexact user exception handler

4.3.1.3 FLOATING-POINT STATUS REGISTER (FPSR). Each of the five |IEEE
exception conditions has a corresponding bit in the FPSR that is set by the software
envelope (except for the inexact bit which can also be set by the hardware) when the
exception occurs. The FPSR also defines the XMOD bit which is set by hardware to
indicate that the extended register file has been modified. Neither the hardware nor the
software envelope clear bits in the FPSR; the bits must be cleared by user software. The
FPSR has read/write access and is accessible from both user and supervisor modes.
The FPSR and its defined bits are shown in Figure 4-9. In the following paragraphs, an
asterisk (*) denotes the default state after reset.

3t 17 16 5 5 4 3 2 1 o0
AFNV [aFovz|aFunF|arovr] aFinx|

RESERVED FOR FUTURE USE

Figure 4-9. Floating-Point Status Register

Bits 31—17—Reserved

Always read as zero but not guaranteed to be zeros in future implementations; writes
are ignored.

4-16 MC88110 USER’'S MANUAL MOTOROLA

XMOD—Extended Register File Modified

This bit is used by the MC88110 to indicate that the extended register file has been
modified.

0—Extended register file not modified*
1—Extended register file modified

Bits 15-5—Reserved

Always read as zero but not guaranteed to be zeros in future implementations; writes
are ignored.

AFINV—Accumulated Invalid Operation Flag

This bit is set by the software envelope to indicate that an IEEE invalid operation
exception condition has occurred.

0—No IEEE invalid operation exception condition*
1—IEEE invalid operation exception condition

AFDVZ—Accumulated Divide-by-Zero Flag

This bit is set by the software envelope to indicate that an IEEE divide-by-zero
exception condition has occurred.

0—No IEEE divide-by-zero exception condition*
1—IEEE divide-by-zero exception condition

AFUNF—Accumulated Underflow Flag

This bit is set by the software envelope to indicate that an IEEE underflow exception
condition has occurred.

0—No IEEE underflow exception condition*
1—IEEE underflow exception condition

AFOVF—Accumulated Overflow Flag
This bit is set by the software envelope to indicate that an IEEE overflow exception
condition has occurred.

0—No IEEE overflow exception condition*
1—IEEE overflow exception condition

AFINX—Accumulated Inexact Flag
This bit is set by the hardware to indicate that an IEEE inexact exception condition has
occurred. In addition, the software envelope sets this bit as well as the AFOVF bit
when both the overflow and inexact user handlers are disabled and an overflow
exception condition occurs.
0—No IEEE inexact exception condition*
1—IEEE inexact exception condition

MOTOROLA MC88110 USER’S MANUAL 4-17

4.3.2 IEEE Exceptions Conformance

In addition to providing full conformance with the IEEE exception specification, the
software envelope implements those features of the IEEE standard that are important
functionally, but occur rarely in practice (e.g. NaNs and denormalized numbers). For
applications that do not require strict adherence to the IEEE standard, TCFP mode may
be selected (see 4.3.3 Time-Critical Floating-Point (TCFP) Mode).

When a floating-point exception occurs, the hardware records the exception by setting
the appropriate bit in the FPECR and takes the SFU1 exception. The software envelope
then determines if the floating-point exception can be mapped into the IEEE exception
conditions as shown in Figure 4-6.

The software envelope signals an IEEE exception condition to the user by either causing
a branch (software envelope passes parameters to the system software so that the
system software actually performs the branch) to the user exception handler for that
condition if it is enabled, or by setting the accumulated flag in the FPSR and returning
the IEEE default result. The software envelope first checks the FPCR to see if the
corresponding user exception handler is enabled. If the user handler is enabled, then
information for the branch is passed to the system software. If the user handler is
disabled, the software envelope sets the appropriate accumulated flag in the FPSR and
then calculates the IEEE designated result and returns this result to the destination
register of the instruction that generated the SFU1 exception.

The following paragraphs discuss the eight floating-point exceptions that generate the
SFU1 exception (each one having a corresponding bit in the FPECR), the conditions that
cause them, and how the software envelope responds to them. For a complete
description of the software envelope and its interaction with the system software, refer to
the MC88110 Floating-Point Exception Envelope (FPEE) User’s Guide .

4.3.2.1 FLOATING-POINT UNIMPLEMENTED INSTRUCTION. When this
floating-point exception occurs, the hardware sets the FUNIMP bit in the FPECR and
takes the SFU1 exception. This floating-point exception does not directly map into the
IEEE exception conditions; therefore, there are no corresponding accumulated flags to
be set or user handlers to be enabled. The causes of this floating-point exception and
the manner in which the software envelope responds to each are as follows:

1. If a floating-point operation is attempted when SFU1 is disabled (see Section 2
Programming Model), the software envelope signals to the system software that
SFU1 is disabled.

2. If there is an attempt to execute the fsqrt instruction, the software envelope
calculates the square root and returns the result to the destination register. If an
IEEE exception condition is encountered while calculating the square root, then the
software envelope checks the appropriate FPCR bit and branches to the user
handler if the user trap is enabled. If the user trap is disabled, the software
envelope sets the appropriate accumulated flag in the FPSR.

3. If there is an attempt to execute an unimplemented floating-point opcode, the
software envelope signals to the system software that an unimplemented opcode
was attempted to be executed.

4-18 MC88110 USER’S MANUAL MOTOROLA

4. If there is an attempt from supervisor mode to access an unimplemented floating-
point control register, the software envelope signals to the system software that an
access violation was attempted.

5. If there is an attempt to access a double-precision floating-point number which is
aligned on an odd-numbered register pair (i.e., r5:r6 instead of r4:r5) in the
general register file, the software envelope transfers the operands to an even
register pair, performs the operation, and returns the result to the destination
register. If an IEEE exception condition is encountered while the software envelope
is performing these actions, then it checks the appropriate FPCR bit and branches
to the user handler if it is enabled. If the user handler is disabled, the software
envelope sets the appropriate accumulated flag in the FPSR.

4.3.2.2 FLOATING-POINT PRIVILEGE VIOLATION. This exception occurs
whenever there is an attempt to access a privileged (implemented or unimplemented)
floating-point control register from user mode. When this happens, the hardware sets the
FPRV bit in the FPECR and takes the SFU1 exception. The software envelope then
signals to the system software that a privilege violation was attempted. This floating-
point exception does not map into the IEEE exception conditions; therefore, there are no
corresponding accumulated flags to be set or user handlers to be enabled. Note that the
only floating-point registers that are not privileged are the FPSR (fcr62) and the FPCR
(fcr63). The FPECR (fcr0) and the unimplemented floating-point registers (feri—fcré1)
are all privileged.

4.3.2.3 FLOATING-POINT TO INTEGER CONVERSION OVERFLOW. This
exception occurs when the source operand of a floating-point to integer conversion
operation (int, nint, or trnc instruction) is too large to be represented as a signed 32-bit
integer. When this happens, the hardware sets the FIOV bit in the FPECR and takes the
SFU1 exception. The software envelope then maps this exception to the IEEE invalid
operation exception condition. If the EFINV bit in the FPCR is set, the system software is
notified so that it can perform a branch to the user handler. If the EFINV bit is clear, the
software envelope sets the AFINV bit in the FPSR and returns the processor to normal
instruction execution.

MOTOROLA MC88110 USER'S MANUAL 4-19

4.3.2.4 FLOATING-POINT RESERVED OPERAND. When this floating-point
exception occurs, the hardware sets the FROP bit in the FPECR and takes the SFU1
exception. The causes of this floating-point exception and the manner in which they are
handled by the software envelope are listed below and encompass both reserved
operand conditions and invalid operation conditions. Notice that causes 1, 2, and 3 are
resolved by the software envelope without mapping into IEEE exception conditions;
therefore, there are no corresponding accumulated flags set or user handlers to be
taken. Note also that the MC88110, unlike the MC88100, does not treat infinity as a
reserved operand. Infinity arithmetic is performed directly in hardware except in the
invalid operation cases described in cause 4.

1. If a nonsignaling NaN is specified as a source operand for any instruction which
returns a floating-point quantity, the software envelope returns a nonsignaling NaN
to the destination register as defined by the IEEE standard and the MC88110
Floating-Point Exception Envelope (FPEE) User’s Guide.

2. If a nonsignaling NaN is specified as a source operand for fcmp, then the software
envelope returns the result string, with all of the unordered bits set, to the
destination register.

3. If a denormalized number or an unnormalized number is specified as a source
operand, the software envelope performs the operation and returns the result to the
destination register.

4. If any of the following occur:

(a) signaling NaN is specified as a source operand

(b) the four combinations of magnitude subtraction of infinities (oo — 00, —00 + oo,

©0 + (—00), and o — (o))

(c) the multiplication of (0 x oo)

(d) the division of (0/0) or (eo/o0)

(e) nonsignaling NaN is specified as a source operand for fcmpu,

() NaN is specified as a source for int, nint, or trnc instruction
the software envelope maps this floating-point exception to the IEEE invalid
operation exception condition. If the EFINV bit in the FPCR is set, a branch is
caused (by signaling the system software) to the user handler. If the EFINV bit in
the FPCR is clear, the software envelope sets the AFINV bit in the FPSR and
delivers the IEEE designated result (the universal nonsignaling NaN) to the
destination register of the instruction that caused the SFU1 exception. Note that in
the case (f) above, there is no IEEE designated result and so the results of the
destination register are unchanged.

4.3.2.5 FLOATING-POINT OVERFLOW. This exception occurs when the rounded
result of an operation is too large to be represented as a finite normalized number in the
destination format. The actions taken by the hardware and the software envelope when
a floating-point overflow exception occurs are shown in Figure 4-10.

4-20 MC88110 USER’S MANUAL MOTOROLA

FLOATING-POINT
OVERFLOW EXCEPTION
DETECTED

HARDWARE SETS
FOVF AND FINX BITS IN FPECR

Y

IF IEEE INEXACT CONDITION,
HARDWARE ’S:[E,E‘AFINX BITIN

Y

PROCESSOR TAKES
SFU1 EXCEPTION

HARDWARE

P L L L T T T T T T T TP

SYSTEM SOFTWARE

SOFTWARE ENVELOPE

e | e
10N,
RE-COMPUTED (® = UNSCALED RESULT

COMPUTE IEEE SCALED RESULT;
No DATA BLOCK*= SCALED RESULT;
DATA BLOCKe= OVERFLOW TRAP STATUS CODE

RETURN TO
SYSTEM SOFTWARE

BRANCH TO OVERFLOW
USER HANDLER AND
EFINX Vs RESUME PROCESSING
INFPCR
SET?
"o DATA BLOCK-@;
DATA BLOCK«= INEXACT TRAP STATUS CODE
RETURN TO
SYSTEM SOFTWARE
BRANCH TO INEXACT
\ USER HANDLER AND
RESUME PROCESSING
MAP OVERFLOW TO IEEE
OVERFLOW AND IEEE INEXACT
EXCEPTION CONDITIONS
SET AFOVF AND AFINX
BITS INFPSR
WRITE-BACK
IEEE DESIGNATED RESULT

RESUME PROCESSING

Figure 4-10. Default Floating-Point Overflow
Algorithm for Software Envelope

RN NSNS NSNS e AN IR SRS NSNS NN AN NP NN CANSEE NN ARE SRS REAES AR NS EER

MOTOROLA MC88110 USER’S MANUAL 4-21

When a floating-point overflow condition is detected, the MC88110 sets both the FOVF
and FINX bits of the FPECR and takes the SFU1 exception. The software envelope then
scales the source operands appropriately so that the operation can be performed
without causing an overflow exception. The software envelope then recomputes the
original operation. The result is then unscaled so that the overflow result is generated
(without causing the exception).

If the EFOVF bit is set in the FPCR, then the software envelope scales the unscaled
result (by subtracting either 192 (single-precision), 1536 (double-precision) or 24576
(double-extended-precision) to the exponent of the result) and writes it to a predefined
data block in memory. This data block is the mechanism used to transfer parameters to
the system software. In addition, an overflow trap status code is also written to the data
block. Finally, the software envelope returns to the system software, which then should
branch to the user handler for overflow.

If the EFOVF bit is not set in the FPCR, the software checks the value of the EFINX bit in
the FPCR. If the EFINX bit is set, then the unscaled result recomputed by the software
envelope is written to the data block. In addition, an inexact trap status code is also
written to the data block. Finally, the software envelope returns to the system software,
which then should branch to the user handler for inexact.

If the EFINX bit is not set in the FPCR, then the software envelope maps the floating-point
exception for overflow into both the IEEE overflow and IEEE inexact exception conditions
and sets both the AFOVF and AFINX bits in the FPSR. The IEEE-designated result is
then written to the destination register and the original program flow continues.

The IEEE designated result is based on the rounding mode (as set in the FPCR) and the
sign of the intermediate result as follows:
1. Round-to-nearest rounds all overflows to infinity with the sign of the intermediate
result.

2. Round-toward-zero rounds all overflows to the format’s largest finite number with
the sign of the intermediate result.

3. Round-toward-negative infinity carries positive overflows to the format'’s largest finite
number and rounds negative overflows to negative infinity.

4. Round-toward-positive infinity rounds negative overflows to the format’s most
negative finite number and rounds positive overflows to positive infinity.

4.3.2.6 FLOATING-POINT UNDERFLOW. This exception occurs when the rounded
result of an operation is too small to be represented as a finite normalized number in the
destination format. The actions taken by the hardware and the software envelope when
a floating-point underflow exception occurs are shown in Figure 4-11.

4-22 MC88110 USER'S MANUAL MOTOROLA

RESULT
RE-COMPUTED

MOTOROLA

FLOATING-POINT
UNDERFLOW EXCEPTION
DETECTED

HARDWARE SETS
FUNF BIT IN FPECR

Y

IF IEEE INEXACT CONDITION,
HARDWARE EE;% AFINXBITIN

HARDWARE

SOFTWARE ENVELOPE

SCALE SOURCE OPERANDS;
PERFORM OPERATION;
@ UNSCALED RESULT

10sS
OF ACCURACY?
(AFINX BIT IN
FPSR SET?)

CLEAR AFINX BIT
IN FPSR

Y

COMPUTE |EEE SCALED RESULT;
DATA BLOCK *= SCALED RESULT;
DATA BLOCKe= UNDERFLOW TRAP STATUS CODE

RETURN TO
SYSTEM SOFTWARE

SYSTEM SOFTWARE

BRANCH TO UNDERFLOW

y

CLEAR AFINX BIT
FPSR

MAP UNDERFLOW TO IEEE
UNDERFLOW AND |EEE INEXACT
EXCEPTION CONDITIONS

F——J

DATABL @ 3
DATA BLOCK®= INEXACT TRA STATUS CODE

Y

SET AFUNF
BITINFPSR

RETURN TO
SYSTEM SOFTWARE

Y

USER HANDLER AND
RESUME PROCESSING

BRANCH TO INEXACT

> WRITE-BACK

DENORMALIZED RESULT

RESUME PROCESSING

USER HANDLER AND

RESUME PROCESSING

Figure 4-11. Default Floating-Point Underflow
Algorithm for Software Envelope

MC88110 USER’S MANUAL

4-23

When a floating-point underflow condition is detected, the MC88110 sets the FUNF bit in
the FPECR and takes the SFU1 exception. The software envelope then scales the
source operands appropriately so that the operation can be performed without causing
an underflow exception. The software envelope then recomputes the original operation.
The result is then unscaled so that the underflow result is generated (without causing the
exception).

If the EFUNF bit is set in the FPCR and precision was lost, then the software envelope
clears the AFINX bit in the FPSR (if it was set), scales the unscaled result (by adding
either 192 (single-precision), 1536 (double-precision) or 24576 (double-extended-
precision) to the exponent of the result), and writes the scaled result to a predefined data
block in memory. This data block is the mechanism used to transfer parameters to the
system software. In addition, an underflow trap status code is also written to the data
block. Finally, the software envelope returns to the system software, which then should
branch to the user handler for underflow.

If the EFUNF bit is not set in the FPCR, the software checks to see if a loss of accuracy
has occurred. If it has, the software envelope checks the value of the EFINX bit in the
FPCR. If the EFINX bit is set, then the AFINX bit in the FPSR is cleared (if it was set) and
the unscaled result recomputed by the software envelope is written to the data block. In
addition, an inexact trap status code is also written to the data block. Finally, the software
envelope returns to the system software, which then should branch to the user handler
for inexact.

If the EFINX bit is not set in the FPCR, then the software envelope maps the floating-point
exception for underflow into both the IEEE underflow and the IEEE inexact exception
conditions and sets the AFUNF bit in the FPSR. Finally, the IEEE-designated result is
written to the destination register and the original program flow continues. This last step
also occurs when a loss of accuracy has not occurred.

4.3.2.7 FLOATING-POINT DIVIDE-BY-ZERO. This exception occurs when the
denominator of a floating-point divide operation is zero and the numerator is a nonzero
finite normalized number. When this happens, the hardware sets the FDVZ bit in the
FPECR and takes the SFU1 exception. The software envelope then maps this floating-
point exception to the IEEE divide-by-zero exception condition. If the EFDVZ bit in the
FPCR is set, a branch is made to the user handier. If the EFDVZ bit is clear, the software
envelope sets the AFDVZ bit in the FPSR and delivers the IEEE designated result to the
destination register.

4.3.2.8 FLOATING-POINT INEXACT. If the result of a floating-point operation is not
exact (e.g., due to loss of accuracy caused by rounding or loss of significance caused by
overflow), the hardware checks the EFINX bit in the FPCR. If the EFINX bit is clear, the
hardware does not take the SFU1 exception, but it signals the condition by setting the
AFINX bit in the FPSR. If the EFINX bit is set, the hardware sets the FINX bit in the
FPECR and takes the SFU1 exception. The software envelope then maps this floating-
point exception to the IEEE inexact exception condition and a branch is made to the user
handler.

4-24 MC88110 USER’S MANUAL MOTOROLA

4.3.3 Time-Critical Floating-Point (TCFP) Mode

Time-critical floating-point (TCFP) mode is the alternative to the.default operation (out of
reset) of the MC88110, which takes the SFU1 exception for IEEE: exception conditions.
In TCFP mode, default results are generated directly in hardware rather than taking an
SFU1 exception when an IEEE exception condition occurs. TCFP mode avoids SFU1
exceptions for all but two of the floating-point exceptions (floating-point unimplemented
instruction and floating-point privilege violation).

TCFP mode is selected by three control bits in the FPCR (see Figure 4-8). Setting the
TCFPUNF bit selects TCFP mode operation when an IEEE underflow exception
condition occurs. Setting the TCFPOVF bit selects TCFP mode operation when an IEEE
overflow exception condition occurs. Setting the TCFP mode bit selects TCFP mode
operation for all IEEE exception conditions regardless of the values of TCFPUNF and
TCFPOVF.

The following paragraphs describe the eight floating-point exceptions and the actions
taken in TCFP mode by the hardware and the software envelope when they occur.

NOTE

The eight floating-point exceptions referenced here are
defined as those events that cause the SFU1 exception to
occur when the MC88110 is not operating in TCFP mode.
Although six of the eight conditions do not cause MC88110
exception processing to occur when operating in TCFP mode,
they are still defined as exception conditions.

4.3.3.1 FLOATING-POINT UNIMPLEMENTED INSTRUCTION IN TCFP
MODE. Since this floating-point exception does not directly map into the IEEE
exception conditions, the hardware takes the SFU1 exception in TCFP mode when this
floating-point exception occurs. The causes of this floating-point exception and the
manner in which the software envelope responds to each are as follows:

1. If a floating-point operation is attempted when SFU1 is disabled (see Section 2
Programming Model), the software envelope signals to the system software that
SFU1 is disabled.

2. If there is an attempt to execute the fsqrt instruction, the software envelope
calculates the square root and returns the result to the destination register. If an
IEEE exception condition is encountered while calculating the square root, then the
TCFP mode default result for that condition is delivered to the destination register.

3. Ifthere is an attempt to execute an unimplemented floating-point opcode, the
software envelope signals to the system software that an unimplemented opcode
was attempted to be executed.

MOTOROLA MC88110 USER’S MANUAL 4-25

4. If there is an attempt from supervisor mode to access an unimplemented floating-
point control register, the software envelope signals to the system software that an
access violation was attempted.

5. If there is an attempt to access a double-precision floating-point number which is
aligned on an odd-numbered register pair (i.e., r5:ré instead of r4:r5) in the
general register file, the software envelope transfers the operands to an even
register pair, performs the operation, and returns the result to the destination
register. If an IEEE exception condition is encountered while the software envelope
is performing these actions, then the TCFP mode result for that condition is
delivered to the destination register.

4.3.3.2 FLOATING-POINT PRIVILEGE VIOLATION IN TCFP MODE. The
hardware and the software envelope carry out the same actions for this floating-point
exception in TCFP mode as when not in TCFP mode (see 4.3.2.2 Floating-Point
Privilege Violation).

4.3.3.3 FLOATING-POINT TO INTEGER CONVERSION OVERFLOW IN TCFP
MODE. This exception occurs when the source operand of a floating-point to integer
conversion operation (int, nint, or trne instruction) is too large to be represented as a
signed 32-bit integer. When this happens, the hardware delivers the large properly
signed integer (see Table 4-3) to the destination register instead of taking the SFU1
exception.

4.3.3.4 FLOATING-POINT RESERVED OPERAND IN TCFP MODE. The
causes of this exception and the default results provided by the hardware instead of
taking the SFU1 exception are as follows:

1. If a denormalized number, unnormalized number, signaling NaN, or nonsignaling
NaN is specified as a source operand for an add or subtract operation, then the
universal positive nonsignaling NaN (see Table 4-3) is delivered to the destination
register.

2. If a denormalized number, unnormalized number, signaling NaN, or nonsignaling
NaN is specified as a source operand for a multiply or divide operation, then the
universal properly signed nonsignaling NaN is delivered to the destination register.
The sign bit of the result is the exclusive-OR of the sign bits for the two source
operands.

3. If a denormalized number, unnormalized number, signaling NaN, or nonsignaling
NaN is specified as an operand for a compare instruction, then the result string with
all of the unordered bits set is delivered to the destination register.

4. If a signaling NaN or nonsignaling NaN is specified as the source operand for a
floating-point to integer conversion operation, then the large properly signed
integer (see Table 4-3) is delivered to the destination register.

5. When an invalid operation (ce — oo, 0 X o0, o/, Or 0/0) is attempted, the universal
nonsignaling NaN (see Table 4-3) is delivered to the destination register.

Table 4-6 summarizes the values generated by the MC88110 for the cases when the
FROP bit is set in the FPECR (reserved operand exception) in TCFP mode.

4-26 MC88110 USER’S MANUAL MOTOROLA

Table 4-6. Results for Reserved Operand Exception in TCFP Mode

Operand(s) Compare Convert to Int. Add/Sub Mul/Div

1Signaling NaN Unordered Large + Integer Universal +Non- | Universal tNon-
Signaling NaN Signaling NaN

+ Non-Signaling Unordered Large + Integer Universal +Non- | Universal tNon-
NaN Signaling NaN Signaling NaN

+ Unnormalized Unordered 0 Universal +Non- | Universal +Non-
Signaling NaN Signaling NaN

+ Denormalized Unordered 0 Universal +Non- | Universal tNon-
Signaling NaN Signaling NaN

Invalid (eo—oe, Oxoeo, N/A N/A Universal +Non- | Universal +Non-
oofoo, 0/0) Signaling NaN Signaling NaN

NOTE: For conversion to integer, the sign of the result is the same as the sign of the source
operand. For addition and subtraction the result is correctly signed except for nonsignaling
NaNs, which are always positive. For multiplication and division the result is always correctly
signed—i.e., it is the exclusive-OR of the sign bits of the two source operands.

4.3.3.5 FLOATING-POINT OVERFLOW IN TCFP MODE. This exception occurs
when the rounded result of an operation is too large to be represented as a finite
normalized number in the destination format. When this happens in TCFP mode, the
hardware delivers the properly signed infinity to the destination register instead of taking
the SFU1 exception.

4.3.3.6 FLOATING-POINT UNDERFLOW IN TCFP MODE. This exception occurs
when the rounded result of an operation is too small to be represented as a finite
normalized number in the destination format. When this happens in TCFP mode, the
hardware delivers the properly signed zero to the destination register instead of taking
the SFU1 exception.

4.3.3.7 FLOATING-POINT DIVIDE-BY-ZERO IN TCFP MODE. This exception
occurs when the denominator of a floating-point divide operation is zero and the
numerator is a nonzero finite normalized number. When this happens in TCFP mode, the
hardware delivers the properly signed infinity to the destination register instead of taking
the SFU1 exception.

4.3.3.8 FLOATING-POINT INEXACT IN TCFP MODE. This exception occurs
when the result of a floating-point operation is not exact (e.g., due to loss of accuracy
caused by rounding or loss of significance caused by overflow). When this happens in
TCFP mode, the hardware delivers the properly signed inexact result to the destination
register instead of taking the SFU1 exception.

MOTOROLA MC88110 USER’S MANUAL 4-27

4-28 MC88110 USER’S MANUAL MOTOROLA

SECTION 5
GRAPHICS UNIT IMPLEMENTATION

The MCB88110 provides dedicated instructions (executed by on-chip execution units) to
accelerate the processing of special-purpose data types for graphics operations. The
graphics instructions are optimized to support pixel-oriented graphics operations, such
as bit-mapped display functions and three-dimensional (3D) graphics rendering
algorithms. The graphics processing unit (GPU) is implemented as special function unit
two (SFU2), and it is specific to the MC88110; thus it may not be supported in the same
manner in future 88000 implementations.

This section describes the various operations performed by the GPU and discusses how
they can be applied to accelerate fundamental two-dimensional (2D) and 3D graphics
operations. The forming of useful primitive operations by combining sequences of
instructions is described in this section, and examples are shown of how those primitive
operations may be used in some common graphics algorithms. However, the user has
the flexibility to use the instructions and algorithms that best fit the application rather than
being restricted to a particular set of predefined graphics algorithms.

Data types and the behavior of specific instructions are described within the context of
example graphics algorithms in this section; the complete definition of the graphics
instructions is provided in Section 10 Instruction Set. The detailed timing for the
execution of the graphics instructions is provided in Section 9 Instruction Timing
and Code Scheduling Considerations.

5.1 GPU OVERVIEW

The operation of the GPU is architecturally compatible with all other MC88110
operations in that operands reside in the general register file and data movement to and
from memory is performed using load and store instructions. Graphics instructions, which
can be issued two at a time, can be intermixed with other integer and floating-point
instructions with no restrictions on instruction alignment. Data dependencies are
detected and interlocked by the same register scoreboard that is used for all other
instructions. ‘

The graphics functionality of the MC88110 extends beyond support for incremental
drawing and shading algorithms, which is provided by multipixel add and subtract
instructions. The multipixel add and subtract instructions also have saturation arithmetic
variations with the ability to specify either maximum (or minimum) field values or user-
defined saturation limits. The multipixel add and subtract instructions are supplemented

by pixel pack and unpack instructions, which facilitate efficient storing, retrieving, and

manipulation of images stored in a packed pixel format such as a frame buffer.

MOTOROLA MC88110 USER’S MANUAL 5-1

In a typical interactive graphics system, displays are composed of preexisting
background objects, objects being created on the screen, and objects held in memory
(such as fonts) for rapid transfer to the screen. In a complex environment, any or all of
these objects may require anti-aliasing and/or be partially transparent. Combining these
objects into a single image is typically performed by a process called compositing, in
which object images are blended together rather than being tiled or overlaid.

To perform compositing, every pixel of every image must be multiplied by a value
representing its level of transparency. The MC88110 provides the capability to perform
interactive compositing of images with the pixel multiply instruction, which can perform a
parallel multiply of each individual red-green-blue (RGB) intensity component of a pixel
in one instruction.

Table 5-1 summarizes the MC88110 graphics instructions and the options available for
each instruction.

Table 5-1. Graphics Instructions

Instruction Name Operand Operation
Syntax
padd.t Pixel Add rD,rS1,rs2 rD:rD+1 « rS1:rS1+1 + rS2: rS2+1 modulo 2t
add
padds.x.t Pixel Add and rD,rS1,rs2 rD:rD+1 « rS1:rS1+1 + rS2: rS2+1 modulo 2t
Saturate add and saturate; x specifies signed,
unsigned, or mixed arithmetic
pcmp Z-Compare rD,rS1,rs2 D «rS1:S1+1 :: rS2: rS2+1
pmul Pixel Multiply rD,rS1,rS2 rD:rD+1 «rS1 * rS2: rS2+1
ppack.r.t Pixel Truncate, rD,rS1,rs2 rD:rD+1 « fields of size t from rS2: rS2+1
Insert, and Pack truncated to t*r/64, packed together, and
concatenated with rS1:rS1+1 rotated left by r
bits
prot Pixel Rotate rD,rS1,<06> rD:rD+1 « rS1:1S1+1 rotated left by rS2 or
rD,rS1,rS2 06 bits; rS2 or 06 should be an even multiple
of 4
psub.t Pixel Subtract rD,rS$1,rS2 rDaD+1 « rS1:S1+1 — rS2: rS2+ modulo 2t
subtract
psubs.x.t Pixel Subtract and | rD,rS1,rS2 rDrD+1 « rS1:rS1+1 — rS2: rS2+1 modulo 2t
Saturate subtract and saturate; x specifies signed,
unsigned, or mixed arithmetic
punpk.t Pixel Unpack rD,rS1 rD:rD+1 « fields of size t from rS1 are put in
fields of size 2t with zero fill and placed in
rD:rD+1

5-2 MC88110 USER’S MANUAL MOTOROLA

All of these instructions (with the exception of pmul) are executed by the pixel add unit
or the pixel pack/unpack unit of the MC88110, each of which operate<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>