

SEMICONDUCTOR

How To Use This Book

This book has been organized by product type, beginning with Product Information. The products then follow, beginning with RAMs, then PROMs, EPLDs, LOGIC, RISC, and the BridgeMOSTM product family. This is followed by a description of the Cypress programming board QuickPro. FIFO products are included in the LOGIC section. Within each section, data sheets are arranged in order of part number. Quality and Reliability aspects follow next, then a compilation of various Application Briefs, and finally Thermal Data and Packages.
A. Numeric Device Index is included after the Table of Contents that identifies products by numeric order, rather than by device type which is how the manual is set up. To further help you in identifying parts, a Product Line Cross Reference is in Product Information. Use it to find the Cypress part number that is comparable to another manufacturer's part number.
PRODUCT 1 INFORMATION
STATIC RAMS 2
PROMS 3
EPLDS 4
LOGIC 5
RISC 6
BRIDGEMOS 7
QUICKPRO 8
QUALITY AND 9 RELIABILITY
APPLICATION BRIEFS 10
PACKAGES 11

General Product Information

Page Number

Cypress Semiconductor Background 1-1
Cypress CMOS Technology 1-2
Military Overview 1-3
Product Selection Guide 1-5
Military Product Selection Guide 1-7
Ordering Information 1-9
Product Line Cross Reference 1-10
Static RAMs (Random Access Memory)
Device Number Description
4096×1 Static RAM 2-1

CY2147
CY2148
CY21L48
CY2149
CY21L49
CY6116
CY7C122
CY7C123
CY7C128
CY7C130
CY7C140
CY7C132
CY7C142
CY7C147
CY7C148
CY7C149
CY7C150
CY7C152
CY7C158
CY7C159
CY7C161
CY7C162
CY7C164
CY7C166
CY7C167
CY7C168
CY7C169
CY7C170
CY7C171
CY7C172
CY7C185
CY7C186
CY7C187
CY7C189
CY7C190
CY7C191
CY7C192
CY7C194
CY7C196
CY7C197
CY7C198
CY7C199
CY74S189
CY27LS03
CY27S03
CY27S07
CY93422A
CY93L422A
CY93422
CY93L422

1024 x 4 Static RAM . $2-6$
1024×4 Static RAM, Low Power .
1024×4 Static RAM . 2 2-6
1024 x 4 Static RAM, Low Power . 2 .
2048 x 8 Static RAM . 2-12
256×4 Static RAM Separate I/O . 2-19
256 x 4 Static RAM Separate I/O . 2-26
2048 x 8 Static RAM . 2 233
1024×8 Dual Port Static RAM . 2 -40
1024 x 8 Dual Port Static RAM . $2-40$
2048 x 8 Dual Port Static RAM . 2 - 50
2048 x 8 Dual Port Static RAM . 2 2-50
4096 x 1 Static RAM . 2 .
1024×4 Static RAM . 2-67
1024×4 Static RAM . 2 2-67
1024×4 Static RAM Scparate I/C . 2 .74
Self-Timed Cache Static RAM . 2-82
Self-Timed Pipelined Static RAM . 2-83
Self-Timed Pipelined Static RAM . 2-83
16,384 x 4 Static RAM Separate I/O . 2 -84
16,384 x 4 Static RAM Separate I/O . $2-84$
16,384 x 4 Static RAM . 2-92
$16,384 \times 4$ Static RAM with Output Enable . 2-92
16,384 x 1 Static RAM . $2-101$
4096×4 Static RAM . 2-108
4096×4 Static RAM . $2-108$
4096×4 Static RAM with Output Enable . 2-115
4096×4 Static RAM Separate I/O . 2-121
4096×4 Static RAM Separate I/O . 2 -121
8192×8 Static RAM . 2 -128
8192 x 8 Static RAM . 2 - 128
65,536 x 1 Static RAM . 2-137
16 x 4 Static RAM . 2 -146
16 x 4 Static RAM . 2 -146
65,536 x 4 Static RAM Separate I/O . 2-153
65,536 x 4 Static RAM Separate I/O . 2 -153
65,536 x 4 Static RAM . 2-159
$65,536 \times 4$ Static RAM with Output Enable . 2-159
262,144 x 1 Static RAM . 2-165
32,768 x 8 Static RAM . 2-171
32,768 x 8 Static RAM . 2-171
16 x 4 Static RAM . 2 -177
16 x 4 Static RAM . 2 -177
16×4 Static RAM . 2 -177
16 x 4 Static RAM . 2 -177
256×4 Static RAM Separate I/O . 2 -183
256×4 Static RAM Separate I/O . 2 -183
256×4 Static RAM Separate I/O . 2 -183
256×4 Static RAM Separate I/O . 2-183
PROMs (Programmable Read Only Memory) Page Number
Introduction to PROMs 3-1
Device Number Description
CY7C225 512×8 Registered PROM 3-4
CY7C235 1024×8 Registered PROM 3-15
CY7C245 2048×8 Reprogrammable Registered PROM 3-26
CY7C245A 2048×8 Reprogrammable Registered PROM 3-38
CY7C251 16,384 $\times 8$ Reprogrammable Power Switched PROM 3-50
CY7C254 16,384 $\times 8$ Reprogrammable PROM 3-50
CY7C261 8192×8 Reprogrammable Power Switched PROM 3-60
CY7C263 8192×8 Reprogrammable PROM 3-60
CY7C264 8192×8 Reprogrammable PROM 3-60
CY7C268 8192×8 Reprogrammable Registered Diagnostic PROM 3-71
CY7C269 8192×8 Reprogrammable Registered Diagnostic PROM 3-71
CY7C271 $32,768 \times 8$ Reprogrammable Power Switched PROM 3-84
CY7C281 1024×8 PROM 3-90
CY7C282 1024×8 PROM 3-90
CY7C291 2048×8 Reprogrammable PROM 3-99
CY7C291A 2048×8 Reprogrammable PROM 3-108
CY7C292 2048×8 PROM 3-99
CY7C292A 2048×8 Reprogrammable PROM 3-108
CY7C293A 2048×8 Reprogrammable PROM 3-108
PROM Programming Information 3-117
EPLDs (Eraseable Programmable Logic Devices)
Introduction to EPLDs 4-1
Device Number Description
PAL C 20 Series 16L8, 16R8, 16R6, 16R4 Reprogrammable CMOS PAL® Device 4-7
PLD C 20G10 CMOS Generic 24 Pin Reprogrammable PLD 4-25 4-25
PLD C 20RA10 Reprogrammable Asynchronous CMOS Programmable Logic Device 4-44
PAL C 22 V 10 Reprogrammable CMOS PAL Device 4-53
CY7C330 Synchronous State Machine 4-70
CY7C331 Asynchronous Registered EPLD 4-79
CY7C332 4-87
PLD Programming Information 4-92
LOGIC
Device Number
Description
CY2901C CMOS 4-Bit Slice 5-1
CY2909A CMOS Microprogram Sequencer 5-9
CY2911A CMOS Microprogram Sequencer 5-9
CY2910A CMOS Microprogram Controller 5-14
CY3341 64×4 FIFO Serial Memory 5-19
CY7C401 Cascadeable 64×4 FIFO 5-24
CY7C402 Cascadeable 64×5 FIFO 5-24
CY7C403 Cascadeable 64×4 FIFO with Output Enable 5-24
CY7C404 Cascadeable 64×5 FIFO with Output Enable 5-24
CY7C408 Cascadeable 64×8 FIFO with Output Enable 5-34
CY7C409 Cascadeable 64×9 FIFO 5-34
CY7C420 Cascadeable 512×9 FIFO 5-48
CY7C421 Cascadeable 512×9 FIFO 5-48
CY7C424 Cascadeable 1024×9 FIFO 5-48
CY7C425 Cascadeable 1024×9 FIFO 5-48
CY7C428 Cascadeable 2048×9 FIFO 5-48
CY7C429 Cascadeable 2048×9 FIFO 5-48
CY7C510 16×16 Multiplier Accumulator 5-59
-Y7C516 16×16 Multiplier 5-71

[^0]
Table of Contents (Continued)

LOGIC (Continued)

Device Number Description Page Number
CY7C517 16×16 Multiplier 5-71
CY7C901 CMOS 4-Bit Slice 5-83
CY7C909 Microprogram Sequencer 5-98
CY7C911 Microprogram Sequencer 5-98
CY7C910 Microprogram Controller 5-109
CY7C9101 CMOS 16-Bit Slice 5-120
CY7C9116 CMOS 16-Bit Microprogrammed ALU 5-137
CY7C9117 CMOS 16-Bit Microprogrammed ALU 5-137
RISC
Introduction to RISC 6-1
Device Number Description
CY7C601 32-Bit RISC Integer Unit 6-5 Floating Point Controller
CY7C608
CY7C608 6-11 6-11
BridgeMOS
BridgeMOS Overview 7-1
Device Number Description
CY8C150 BridgeMOS 1024×4 Static RAM Separate I/O 7-1
CY8C245 BridgeMOS 2048×8 Reprogrammable Registered PROM 7-1
CY8C291 BridgevíOS Reprogrammabie 2048×8 PROM 7-1
CY8C901 BridgeMOS 4-Bit Slice 7-1
CY8C909 BridgeMOS Microprogram Sequencer 7-1
CY8C911 BridgeMOS Microprogram Sequencer 7-1
QuickPro
Device Number Description
CY3000 Combined PROM, PLD, and EPROM Programmer 8-1
Quality and Reliability
Quality, Reliability and Process Flows 9-1
Application Briefs
RAM Input and Output Characteristics 10-1
74F189 Application Brief 10-8
Programmable Logic Device Application Brief 10-10
PAL C 16R6 GCR Encoder/Decoder 10-22
Understanding FIFOs 10-39
Interfacing to the FIFOs 10-51
Power Characteristics of Cypress Products 10-53
System Design Considerations when Using Cypress CMOS Circuits 10-60
Microcoded Systems Application Brief 10-78
Introduction to Diagnostic PROMs 10-81
CY7C330 Asynchronous SCSI Controller 10-87
Packages
Thermal Management and Component Reliability 11-1
Package Diagrams 11-6

Device Number

2147
2148
21L48
2149
21L49
27LS03
27S03
27S07
2901C
2909A
2910A
2911A
3000
3341
6116
74F189
74S189
7 C 122
7 C 123
7 C 128
7 C 130
7 C 132
7 C 140
7 C 142
7C147
7 C 148
7 C 149
7 C 150
7 C152
7C158
7C159
7 C 161
7C162
7C164
7C166
7C167
7C168
7C169
7 C 170
7C171
7C172
7C185
7C186
7C187
7C189
7C190
7C191
7C192
7C194
7C196
7 C 197
7 C 198
7 C 199

Description

4096×1 Static RAM2-1
1024×4 Static RAM 2-6
1024×4 Static RAM, Low Power 2-6
1024×4 Static RAM 2-6
1024×4 Static RAM, Low Power 2-6
16×4 Static RAM 2-177
16×4 Static RAM 2-177
16×4 Static RAM 2-177
CMOS 4-Bit Slice 5-1
CMOS Microprogram Sequencer 5-9
CMOS Microprogram Controller 5-14
CMOS Microprogram Sequencer 5-9
Combined PROM, PLD, and EPROM Programmer 8-1
64×4 FIFO Serial Memory 5-19
2048×8 Static RAM 2-12
16×4 Static RAM 10-8
16×4 Static RAM 2-177
256×4 Static RAM Separate I/O 2-19
256×4 Static RAM Separate I/O 2-26
2048×8 Static RAM 2-33
1024×8 Dual Port Static RAM 2-40
2048×8 Dual Port Static RAM 2-50
1024×8 Dual Port Static RAM 2-40
2048×8 Dual Port Static RAM 2-50
4096×1 Static RAM 2-60
1024×4 Static RAM 2-67
1024×4 Static RAM 2-67
1024×4 Static RAM Separate I/O 2-74
Self-Timed Cache Static RAM 2-82
Self-Timed Pipelined Static RAM 2-83
Self-Timed Pipelined Static RAM 2-83
16,384 x 4 Static RAM Separate I/O 2-84
16,384 x 4 Static RAM Separate I/O 2-84
$16,384 \times 4$ Static RAM 2-92
16,384 x 4 Static RAM 2-92
$16,384 \times 1$ Static RAM 2-101
4096×4 Static RAM 2-108
4096×4 Static RAM 2-108
4096×4 Static RAM with Output Enable 2-115
4096×4 Static RAM Separate I/O 2-121
4096×4 Static RAM Separate I/O 2-121
8192×8 Static RAM 2-128
8192×8 Static RAM 2-128
65,536 x 1 Static RAM 2-137
16×4 Static RAM 2-146
16×4 Static RAM 2-146
65,536 4 Static RAM Separate I/O 2-153
65,536 x 4 Static RAM Separate I/O 2-153
65,536 x 4 Static RAM 2-159
65,536 44 Static RAM with Output Enable 2-159
262,144 x 1 Static RAM 2-165
$32,768 \times 8$ Static RAM 2-171
$32,768 \times 8$ Static RAM 2-171

Numeric Device Index (Continued)

Device Number

7 C 225
7 C 235
7 C 245
7C245A
7C251
7 C 254
7 C 261
7 C 263
7 C 264
7 C 268
7 C269
7C271
7C281
7 C282
7C291
7C291A
7C292
7C292A
7C293A
7 C330
7 C331
7 C332
7 C 401
7 C402
$7 \mathrm{C403}$
7 C 404
7 C 408
7 C 409
70420
7 C 421
7 C 424
7 C 425
7 C 428
7 C429
7 C 510
7 C 516
7 C 517
7 C 901
$7 \mathrm{C909}$
7 C 910
7 C 911
7C9101
7C9116
7C9117
8 C 150
8 C 245
8C291
8C901
8C909
8 C 911
93422
93422A
93L422
93L422A
PAL C 20 Series
16L8
16R4
16R6

Description

Page Number
512×8 Registered PROM . 3-4
1024×8 Registered PROM . $3-15$
2048 x 8 Reprogrammable Registered PROM . 3-26
2048×8 Reprogrammable Registered PROM38
16,384 x 8 Reprogrammable Power Switched PROM 3-50
16,384 x 8 Reprogrammable PROM . 3-50
8192×8 Reprogrammable Power Switched PROM 3-60
8192×8 Reprogrammable PROM . 3-60
8192×8 Reprogrammable PROM . 3-60
8192×8 Reprogrammable Registered Diagnostic PROM 3-71
8192×8 Reprogrammable Registered Diagnostic PROM3-71
32,768 x 8 Reprogrammable Power Switched PROM3-84
1024 x 8 PROM 9 . 90
1024×8 PROM . $3-90$
2048 x 8 Reprogrammable PROM 3-99
2048 x 8 Reprogrammable PROM 108
2048 x 8 PROM . 3-99
2048 x 8 Reprogrammable PROM 3 -108
2048 x 8 Reprogrammable PROM . 3-108
Synchronous State Machine Reprogrammable PLD. 4-70
Asynchronous Registered EPLD . $4-79$
Combinatorial Registered EPLD . 4-87
Cascadeable 64×4 FIFO 5 . 24
Cascadeable 64×5 FIFO 5 . 54
Cascadeable 64×4 FIFO with Output Enable .. 5-24
Cascadeable 64×5 FIFO with Output Enable ..5-24
Cascadeable 64×8 FIFO with Output Enable .. 5 . 34
Cascadeable 64 x 9 FIFO 5 .34
Cascadeabie 512 x 9 FIFO 5 . 48
Cascadeable 512 x 9 FIFO . 5 -48
Cascadeable 1024 x 9 FIFO . 5 . 48
Cascadeable 1024×9 FIFO 5 - 48
Cascadeable 2048 x 9 FIFO . 5 . 48
Cascadeable 2048 x 9 FIFO . 5 .48
16×16 Multiplier Accumulator . 5 .59
16x 16 Multiplier. 5-71
16×16 Multiplier... . . . 5 .71

Microprogram Sequencer . 5 .98
Microprogram Controller . 5-109
Microprogram Sequencer . 5-98
CMOS 16-Bit Slice . 5-120
CMOS 16-Bit Microprogrammed ALU . 5-137
CMOS 16-Bit Microprogrammed ALU . 5-137
BridgeMOS 1024×4 Static RAM Separate I/O . 7 .1
BridgeMOS 2048×8 Reprogrammable Registered PROM . 7 -1
BridgeMOS Reprogrammable 2048 x 8 PROM ... 7 .
BridgeMOS Four-Bit Slice .
BridgeMOS Microprogram Sequencer .7-1
BridgeMOS Microprogram Sequencer . 7 -1
256×4 Static RAM Separate I/O . 2 - 183
256×4 Static RAM Separate I/O . 2-183
256×4 Static RAM Separate I/O .. 2-183
256 x 4 Static RAM Separate I/O . 2 - 183
Reprogrammable CMOS PAL Device . 4 .7
...4-7
16R8 4
PLD C 20G10 CMOS Generic 24 Pin Reprogrammable PLD ... 4-25
PLD C 20RA10 Reprogrammable Asynchronous CMOS Programmable Logic Device...................4-44
PAL C 22V10
Reprogrammable CMOS PAL Device4-53

PRODUCT
INFORMATION

STATIC RAMS

BRIDGEMOS $\bar{\square} 7$
QUICKPRO $\overline{\underline{\square}} \bar{\square}$

PACKAGES
Section Contents

General Product Information

Cypress Semiconductor Background 1-1
Cypress CMOS Technology 1-2
Military Overview 1-3
Product Selection Guide 1-5
Military Product Selection Guide 1-7
Ordering Information 1-9
Product Line Cross Reference 1-10

SEMICONDUCTOR

Cypress Semiconductor Background

Cypress Semiconductor was founded in April of 1983, became a public company in May 1986, and has established itself as a leader in high performance CMOS products. The Cypress CMOS product line is targeted to replace slower bipolar and NMOS products with higher reliability, high speed and low power. The initial process employed $1.2 \mathrm{mi}-$ cron geometries. Cypress has now placed into production a submicron (0.8 micron) process, further enhancing density and performance at manageable power levels.

Cypress products fall into three families: High Speed Static RAMs, Programmable Products, and Logic. Members of the Static RAM family include devices in densities of 64 bits to 64 K bits and performance from 7 to 35 ns . The various organizations from $16 \times 4,256 \times 4$ through $64 \mathrm{~K} \times$ $1,8 \mathrm{~K} \times 8$, and $16 \mathrm{~K} \times 4$ provide field applications in large mainframes, high speed controllers, communications, and graphics display.
Cypress Programmable Products consist of high speed CMOS PROMs and Eraseable Programmable Logic Devices (EPLDs), both employing an EPROM programming element. Like the High Speed Static RAM family, these products are the natural choice to replace older devices, manufactured in bipolar technology, because they provide superior performance at one half of the power consumption. Densities range from 4 K bits to 256 K in byte wide organization. To support new programmable products Cy press introduced the QuickPro programming system (CY3000). A single, IBM PC compatible board is available to program all Cypress PLDs and PROMs. The programming is updated via floppy disk, thereby allowing for quick support from Cypress Semiconductor on new products.
Logic products include a 16-bit slice, the CY7C9101, and support devices, as well as a family of FIFOs that range
from 64×4 to 2048×9. FIFOs provide the interface between digital information paths of widely varying speeds. This allows the information source to operate at its own intrinsic speed while the results may be processed or distributed at a speed commensurate with need.
Cypress' semiconductors are "Made in USA". Situated in California's Silicon Valley and Round Rock (Austin) Texas, Cypress houses R\&D, design, wafer fabrication, assembly, and administration. The facilities are designed to the most demanding technical and environmental specifications in the industry. At the Texas Facility the entire wafer fabrication area is specified to be a class 1 environment. This means that the ambient air has less than 1 particulate of greater than 0.2 microns in diameter per cubic foot of air. Other environmental considerations are carefully insured: temperature is controlled to a ± 0.2 degree Fahrenheit tolerance; filtered air is completely exchanged >10 times each minute throughout the fab; critical equipment is situated on isolated slabs to minimize vibration.

Attention to assembly is just as critical. Assembly is done in a clean room until the silicon die is sealed in a package. Lead frames are handled in carriers or cassettes through the entire operation. Automated robots remove and replace parts into cassettes. Using sophisticated automated equipment, parts are assembled and tested in less than five days. The Cypress assembly line is the most flexible, automated line in the United States.
The Cypress motto has always been "only the best". The best facilities, the best equipment, the best employees . . . all striving to make the best CMOS product. Cypress has grown very quickly to become "the best".

Cypress CMOS Technology

In the last decade, there has been a tremendous need for high performance semiconductor products manufactured with a balance of SPEED, RELIABILITY, and POWER. Cypress Semiconductor has overcome the classically held perceptions that CMOS is a moderate performance technology. That places its product lines ahead of its bipolar competitors in all three areas.
Cypress initially introduced a 1.2 micron " N " well technology with double layer poly, and a single layer metal. The process employs lightly doped extensions of the heavily doped source and drain regions for both " N " and " P " channel transistors for significant improvement in gate delays. Further improvements in performance, through the use of substrate bias techniques, have added the benefit of eliminating the input and output latchup characteristics associated with the older CMOS technologies.

Cypress pushed process development to new limits in the area of PROMs (Programmable Read Only Memory) and EPLDs (Eraseable Programmable Logic Devices). Both PROMs and EPLDs have existed since the early 1970s in a bipolar process which employed various fuse technologies and was the only viable high speed non-volatile process available. Cypress PROMs and EPLDs use EPROM technology, which has also been in use in MOS (Metal Oxide Silicon) also since the early 1970s. EPROM technology has traditionally emphasized density advantages, while forsaking performance. Through improved technology, Cypress has produced the first high performance CMOS PROM's and EPLDs, replacing their bipolar counterparts.
Cypress uses a differential memory cell and sense amplifier technique in lower density devices. High density devices (64 K or larger), employ a single-ended cell and sense amplifier technique.
To maintain our leadership position in CMOS Technology, Cypress has introduced a sub-micron technology into production. This process reduces the channel length from the current 1.2 microns to 0.8 microns. This sub-micron breakthrough makes Cypress' CMOS one of the most advanced production processes in the world.
To further enhance the technology from the reliability direction, improvements have been incorporated in the process and design, minimizing electrostatic discharge and input signal clipping problems.
Finally, although not a requirement in the high performance arena, CMOS technology substantially reduces the
power consumption for any device. This improves reliability by allowing the device to operate at a lower die temperature. Now higher levels of integration are possible without trading performance for power. For instance, devices may now be delivered in plastic packages, without any impact on reliability.
While addressing the performance issues of CMOS technology, Cypress has not ignored the quality and reliability aspects of technology development. Rather, the traditional failure mechanisms of electrostatic discharge (ESD) and latchup have been addressed and solved through process and design technology innovation.
ESD-induced failure has been a generic problem for many high performance MOS and bipolar products. Although in its earliest years MOS technology experienced oxide reliability failures, this problem has largely been eliminated through improved oxide growth techniques and a better understanding of the ESD problem. The effort to adequately protect against ESD failures is perturbed by circuit delays associated with ESD protection circuits. Focusing on these constraints, Cypress has developed ESD protection circuitry specific to 1.2 and 0.8 micron CMOS process technology. Cypress products are designed to withstand voltage and energy levels in excess of 2000 volts and 0.4 milli-joules, more than twice the energy level specified by MIL STD 883C.
Latchup, a traditional problem with CMOS technologics, has been eliminated through the use of substrate bias generation techniques, the elimination of the " P " MOS pullups in the output drivers, the use of guardring structures, and care in the physical layout of the products.
Cypress has also developed additional process innovations and enhancements: the use of multi-layer metal interconnections, advanced metal deposition techniques, silicides, exclusive use of plasma for etching and ashing process steps, and 100% stepper technology with the world's most advanced equipment. The drive to maintain process technology leadership has not stopped with the 0.8 micron devices. Cypress is developing fine line geometries beyond this to insure technology leadership in the next decade.

The Cypress CMOS technology has been carefully designed, creating products that are "only the best" in high speed, excellent reliability, and low power.

Introduction

Success at any endeavor requires a high level of dedication to the task. Cypress Semiconductor has demonstrated its dedication through its corporate commitment to support the military marketplace. The commitment starts with product design. All products are designed on our state-of-the-art CMOS processes and they must meet the full - 55 to +125 degree C operational criteria for military use. The commitment continues with the 1986 DESC certification of our automated U.S. facility in San Jose, California. The commitment shows in our dedication to meet and exceed the stringent quality and reliability requirements of MIL-STD-883 and MIL-M-38510. It shows in Cypress' participation in each of the military processing programs: 883CCompliant, SMD (Standard Military Drawing) and JAN. Finally, our commitment shows in our leadership position in special packages for military use.

Product Design

Every Cypress product is designed to meet or exceed the full temperature and functional requirements of military product. This means that Cypress builds military product as a matter of course, rather than as an accidental benefit of favorable test yield. Designs are being carried out on our industry-leading 0.8 micron CMOS process. Cypress is able to offer a family of products that are industry leaders in density, low operating and standby current and high speed. In addition, our technology results in products with very small manufacturable die sizes that will fit into the LCC's and flatpacks so often used on military programs.

DESC-Certified Facility

On May 8, 1986, the Cypress facility at 3901 North First Street in San Jose, California was certified by DESC for the production of JAN Level B CMOS Microcircuits (copy attached). This certification not only provided Cypress with the ability to qualify product for JAN use, but it also benefitted all of our customers by acknowledging that our San Jose facility has the necessary documentation and procedures in place to manufacture product to the most stringent of quality and reliability requirements. Our wafer fabrication facilities are Class 10 (San Jose) and Class 1 (Round Rock, TX) manufacturing environments and our assembly facility is also a clean room. In addition, our highly automated assembly facility is entirely located in the U.S.A. and is capable of handling virtually any hermetic package configuration.

Data Sheet Documentation

Every Cypress final data sheet is a corporate document with a revision history. The document number and revision appears on each final data sheet. Cypress maintains a listing of all data sheet documentation and a copy is available to customers upon request. This gives a customer the ability to verify the current status of any data sheet and it also gives that customer the ability to obtain updated specifications as required.
Every final data sheet also contains detailed Group A subgroup testing information. Each of the specified parameters
that are tested at Group A are listed in a table at the end of each final data sheet, with a notation as to which specific Group A test subgroups apply.

Assembly Traceability Code ${ }^{\text {TM }}$

Cypress Semiconductor marks an assembly traceability code on every military package that is large enough to contain the code. The ATC automatically provides traceability for that product to the individual wafer lot. This unique code provides Cypress with the ability to determine which operators and equipment were used in the manufacture of that product from start to finish.

Quality and Reliability

MIL-STD-883 and MIL-M-38510 spell out the toughest of quality and reliability standards for military products. Cypress products meet all of these requirements and more. Our in-house quality and reliability programs are being updated regularly with tighter and tighter objectives. Please refer to the chapter on Quality, Reliability and Process Flows for further details.

Military Product Offerings

Cypress offers three different levels of processing for military product.
First, all Cypress products are available with processing in full compliance with MIL-STD-883, Revision C.
Secondly, selected products are available to the SMD (Standard Military Drawing) program supervised by DESC. These products are not only fully 883C-compliant but they are also screened to the electrical requirements of the applicable military drawing.
Third, selected products are available as JAN devices. These products are processed in full accordance with MIL-M-38510 and they are screened to the electrical requirements of the applicable JAN slash sheet.

Product Packaging

All packages for military product are hermetic. A look at the package appendix in the back of this data book will give the reader an appreciation of the variety of packages offered. Included are cerdips, windowed cerdips, leadless chip carriers (LCC's), leadless chip carriers with windows for reprogrammable products, cerpack, windowed cerpak, bottom-brazed flatpacks and pin grid arrays. As indicated above, all of these packages are assembled in the U.S. in our highly automated San Jose plant.

Summary

Cypress Semiconductor is committed to the support of the military marketplace. Our commitment is demonstrated by our product designs, our DESC-certified facility, our documentation and traceability, our quality and reliability programs, our support of all levels of military processing and by our leadership in special packaging.

\sum Mfense 3AAㅗ \&itrocircuit dentification ©lata
 is hovaly anearadod is

CYPRESS SEMICONDUCTOR

FOR

Fab 1, CMOS Microcircuits

ACL JAN MIL-M- 38510 wafer 6ab, assembly, and test operations must be performed in your facility at 3901 North First Street, San Jose, Califonnia. This certification is issued in accondance with letter DESC-EQ (EQM-86-758), 8 May 86.

This concification is walid mondil conminatod by mittion notificalion from the graliffing adivity. The nownal proviod for this contification is hoo grawt from 1 Mar 86.

	Size	Organization	Pins	Part Number	Speed (ns)	$\underset{(\mathrm{mA} @ \mathrm{~ns})}{\mathrm{I}_{\mathbf{C C}} / \mathrm{I}_{\mathbf{S B}} / \mathrm{I}_{\mathbf{C C D R}}}$	Packages
SRAMs	64	16×4-Inverting	16	CY7C189	$\mathrm{taA}^{\text {A }}=15,25$	55 @ 25	D, L, P
	64	16×4-Non-Inverting	16	CY7C190	$\mathrm{t}_{\mathrm{AA}}=15,25$	55 @ 25	D, L, P
	64	16×4-Inverting	16	CY74S189	$\mathrm{taA}_{\text {A }}=35$	90 @ 35	D, P
	64	16×4-Inverting	16	CY27S03A	$\mathrm{t}_{\mathrm{AA}}=25,35$	90 @ 25	D, L, P
	64	16×4-Non-Inverting	16	CY27S07A	$\mathrm{t}_{\mathrm{AA}}=25,35$	90 @ 25	D, L, P
	64	16×4-Inv. Low Power	16	CY27LS03M	$\mathrm{t}_{\mathrm{AA}}=65$	38 @ 65	D, L
	1 K	256×4	22	CY7C122	$\mathrm{t}_{\mathrm{AA}}=15,25,35$	60 @ 25	D, L, P, S
	1 K	256×4	24S	CY7C123	$\mathrm{t}_{\mathrm{AA}}=7,12,15$	120 @ 7	D, L, P
	1 K	256×4	22	CY9122/91L22	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	120 @ 25	D, P
	1 K	256x 4	22	CY93422A/93L422A	$\mathrm{t}_{\mathrm{AA}}=35,45,60$	80 @ 45	D, P, L
	4K	4096×1-CS Power Down	18	CY7C147	$\mathrm{t}_{\text {AA }}=25,35,45$	80/10@ 35	D, L, P, S
	4K	4096×1-CS Power Down	18	CY2147/21L47	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	125/25 @ 35	D, P
	4 K	1024×4-CS Power Down	18	CY7C148	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	80/10 @ 35	D, L, P, S
	4 K	1024×4-CS Power Down	18	CY2148/21L48	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	120/20@ 35	D, P, S
	4K	1024×4	18	CY7C149	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	80 @ 35	D, L, P, S
	4 K	1024×4	18	CY2149/21L49	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	120 @ 35	D, P
	4K	1024×4 Separate I/O, Reset	24S	CY7C150	$\mathrm{t}_{\mathrm{AA}}=12,15,25,35$	90 @ 12	D, L, P, S
	8 K	1024×8-Dual Port	48	CY7C130	$\mathrm{t}_{\mathrm{AA}}=25,35,45,55$	120 @ 25	D, J, L, P
	8 K	1024×8-Dual Port (Slave)	48	CY7C140	$\mathrm{t}_{\mathrm{AA}}=25,35,45,55$	120 @ 25	D, J, L, P
	16K	2048×8-CS Power Down	24S	CY7C128	$\mathrm{t}_{\mathrm{AA}}=25,35,45,55$	90/20@ 55	D, L, P, S
	16K	2048×8-CS Power Down	24	CY6116	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	120/20@ 45	D, L
	16K	16384×1-CS Power Down	20	CY7C167/L	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	45/15@ 25	D, L, P, S
	16 K	4096×4-CS Power Down	20	CY7C168/L	$\mathrm{t}_{\text {AA }}=25,35,45$	70/15@ 25	D, L, P, S
	16K	4096x 4	20	CY7C169/L	$\mathrm{t}_{\mathrm{AA}}=25,35,40$	70 @ 25	D, L, P
	16K	4096×4-Output Enable	22S	CY7C170	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	90 @ 45	D, L, P
	16 K	4096×4-Separate I/O	24S	CY7C171/L	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	70/10@ 25	D, L, P, S
	16K	4096×4-Separate I/O	24S	CY7C172/L	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	70/10@ 25	D, L, P, S
	16K	2048 x 8-Dual Port	48	CY7C132	$\mathrm{t}_{\mathrm{AA}}=25,35,45,55$	120 @ 25	D, J, L, P
	16K	2048×8-Dual Port (Slave)	48	CY7C142	$\mathrm{t}_{\mathrm{AA}}=25,35,45,55$	120 @ 25	D, J, L, P
	64 K	8192×8-CS Power Down	28S	CY7C185/L	$\mathrm{t}_{\mathrm{AA}}=25,35,45,55$	100/20/1@ 25	D, L, P, V
	64 K	8192×8-CS Power Down	28	CY7C186/L	$\mathrm{t}_{\mathrm{AA}}=25,35,45,55$	100/20/1@ 25	D, P
	64 K	16384×4-CS Power Down	22S	CY7C164/L	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	70/20/1 @ 25	D, L, P, V
	64 K	16384×4 Output Enable	24S	CY7C166/L	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	70/20/1 @ 25	D, L, P, V
	64 K	16384×4-Separate I/O	285	CY7C161/L	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	70/20/1 @ 25	D, L, P, V
	64 K	16384×4-Separate I/O	28S	CY7C162/L	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	70/20/1@ 25	D, L, P, V
	64 K	16384×4-Self-Timed Cache RAM	28S	CY7C152	TBD	TBD	D, L, P, V
	64 K	16384×4-Self-Timed Pipeline RAM	285	CY7C158	TBD	TBD	D, L, P, V
	64K	16384×4 Self-Timed Pipeline RAM	285	CY7C159	TBD	TBD	D, L, P, V
	64K	65536×1-CS Power Down	22S	CY7C187/L	$\mathrm{t}_{\text {AA }}=25,35,45$	70/20/1 @ 25	D, L, P, V
	256K	32768×8-CS Power Down	28	CY7C198	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	110/20@ 35	D, P
	256K	32768×8-CS Power Down	28S	CY7C199	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	110/20@ 35	D, L, P, V
	256K	65536×4-CS Power Down	24 S	CY7C194	$t_{A A}=25,35,45$	80/20@ 25	D, L, P, V
	256K	65536×4 - CS Power Down With OE	28S	CY7C196	$\mathrm{t}_{\text {AA }}=25,35,45$	80/20@ 25	D, L, P, V
	256K	65536×4-Separate I/O	28S	CY7C191	${ }^{t_{A A}}=25,35,45$	80/20@ 25	D, L, P, V
	256K	65536×4-Separate I/O	28 S	CY7C192	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	80/20@ 25	D, L, P, V
	256K	262144×1-CS Power Down	24S	CY7C197	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	70/20@ 25	D, L, P, V
PROMs	4K	512×8-Registered	24S	CY7C225	${ }^{\text {t }}$ SA/CO $=25 / 12,30 / 15$	90	D, L, P
	8K	1024×8-Registered	24S	CY7C235	tsA/CO $=25 / 12,30 / 15$	90	D, L, P
	8K	1024×8	24S	CY7C281	$\mathrm{t}_{\mathrm{AA}}=30,45$	90	D, L, P
	8K	1024×8	24	CY7C282	$t_{A A}=30,45$	90	D, L, P
	16K	2048×8-Registered	24S	CY7C245/L	$\mathrm{tsA} / \mathrm{CO}=25 / 12,35 / 15$	100,60	D, L, P, Q, W, S
	16K	2048×8-Registered	24S	CY7C245A/L	$\mathrm{t}_{\text {SA/CO }}=18 / 12$	60 @ 35	D, L, P, Q, W, S
	16K	2048×8	24S	CY7C291/L	$\mathrm{t}_{\text {AA }}=35,50$	90, 60	D, L, P, Q, W, S
	16K	2048×8	24S	CY7C291A/L	$\mathrm{t}_{\mathrm{AA}}=25,30,35,50$	60 @ 35	D, L, P, Q, W, S
	16K	2048×8	24	CY7C292/L	$\mathrm{t}_{\mathrm{AA}}=35,50$	90,60	D, P
	16K	2048×8-CS Power Down	24S	CY7C293A/L	$\mathrm{t}_{\mathrm{AA}}=25,30,35,50$	60/15@ 35	D, L, P, Q, W, S
	64K	8192×8-CS Power Down	24S	CY7C261	$\mathrm{t}_{\mathrm{AA}}=35,40,45,55$	100/30	D, L, P, Q, W, S
	64 K	8192×8	24 S	CY7C263	$\mathrm{t}_{\mathrm{AA}}=35,40,45,55$	100	D, L, P, Q, W, S

Notes:

The above specifications are for the commercial temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
Military temperature range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) product processed to MIL-STD-883 Revision C is also available. Speed and power selections may vary from those above.
Commercial grade product is available in plastic, CERDIP, or LCC. Military grade product is available in
CERDIP or LCC. PLCC, SOJ, and SOIC packages are available on some products.
All power supplies are $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$.
22S stands for 22-pin 300 mil. 24S stands for 24-pin 300 mil . 28S stands for 28 -pin 300 mil .
F, K and T packages are special order only.

[^1]| | Size | Organization | Pins | Part Number | Speed (ns) | $\begin{gathered} \mathrm{I}_{\mathrm{mA}\left(I_{\mathrm{SB}}\right.}^{(\mathrm{mas})} \end{gathered}$ | Packages |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PROMs | 64 K
 64 K
 64 K
 128 K
 128K
 256K | $\begin{aligned} & 8192 \times 8 \\ & 8192 \times 8 \text {-Registered, Diagnostic } \\ & 8192 \times 8 \text {-Registered, Diagnostic } \\ & 16384 \times 8 \text {-CS Power Down } \\ & 16384 \times 8 \\ & 32768 \times 8-\mathrm{CS} \text { Power Down } \\ & \hline \end{aligned}$ | $\begin{aligned} & 24 \\ & 28 \mathrm{~S} \\ & 32 \\ & 28 \mathrm{~S} \\ & 28 \\ & 28 \mathrm{~S} \\ & \hline \end{aligned}$ | CY7C264
 CY7C269
 CY7C268
 CY7C251
 CY7C254
 CY7C271 | $\begin{aligned} & \mathrm{t}_{\mathrm{AA}}=35,40,45,55 \\ & \mathrm{t}_{\mathrm{SA} / \mathrm{CO}}=40 / 20,50 / 25 \\ & \mathrm{t}_{\mathrm{SA} / \mathrm{CO}}=40 / 20,50 / 25 \\ & \mathrm{t}_{\mathrm{AA}}=45,55,65 \\ & \mathrm{t}_{\mathrm{AA}}=45,55,65 \\ & \mathrm{t}_{\mathrm{AA}}=45,55,65 \end{aligned}$ | $\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 / 30 \\ & 100 \\ & 100 / 30 \\ & \hline \end{aligned}$ | D, P
 D, L, P, Q, W, S
 D, L, Q, W
 D, L, P, Q, W, S
 D, P
 D, L, P, Q, W, S |
| PLDs | PALC20
 PALC20
 PALC20
 PALC20
 PLDC24
 PLDC24
 PLDC24
 PLDC24
 PLDC24
 PLDC28
 PLDC28
 PLDC28 | 16L8
 16R8
 16R6
 16R4
 22V10--Macro Cell
 22V10-Macro Cell
 20G10-Generic
 20G10-Generic
 20RA10-Asynchronous
 7C330-State Machine
 7C331-Asynchronous
 7C332-Combinatorial | 20 20 20 20 24 S 24 S 24 S 24 S 24 S 28 S 28 S 28 S | CYPALC16L8/L CYPALC16R8/L CYPALC16R6/L CYPALC16R4/L CYPALC22V10/L CYPALC22V10-15 CYPLDC20G10 CYPLDC20G10-15 CYPLDC20RA10 CY7C330 CY7C331 CY7C332 | | 70,45 70,45 70,45 70,45 90,55 90,55 55 70 80 $120 @ 50 \mathrm{MHz}$ 180 120 | D, L, P, Q, V, W
 D, L, P, Q, W, J |
| FIFOs | $\begin{aligned} & 256 \\ & 256 \\ & 256 \\ & 320 \\ & 320 \\ & 512 \\ & 576 \\ & 4608 \\ & 4608 \\ & 9216 \\ & 9216 \\ & 18432 \\ & 18432 \end{aligned}$ | 64×4-Cascadeable
 64×4-Cascadeable
 64×4-Cascadeable/OE
 64×5-Cascadeable
 64×5-Cascadeable/OE
 64×8-Cascadeable/OE
 64×9-Cascadeable
 512×9-Cascadeable
 512×9-Cascadeable
 1024×9-Cascadeable
 1024×9-Cascadeable
 2048×9-Cascadeable
 2048×9-Cascadeable | $\begin{aligned} & 16 \\ & 16 \\ & 16 \\ & 18 \\ & 18 \\ & 28 \mathrm{~S} \\ & 28 \mathrm{~S} \\ & 28 \\ & 28 \mathrm{~S} \\ & 28 \\ & 28 \mathrm{~S} \\ & 28 \\ & 28 \mathrm{~S} \end{aligned}$ | CY3341
 CY7C401
 CY7C403
 CY7C402
 CY7C404
 CY7C408
 CY7C409
 CY7C420
 CY7C421
 CY7C424
 CY7C425
 CY7C428
 CY7C429 | $1.2,2 \mathrm{MHz}$
 $5,10,15 \mathrm{MHz}$
 $10,15,25 \mathrm{MHz}$
 $5,10,15 \mathrm{MHz}$
 $10,15,25 \mathrm{MHz}$
 $15,25,35 \mathrm{MHz}$
 $15,25,35 \mathrm{MHz}$
 30, 40, 65 | $\begin{aligned} & 45 \\ & 75 \\ & 75 \\ & 75 \\ & 75 \\ & 100 \\ & 100 \\ & 100 \\ & 100 \\ & 100 \\ & 100 \\ & 100 \\ & 100 \\ & \hline \end{aligned}$ | D, P
 D, L, P, V
 D, P
 D, J, L, P, V
 D, P
 D, J, L, P, V
 D, P
 D, J, L, P, V |
| LOGIC | | 2901-4 Bit Slice
 2901-4 Bit Slice
 4×2901-16 Bit Slice
 29116-16 Bit Controller
 29117-16 Bit Controller
 2909-Sequencer
 2911-Sequencer
 2909-Sequencer
 2911-Sequencer
 2910 -Controller (17 Word Stack)
 2910-Controller (9 Word Stack)
 16×16-Multiplier
 16×16-Multiplier
 $16 \times 16-$ Multiplier/Accumulator | $\begin{aligned} & 40 \\ & 40 \\ & 64 \\ & 52 \\ & 68 \\ & 28 \\ & 20 \\ & 28 \\ & 20 \\ & 40 \\ & 40 \\ & 64 \\ & 64 \\ & 64 \\ & \hline \end{aligned}$ | CY7C901
 CY2901
 CY7C9101
 CY7C9116
 CY7C9117
 CY7C909
 CY7C911
 CY2909
 CY2911
 CY7C910
 CY2910
 CY7C516
 CY7C517
 CY7C510 | $\begin{aligned} & \hline \mathrm{t} \mathbf{C L K}=23,31 \\ & \mathrm{C} \\ & \mathrm{t}_{\mathrm{CLK}}=30,40 \\ & \mathrm{t}_{\mathrm{CLK}}=53,79,100 \\ & \mathrm{t}_{\text {CLK }}=53,79,100 \\ & \mathrm{t}^{2}=30,40 \\ & \mathrm{t}^{\mathrm{tCLK}}=30,40 \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{t}_{\mathrm{CLK}}=40,50,93 \\ & \mathrm{~A} \\ & \mathrm{t}_{\mathrm{MC}}=38,45,55,75 \\ & \mathrm{t}_{\mathrm{MC}}=38,45,55,75 \\ & \mathrm{t}_{\mathrm{MC}}=45,55,65,75 \\ & \hline \end{aligned}$ | $\begin{aligned} & 70 \\ & 140 \\ & 60 \\ & 150 \\ & 150 \\ & 55 \\ & 55 \\ & 70 \\ & 70 \\ & 100 \\ & 170 \\ & 100 @ 10 \mathrm{MHz} \\ & 100 @ 10 \mathrm{MHz} \\ & 100 @ 10 \mathrm{MHz} \end{aligned}$ | D, L, P, J
 D, P
 D, L, P, G, J
 D, L, P, G, J
 L, G, J
 D, L, P, J
 D, L, P, J
 D, P
 D, P
 D, L, P, J
 D, L, P, J
 D, L, P, G, J
 D, L, P, G, J
 D, L, P, G, J |
| RISC | | SPARC 32 Bit Integer Unit Floating Point Controller | $\begin{aligned} & 208 \\ & 281 \end{aligned}$ | $\begin{aligned} & \text { CY7C601 } \\ & \text { CY7C608 } \end{aligned}$ | $\begin{aligned} & \mathrm{t}_{\mathrm{tCYC}}=33,25 \mathrm{MHz} \\ & \mathrm{t}^{\mathrm{CYC}}=33,25 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & \hline 600 \\ & \text { TBD } \end{aligned}$ | $\begin{aligned} & \mathrm{G} \\ & \mathrm{G} \end{aligned}$ |

Notes:

The above specifications are for the commercial temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
Military temperature range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) product processed to MIL-STD-883 Revision C is also available. Speed and power selections may vary from those above.
Commercial grade product is available in plastic, CERDIP, or LCC. Military grade product is available in
CERDIP or LCC. PLCC, SOJ, and SOIC packages are available on some products.
All power supplies are $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$.
22S stands for 22 -pin 300 mil. 24 S stands for 24 -pin 300 mil .28 S stands for 28 -pin 300 mil .
F, K and T packages are special order only.

Package Code:
D = CERAMIC DIP
F = FLATPAK
G = PIN GRID ARRAY
$\mathrm{J}=\mathrm{PLCC}$
$\mathrm{K}=\mathrm{CERPAK}$
$\mathrm{L}=\mathrm{LCC}$
$\mathbf{P}=$ PLASTIC
$\mathrm{Q}=$ WINDOWED LCC
$\mathrm{S}=\mathrm{SOIC}$
T = WINDOWED CERPAK
$\mathrm{v}=\mathrm{SO} \mathrm{J}$
W = WINDOWED CERDIP

	Size	Organization	Pins	Part Number	JAN/SMD Number	Speed (ns)	$\underset{(\mathrm{mA} @ \mathrm{~ns})}{\mathbf{I C C}_{\mathbf{C C}} / \mathbf{I S B R}_{\mathbf{S B}} / \mathbf{I}_{\mathbf{C C D R}}}$
SRAMs	64	16x4-Inverting	16	CY7C189		$\mathrm{t}_{\mathrm{AA}}=25$	70 @ 25
	64	16x4-Non-Inverting	16	CY7C190		$t_{\text {AA }}=25$	70 @ 25
	64	16×4-Inverting	16	CY27503/A		$\mathrm{t}_{\text {AA }}=25,35$	100 @ 25
	64	16×4-Non-Inverting	16	CY27S07/A		$\mathrm{t}_{\text {AA }}=25,35$	100 @ 25
	64	16x4-Inverting/Low Power	16	CY27LS03		$\mathrm{t}_{\text {AA }}=65$	38 @ 65
	1 K	256×4	22	CY7C122		$\mathrm{t}_{\text {AA }}=25,35$	90 @ 25
	1 K	256×4	24	CY7C123		$\mathrm{t}_{\mathrm{AA}}=15$	150 @ 15
	1K	256×4	22	CY9122/91L22		$\mathrm{t}_{\mathrm{AA}}=35,45$	90 @ 45
	1 K	256×4	22	CY93422A/93L422A		$\mathrm{t}_{\text {AA }}=45,55,60,75$	90 @ 55
	4K	$4 \mathrm{~K} \times 1$-CS Power Down	18	CY7C147	M38510/289	$\mathrm{t}_{\mathrm{AA}}=35,45$	110/10@35
	4K	$4 \mathrm{~K} \times 1$-CS Power Down	18	CY2147	M38510/289	$\mathrm{t}_{\text {AA }}=45,55$	140/25 @ 45
	4K	$1 \mathrm{~K} \times 4-\mathrm{CS}$ Power Down	18	CY7C148	M38510/289	$\mathrm{t}_{\text {AA }}=35,45$	110/10@35
	4K	$1 \mathrm{~K} \times 4-\mathrm{CS}$ Power Down	18	CY7C148	5962-87513	$\mathrm{t}_{\mathrm{AA}}=35,45$	110/10@35
	4K	1K x 4-CS Power Down	18	CY2148	M38510/289	$\mathrm{t}_{\text {AA }}=45,55$	140/25 @ 45
	4K	$1 \mathrm{~K} \times 4-\mathrm{CS}$ Power Down	18	CY2148	5962-87513	$\mathrm{t}_{\text {AA }}=45,55$	140/25@45
	4K	$1 \mathrm{~K} \times 4$	18	CY7C149		$\mathrm{t}_{\mathrm{AA}}=35,45$	110 @ 35
	4K	$1 \mathrm{~K} \times 4$	18	CY2149		$\mathrm{t}_{\text {AA }}=45,55$	140 @ 45
	4K	1K x 4-Separate I/0	24	CY7C150		$\mathrm{t}_{\mathrm{AA}}=15,25,35$	100 @ 15
	8 K	1K x 8-Dual Port	48	CY7C130		$\mathrm{t}_{\mathrm{AA}}=35,45,55$	120/40@35
	8 K	$1 \mathrm{~K} \times 8$-Dual Port Slave	48	CY7C140		$\mathrm{t}_{\mathrm{AA}}=35,45,55$	120/40@ 35
	16K	2K x 8-CS Power Down	24	CY7C128	84036	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	100/20@ 55
	16K	2K x 8-CS Power Down	24	CY6116	84036	$\mathrm{t}_{\text {AA }}=35,45,55$	130/20@35
	16K	$16 \mathrm{~K} \times 1$-CS Power Down	20	CY7C167	84132	$\mathrm{t}_{\mathrm{AA}}=35,45$	50/20@45
	16K	$4 \mathrm{~K} \times 4-\mathrm{CS}$ Power Down	20	CY7C168		$\mathrm{t}_{\text {AA }}=35,45$	70/20@ 45
	16K	4K $\times 4$	20	CY7C169		$\mathrm{t}_{\mathrm{AA}}=35,40$	70 @ 40
	16K	4K x 4-Output Enable	22	CY7C170		$\mathrm{t}_{\text {AA }}=35,45$	120 @ 35
	16K	$4 \mathrm{~K} \times 4-$ Separate I/O	24	CY7C171		$\mathrm{t}_{\mathrm{AA}}=35,45$	70 @ 45
	16K	$4 \mathrm{~K} \times 4$-Separate $\mathrm{I} / 0$	24	CY7C172		$\mathrm{t}_{\mathrm{AA}}=35,45$	70 @ 45
	16K	$2 \mathrm{~K} \times 8$--Dual Port	48	CY7C132		$\mathrm{t}_{\mathrm{AA}}=35,45,55$	120/40@ 35
	16K	2K x 8--Dual Port Slave	48	CY7C142		$\mathrm{t}_{\mathrm{AA}}=35,45,55$	120/40@ 35
	64 K	$8 \mathrm{~K} \times 8$--CS Power Down	28	CY7C185/L	5962-85525	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	100/20/1@ 45
	64K	$8 \mathrm{~K} \times 8$-CS Power Down	28	CY7C186/L	5962-85525	$\mathrm{t}_{\text {AA }}=35,45,55$	100/20/1 @ 45
	64K	16K x 4-Registered/Latched	28	CY7C152		TBD	TBD @ TBD
	64 K	16K x 4-Registered/Sep I/O	28	CY7C158		TBD	TBD @ TBD
	64K	$16 \mathrm{~K} \times 4-\mathrm{Registered} / \mathrm{Sep}$ I/O	28	CY7C159		TBD	TBD @ TBD
	64K	16K x 4-CS Power Down	22	CY7C164/L	5962-86859	$\mathrm{t}_{\text {AA }}=35,45$	70/20/1 @ 35
	64 K	$16 \mathrm{~K} \times 4$-Output Enable	24	CY7C166/L	5962-86859	$\mathrm{t}_{\text {AA }}=35,45$	70/20/1@ 35
	64 K	$16 \mathrm{~K} \times 4-$ Separate I/O	28	CY7C161/L		$\mathrm{t}_{\mathrm{AA}}=35,45$	70/20/1@ 35
	64K	16K x 4-Separate I/O	28	CY7C162/L		$\mathrm{t}_{\mathrm{AA}}=35,45$	70/20/1@ 35
	64K	64K x 1-CS Power Down	22	CY7C187/L	5962-86015	$\mathrm{t}_{\mathrm{AA}}=35,45$	70/20/1@ 35
	256K	32K $\times 8$-CS Power Down	28	CY7C198		$\mathrm{t}_{\mathrm{AA}}=45,55$	120/20@ 45
	256K	$32 \mathrm{~K} \times 8$-CS Power Down	28	CY7C199		$\mathrm{t}_{\mathrm{AA}}=45,55$	120/20 @ 45
	256 K	. $64 \mathrm{~K} \times 4-\mathrm{CS}$ Power Down	24	CY7C194		$\mathrm{t}_{\mathrm{AA}}=35,45$	90/20@35
	256 K	$\begin{gathered} 64 \mathrm{~K} \times 4-\mathrm{CS} \text { Power Down } \\ + \text { OE/CE } 2 \end{gathered}$	28	CY7C196		$\mathrm{t}_{\mathrm{AA}}=35,45$	90/20@35
	256 K	$64 \mathrm{~K} \times 4-$ Separate I/O	28	CY7C191		$\mathrm{t}_{\text {AA }}=35,45$	90/20@ 35
	256K	$64 \mathrm{~K} \times 4-$ Separate I/0	28	CY7C192		$\mathrm{t}_{\mathrm{AA}}=35,45$	90/20@ 35
	256K	256K x 1-CS Power Down	24	CY7C197		$\mathrm{t}_{\mathrm{AA}}=35,45$	80/20@35
	Size	Organization	Pins	Part Number	JAN/SMD Number	Speed (ns)	$\mathrm{I}_{\mathrm{CC}} / \mathrm{I}_{\mathrm{SB}}$ (mA @ ns)
PROMs	4K	$512 \mathrm{~K} \times 8$-Registered	24	CY7C225	5962-88518	$\mathrm{t}_{\text {SA }} / \mathrm{CO}=30 / 15,35 / 20,40 / 25$	120@30/15
	8K	$1 \mathrm{~K} \times 8$--Registered	24	CY7C235		$\mathrm{t}_{\text {SA } / \text { / }}$ O $=30 / 15,40 / 20$	120 @ 30/15
	8K	$1 \mathrm{~K} \times 8$	24	CY7C281	5962-87651	$\mathrm{t}_{\mathrm{AA}}=45$	120 @ 45
	8K	$1 \mathrm{~K} \times 8$	24	CY7C282	5962-87651	$\mathrm{t}_{\mathrm{AA}}=45$	120 @ 45
	16K	$2 \mathrm{~K} \times 8$-Registered	24	CY7C245	5962-87529	$\mathrm{t}_{\text {SA/ } / \mathrm{CO}}=35 / 15,45 / 25$	120 @ 35/15
	16K	$2 \mathrm{~K} \times 8$-Registered	24	CY7C245A	5962-87529		120 @ $25 / 15$
	16K	$2 \mathrm{~K} \times 8$	24	CY7C291	5962-87650	$\mathrm{t}_{\mathrm{AA}}=35,50$	120 @ 35
	16K	2K x 8	24	CY7C291A	5962-87650	$\mathrm{t}_{\mathrm{AA}}=30,35,50$	120 @ 30
	16K	$2 \mathrm{~K} \times 8$-CS Power Down	24	CY7C293A		$\mathrm{t}_{\mathrm{AA}}=35,50$	120/30@35

Notes:
The Cypress facility at 3901 North First Street in San Jose, CA is DESC-certified for JAN class B production.
All of the above products are available with processing to MIL-STD-883C at a minimum. Many of these products are also available either to SMDs (Standard Military Drawings) or to JAN slash sheets.
The speed and power specifications listed above cover the full military temperature range. All power supplies are $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$.

Package Codes:
D = Ceramic DIP
F = Flatpack
$\mathrm{G}=$ Pin Grid Array
$\mathrm{K}=$ Cerpack
$\mathrm{L}=\mathrm{LCC}$
$\mathrm{Q}=$ Windowed LCC
$\mathrm{T}=$ Windowed Cerpack
$\mathrm{w}=$ Windowed CERDIP

	Size	Organization	Pins	Part Number	JAN/SMD Number	Speed (ns)	$\begin{gathered} \mathbf{I C C N}_{\mathbf{I}} / \mathbf{I S B}_{\mathbf{S B}} \end{gathered}$
PROMs	16K 16K 64 K 64 K 64 K 64 K 64K 128K 128K 256K	2K x 8 2K x 8 8K x 8-CS Power Down $8 \mathrm{~K} \times 8$ $8 \mathrm{~K} \times 8$ 8K x 8-Registered/Diagnostic 8K x 8-Registered/Diagnostic 16K x 8-CS Power Down $16 \mathrm{~K} \times 8$ 32K x 8-CS Power Down	$\begin{aligned} & 24 \\ & 24 \\ & 24 \\ & 24 \\ & 24 \\ & 28 \\ & 32 \\ & 28 \\ & 28 \\ & 28 \end{aligned}$	CY7C292 CY7C292A CY7C261 CY7C263 CY7C264 CY7C269 CY7C268 CY7C251 CY7C254 CY7C271	$\begin{aligned} & 5962-87650 \\ & 5962-87650 \\ & 5962-87515 \\ & 5962-87515 \\ & 5962-87515 \end{aligned}$	$\begin{aligned} & \mathrm{t}_{\mathrm{AA}}=50 \\ & \mathrm{t}_{\mathrm{AA}}=30,35,50 \\ & \mathrm{t}_{\mathrm{AA}}=45,55 \\ & \mathrm{t}_{\mathrm{tA}}=45,55 \\ & \mathrm{t}_{\mathrm{AA}}=45,55 \\ & \mathrm{t}_{\mathrm{SA}}=\mathbf{C O}=50 / 25,60 / 25 \\ & \mathrm{t}_{\mathrm{SA}} \mathrm{CO}=50 / 25,60 / 25 \\ & \mathrm{t}_{\mathrm{AA}}=55,65 \\ & \mathrm{t}_{\mathrm{AA}}=55,65 \\ & \mathrm{t}_{\mathrm{AA}}=55,65 \end{aligned}$	$\begin{aligned} & 120 @ 50 \\ & 120 @ 30 \\ & 120 / 30 @ 45 \\ & 120 @ 45 \\ & 120 @ 45 \\ & 100 @ 60 / 25 \\ & 100 @ 60 / 25 \\ & 120 / 35 @ 55 \\ & 120 @ 55 \\ & 130 / 40 @ 55 \end{aligned}$
	Size	Organization	Pins	Part Number	$\begin{gathered} \text { JAN/SMD } \\ \text { Number } \end{gathered}$	Speed ($\mathrm{ns} / \mathrm{MHz}$)	$\underset{(\mathrm{mA} @ \mathbf{n s} / \mathrm{MHz})}{\mathrm{I}_{\mathrm{CC}}}$
PLDs	PALC20 PALC20 PALC20 PALC20 PLDC24 PLDC24 PLDC24 PLDC28 PLDC28 PLDC28	16L8 16R8 16R6 16R4 22V10-Macro Cell 20G10-Generic 20RA10-Asynchronous 7C330-State Machine 7C331-Asynchronous 7C332-Combinatorial	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 24 \\ & 24 \\ & 24 \\ & 28 \\ & 28 \\ & 28 \end{aligned}$	CYPALC16L8 CYPALC16R8 CYPALC16R6 CYPALC16R4 CYPALC22V10 CYPLDC20G10 CYPLDC20RA10 CY7C330 CY7C331 CY7C332			70 @ 20 70 © 20/15 70 @ 20/20/15 70 @ 20/20/15 100 @ 25/20/20 80 @ 30/20/20 100 @ 25/15/25 150 @ 40 MHz 200 @ 30/25/30 150 @ 25/5/7
	Size	Organization	Pins	Part Number	$\begin{aligned} & \text { JAN/SMD } \\ & \text { Number } \end{aligned}$	Speed (ns/MHz)	$\begin{gathered} \mathrm{I}_{\mathrm{CC}} / /_{\mathrm{SB}} \\ (\mathrm{~mA} @ \mathrm{~ns} / \mathrm{MHz}) \end{gathered}$
FIFOs	- 256 256 256 320 320 512 576 4K 4K 9K 9K 18 K	64×4-Cascadeable 64×4-Cascadeable 64×4-Cascadeable/OE 64×5-Cascadeable 64×5-Cascadeable/OE 64×8-Cascadeable/OE 64 x 9 -Cascadeabie 512×9-Cascadeable 512×9-Cascadeable 1K x 9-Cascadeable 1K x 9-Cascadeable $2 \mathrm{~K} \times 9$-Cascadeable 2K x 9-Cascadeable	$\begin{aligned} & 16 \\ & 16 \\ & 16 \\ & 18 \\ & 18 \\ & 28 \\ & 28 \\ & 28 \\ & 28 \\ & 28 \\ & 28 \\ & 28 \\ & 28 \end{aligned}$	CY3341 CY7C401 CY7C403 CY7C402 CY7C404 CY7C408 CY7C409 CY7C420 CY7C421 CY7C424 CY7C425 CY7C428 CY7C429	$\begin{gathered} 5962-86846 \\ 5962-86846 \\ 5962-86846 \\ 5962-86846 \end{gathered}$	$1.2,2.0 \mathrm{MHz}$ $10,15 \mathrm{MHz}$ $10,15,25 \mathrm{MHz}$ $10,15 \mathrm{MHz}$ $10,15,25 \mathrm{MHz}$ 15. 25 MHz $15,25 \mathrm{MHz}$ $\begin{aligned} & \mathrm{t}_{\mathrm{AA}}=30,40,65 \\ & \mathrm{t}_{\mathrm{AA}}=30,40,65 \end{aligned}$	$60 @ 2.0 \mathrm{MHz}$ $90 @ 15 \mathrm{MHz}$ $90 @ 25 \mathrm{MHz}$ $90 @ 15 \mathrm{MHz}$ $90 @ 25 \mathrm{MHz}$ 120 © 25 MHz 120 @ 25 MHz 120/20@ 30 120/20@30 120/20@30 120/20@ 30 120/20@30 120/20 @ 30
	Size	Organization	Pins	Part Number	$\begin{gathered} \text { JAN/SMD } \\ \text { Number } \end{gathered}$	Speed (ns)	$\begin{gathered} \mathrm{I}_{\mathrm{CC}} \\ \left(\mathrm{~mA} \mathrm{C}_{\mathrm{ns})}\right. \end{gathered}$
LOGIC		2901-4 Bit Slice 2901-4 Bit Slice 4×2901 - 16 Bit Slice 2909-Sequencer 2911-Sequencer 2909--Sequencer 2911-Sequencer 2910-Controller (17 Word) 2910-Controller (9 Word) 16-Bit Microprogrammed ALU 16-Bit Microprogrammed ALU 32-Bit RISC Processor Floating Point Controller 16×16 Multiplier 16×16 Multiplier 16×16 Multiplier/Accumulator		CY7C901 CY2901C CY7C9101 CY7C909 CY7C911 CY2909A CY2911A CY7C910 CY2910A CY7C9116 CY7C9117 CY7C601 CY7C608 CY7C516 CY7C517 CY7C510	5962-87708 5962-87708	$\mathrm{t}_{\mathrm{CLK}}=27,32$ C Speed $\mathrm{t}_{\mathrm{CLK}}=35,45$ $t_{\text {CLK }}=30,40$ $t_{\text {CLK }}=30,40$ A Speed A Speed $\mathrm{t}_{\mathrm{CLK}}=46,51,99$ A Speed 53, 79, 100 53, 79, 100 25 MHz 25 MHz $\begin{aligned} & \mathrm{t}_{\mathrm{MC}}=42,55,75 \\ & \mathrm{t}_{\mathrm{MC}}=42,55,75 \\ & \mathrm{t}_{\mathrm{MC}}=55,65,75 \end{aligned}$	90 @ 27 180 @ 32 85 @ 35 55 @ 30 55 @ 30 90 @ 40 90 @ 40 90 @ 46 170 @ 51 210 @ 10 MHz 210 @ 10 MHz TBD @ 25 MHz TBD © 25 MHz $110 @ 10 \mathrm{MHz}$ 110 @ 10 MHz $110 @ 10 \mathrm{MHz}$

Notes:

The Cypress facility at 3901 North First Street in San Jose, CA is DESC-certified for JAN class B production.
All of the above products are available with processing to
MIL-STD-883C at a minimum. Many of these products are also avail-
able either to SMDs (Standard Military Drawings) or to JAN slash sheets.
The speed and power specifications listed above cover the full military temperature range. All power supplies are $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$.

Package Codes:

D = Ceramic DIP
F = Flatpack
G $=$ Pin Grid Array
$K=$ Cerpack
$\mathrm{L}=\mathrm{LCC}$
$\mathrm{Q}=$ Windowed LCC
$T=$ Windowed Cerpack
$\mathbf{W}=$ Windowed CERDIP

Ordering Information

Specific ordering codes are indicated in the detailed data sheets. In general, the product codes follow the format below:

i.e. CY7C128-35PC, PALC16R8L-25PC

Cypress FSCM \# 65786

| CYPRESS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2147-35C | 7C147-35C | 2911AM | 7C911-40M | 7C164L-45M | 7C164L-35M | 7C186-35C | 7C186L-35C |
| 2147-45C | $7 \mathrm{Cl} 147-45 \mathrm{C}$ | 3341C | 3341-2C | 7C164-25C | 7C164L-25C | 7C186-45C | $7 \mathrm{Cl} 186 \mathrm{~L}-45 \mathrm{C}$ |
| 2147-45C | 2147-35C | 3341M | 3341-2M | 7C164-35C | 7C164L-35C | 7C186-45M | 7C186L-45M |
| 2147-45M | 7C147-45M | 3341-2C | $7 \mathrm{C402-5C}$ | $7 \mathrm{Cl} 44-35 \mathrm{M}$ | 7C164L-35M | 7C186-55C | 7C186L-55C |
| 2147-55C | 2147-45C | 3341-2C | 7C401-5C+ | 7C164-45C | 7C164L-45C | 7C186-55M | $7 \mathrm{C} 186 \mathrm{~L}-55 \mathrm{M}$ |
| 2147-55M | 2147-45M | 54S189M | 27503M | 7C164-45M | 7C164L-45M | 7C187L-35C | 7C187L-25C |
| 2148.35C | $7 \mathrm{Cl} 148-35 \mathrm{C}$ | 6116-45C | 6116-35C | 7C166L-35C | 7C166L-25C | 7C187L-45C | 7C187L-35C |
| 2148-35C | 21L48-35C | 6116.55C | 6116-45C | 7C166L-45C | 7C166L-35C | 7C187L-45M | $7 \mathrm{Cl} 187 \mathrm{~L}-35 \mathrm{M}$ |
| 2148-35M | $7 \mathrm{Cl} 48-35 \mathrm{M}$ | 6116.55M | 6116-45M | 7C166L-45M | 7C166L-35M | 7C187-25C | 7C187L-25C |
| 2148-45C | 2148.35 C | 74S189C | 27S03C | 7C166-25C | 7C166L-25C | 7C187-35C | 7C187L-35C |
| 2148-45C | 21L48-45C | 7C122-25C | 7-122-15C+ | 7C166-35C | $7 \mathrm{Cl} 66 \mathrm{~L}-35 \mathrm{C}$ | 7C187-35M | 7C187L-35M |
| 2148-45M | 2148-35M | 7C122-35C | 7C122-25C | 7C166-35M | 7C166L-35M | 7C187-45C | 7C187L-45C |
| 2148-45M | 7C148-45M | 7C122-35M | $7 \mathrm{Cl22-25M}$ | 7C166-45C | 7C166L-45C | 7C187-45M | 7C187L-45M |
| 2148-55C | 21L48-55C | 7 C 123 -12C | $7 \mathrm{Cl23-7C}$ | 7C166-45M | 7C166L-45M | 7C189-18C | $7 \mathrm{Cl} 189-15 \mathrm{C}$ |
| 2148.55C | 2148-45C | $7 \mathrm{Cl28-35C}$ | $7 \mathrm{Cl} 28-25 \mathrm{C}$ | 7C167L-35C | 7C167L-25C | 7C189-25C | $7 \mathrm{Cl} 189-15 \mathrm{C}+$ |
| 2148-55M | 2148-45M | $7 \mathrm{C} 128-45 \mathrm{C}$ | $7 \mathrm{Cl} 28-35 \mathrm{C}$ | 7C167-25C | $7 \mathrm{Cl} 67 \mathrm{~L}-25 \mathrm{C}$ | $7 \mathrm{Cl} 90-18 \mathrm{C}$ | $7 \mathrm{Cl} 190-15 \mathrm{C}$ |
| 2149-35C | $7 \mathrm{Cl} 49-35 \mathrm{C}$ | 7C128-45M | 7C128-35M + | 7C167.35C | 7 Cl 167.25 C | 7C190-25C | 7C190-15C+ |
| 2149-35C | 21L49-35C | 7C128-55C | 7C128-45C+ | 7C167-45C | 7C167L-35C | 7C225-30C | 7C225-25C |
| 2149-35M | 7C149-35M | 7C128-55M | 7C128-45M+ | 7C167-45M | 7C167-35M | $7 \mathrm{C} 225-30 \mathrm{M}$ | 7C225-25M |
| 2149-45C | 21L49-45C | $7 \mathrm{Cl} 30-45 \mathrm{C}$ | 7C130-35C | 7C168L-35C | 7C168L-25C | 7C225-40C | $7 \mathrm{C} 225-30 \mathrm{C}$ |
| 2149-45M | 7C149-45M | 7C130-55C | $7 \mathrm{Cl} 30-45 \mathrm{C}$ | 7C168-25C | 7C168L-25C | $7 \mathrm{C} 225-40 \mathrm{M}$ | 7 C 225.35 M |
| 2149-45M | 2149-35M | 7C130-55M | $7 \mathrm{Cl} 30-45 \mathrm{M}$ | $7 \mathrm{Cl} 168-35 \mathrm{C}$ | $7 \mathrm{Cl} 168-25 \mathrm{C}$ | 7C235-40C | 7C235-30C |
| 2149-55C | 21L49-55C | 7C132-45C | 7C132-35C | 7C168-45C | 7C168L-35C | 7C245AL-35C | 7C245A-25C+ |
| 2149-55C | 2149-45C | 7C132-55C | 7C132-45C | 7C168-45M | 7C168-35M+ | 7C245A-25C | $7 \mathrm{C} 245 \mathrm{~A}-18 \mathrm{C}$ |
| 2149-55M | 2149-45M | 7C132-55M | 7C132-45M | 7C169L-35C | 7C169L-25C | 7C245A-35C | 7C245AL-35C |
| 21L48-35C | $7 \mathrm{Cl} 148-35 \mathrm{C}$ | 7C147-35C | 7C147-25C+ | 7C169-25C | $7 \mathrm{Cl} 69 \mathrm{~L}-25 \mathrm{C}$ | 7C245A-35M | 7C245A-25M |
| 21L48-45C | $7 \mathrm{Cl} 148-45 \mathrm{C}$ | 7C147-45C | 7C147-35C | $7 \mathrm{C} 169-35 \mathrm{C}$ | $7 \mathrm{Cl} 169-25 \mathrm{C}$ | 7C245L-35C | $7 \mathrm{C} 245-35 \mathrm{C}^{*}$ |
| 21L48-45C | 21L48-35C | $7 \mathrm{Cl48-35C}$ | 7C148-25C | 7C169-40C | 7C169L-35C | 7C245L-45C | 7C245L-35C |
| 21L48-55C | 21L48-45C | 7C148-45C | 7C148-35C | 7C169-40M | 7C169-35M + | 7C245-35C | 7C245-25C |
| 21L49-35C | $7 \mathrm{Cl} 149-25 \mathrm{C}$ | 7C149-35C | 7C149-25C+ | 7C170-35C | 7C170-25C | 7C245-45C | 7C245-35C |
| 21L49-45C | 21L49-35C | 7C149-45C | $7 \mathrm{Cl49-35C}$ | 7C170-45C | $7 \mathrm{Cl} 70-35 \mathrm{C}+$ | 7C245-45M | 7C245-35M |
| 21L49-45C | $7 \mathrm{Cl} 199-45 \mathrm{C}$ | 7C149-45M | 7C149-35M | 7C170-45M | $7 \mathrm{Cl} 70-35 \mathrm{M}+$ | 7C251-55C | $7 \mathrm{C} 251-45 \mathrm{C}$ |
| 21L49-55C | 21L49-45C | 7C150-25C | $7 \mathrm{Cl} 50-15 \mathrm{C}$ | 7C171L-35C | 7C171L-25C | 7C251-65C | 7C251-55C |
| 27S03AC | $7 \mathrm{Cl} 189-25 \mathrm{C}$ | $7 \mathrm{Cl} 50-35 \mathrm{C}$ | $7 \mathrm{Cl} 50-25 \mathrm{C}$ | 7C171-25C | 7C171L-25C | 7C251-65M | 7C251-55M |
| 27S03AM | 7C189-25M | 7C150-35M | 7C150-25M | 7C171-35C | 7C171-25C | 7C253-65M | 7C253-55M |
| 27S03C | 27503AC | 7C161L-35C | 7C161L-25C | 7C171-45C | 7C171L-35C | 7C254-55C | 7C254-45C |
| 27503C | 74S189C | 7C161L-45C | 7C161L-35C | 7C171-45M | 7C171-35M+ | 7C254-65C | $7 \mathrm{C} 254-55 \mathrm{C}$ |
| 27S03M | 27S03AM | 7C161L-45M | 7C161L-35M | 7C172L-35C | 7C172L-25C | 7C254-65M | 7C254-55M |
| 27S03M | 54S189M | 7C161-25C | 7C161L-25C | 7C172-25C | 7C172L-25C | 7C261-45C | $7 \mathrm{C} 261-35 \mathrm{C}$ |
| 27507AC | $7 \mathrm{C} 190-25 \mathrm{C}$ | $7 \mathrm{Cl} 161-35 \mathrm{C}$ | 7C161L-35C | 7C172-35C | 7C172-25C | 7C261-55C | $7 \mathrm{C} 261-45 \mathrm{C}$ |
| 27S07AM | 7C190-25M | 7C161-35M | 7C161L-35M | 7C172-45C | 7C172L-35C | 7C261-55M | 7C261-45M |
| 27S07C | 27S07AC | 7C161-45C | 7C161L-45C | 7C172-45M | 7C172-35M + | 7C263-45C | 7C263-35C |
| 27S07M | 27S07AM | 7C161-45M | 7C161L-45M | 7C185L-45C | 7C185L-35C | 7C263-55C | $7 \mathrm{C} 263-45 \mathrm{C}$ |
| 27507M | 7C190-25M | 7C162L-35C | 7C162L-25C | 7C185L-55C | 7C185L-45C | 7C263-55M | 7C263-45M |
| 2901 CC | 7C901-31C | 7C162L-45C | 7C162L-35C | 7C185L-55M | 7C185L-45M | 7C264-45C | $7 \mathrm{C} 264-35 \mathrm{C}$ |
| 2901CM | 7C901-32M | 7C162L-45M | 7C162L-35M | 7C185-35C | 7C185L-35C | 7C264-55C | $7 \mathrm{C} 264-45 \mathrm{C}$ |
| 2909AC | $7 \mathrm{C} 909-40 \mathrm{C}$ | $7 \mathrm{Cl} 162-25 \mathrm{C}$ | 7C162L-25C | 7C185-45C | 7C185L-45C | 7C264-55M | 7C264-45M |
| 2909AM | 7C909-40M | 7C162-35C | 7C162L-35C | 7C185-45M | 7C185L-45M | 7 C 268.50 C | $7 \mathrm{C} 268-40 \mathrm{C}+$ |
| 2910AC | 7C910-50C | 7C162-35M | 7C162L-35M | 7C185-55C | 7C185L-55C | 7C268-60C | 7 C 268 -50C |
| 2910AM | 7C910-51M | 7C162-45C | 7C162L-45C | 7C185-55M | 7C185L-55M | 7 C 268 -60M | $7 \mathrm{C} 268-50 \mathrm{M}+$ |
| 2910C | 2910AC | 7C162-45M | 7C162L-45M | 7C186L-45C | 7C186L-35C | 7C269-50C | $7 \mathrm{C} 269-40 \mathrm{C}+$ |
| 2910M | 2910AM | 7C164L-35C | 7C164L-25C | 7C186L-55C | 7C186L-45C | 7C269-60C | 7C269-50C |
| 2911AC | 7C911-40C | 7C164L-45C | 7C164L-35C | 7C186L-55M | 7C186L-45M | 7C269-60M | 7C269-50M + |

Note: Unless otherwise noted, product meets all performance specs and is within 10 mA on I_{CC} and 5 mA on ISB ;
$+=$ meets all performance specs but may not meet I_{CC} or $\mathrm{I}_{\text {SB }}$;
$*=$ meets all performance specs except 2 V data retention-may not meet I_{CC} or I_{SB};

- = functionally equivalent

CYPRESS	CYPRESS	CYPRESS	CYPRESS	CYPRESS	CYPRESS	AMD	CYPRESS
$7 \mathrm{C} 281-45 \mathrm{C}$	$7 \mathrm{C281-30C}$	$7 \mathrm{C424-40C}$	7 C 244.30 C	931422M	93L422AM	2148.70C	$2148-55 \mathrm{C}$
7C282-45C	7 C 282 -30C+	7 C 424.40 M	7 C 42430 M	PALC16L8L-35C	PaLC16L8L-25C	2148.70M	2148-55M
7 C 291 AL -35C	$7 \mathrm{CL291A}^{\text {-20C* }}$	$7 \mathrm{C424-65C}$	7 C 424.40 C	PALC16L8-25C	PALC16LLL-25C	2149-35C	2149.35 C
7C291AL-50C	$7 \mathrm{C} 291 \mathrm{AL}-35 \mathrm{C}$	7 7424.65M	7 C 24.40 M	PALC16L8-30M	PALC16L8-20M	2149-45C	2149-45C
7 C291A-35C	$7 \mathrm{C291AL}-35 \mathrm{C}$	$7 \mathrm{C425-40}$	$7 \mathrm{C} 42 \mathrm{~S}-3 \mathrm{C}$	PALC16L8-35C	PALC16L8-25C	2149-45M	2149-45M
7C291A-35M	7C291A-30M	7C425-40M	$7 \mathrm{C} 425 \cdot 30 \mathrm{M}$	PALC16L8-40M	PALC16L8-30M	2149-55C	2149-55C
7C291A-50C	$7 \mathrm{C} 291 \mathrm{AL}-50 \mathrm{C}$	7C425-65C	7 C 425.40 C	PALC16R4L-35	PaLC16R4L-25C	2149-55M	2149-55M
$7 \mathrm{C} 291 \mathrm{~A}-50 \mathrm{M}$	7C291A-35M	$74255-65 \mathrm{M}$	7 C 25 -40M	PALC16R425C	PALC16R4L-25C	2149-70C	2149-55C
$7 \mathrm{C} 291 \mathrm{~L}-35 \mathrm{C}$	$7{ }^{\text {C291-35 }}$ *	$7 \mathrm{C428-40}$	$7 \mathrm{C} 428-30 \mathrm{C}$	PALC16R430M	PALC16R420M	2149-70M	2149-55M
7C291L-50C	$7 \mathrm{C} 291 \mathrm{~L}-35 \mathrm{C}$	7 C 428.40 M	7 C 42 -30M	PALC16R435C	PALC16R425C	2167-35C	$7 \mathrm{Cl167-35C}$
7C291-35C	$7 \mathrm{C} 291-25 \mathrm{C}+$	$7 \mathrm{C428}$-65C	7 C 428.40 C	PALC16R440M	PALC16R430M	2167-35M	7C167-35M
$7{ }^{7} 2991-50 \mathrm{C}$	7 C 291 -35	7 C 428.65 M	7 C 428.40 M	PALC16R6L-35C	PaLC16R6L-25C	2167-45C	$7 \mathrm{C167-45}$
7C291-50M	7C291-35M	7C429-40C	7 C 429.30 C	PALC16R6-25C	PALC16R6L-25C	2167-45M	7C16745M
7C292L-35	$7 \mathrm{C} 292-35 \mathrm{C}^{*}$	7 C 429.40 M	7C429-30M	PaLCl6R6-30M	PaLCI6R6-20M	2167-55C	$7 \mathrm{Cl167-45}$
7C292L-50C	$7 \mathrm{C} 222 \mathrm{~L}-35 \mathrm{C}$	7C429-65C	$7 \mathrm{C429-40C}$	PALC16R6-35C	PALC16R6-25C	2167.55M	7C167-45
$7 \mathrm{C} 292-35 \mathrm{C}$	$7 \mathrm{C} 292-25 \mathrm{C}+$	74429.65 M	7 C 42.40 M	PALC16R6-40M	palclerg-30M	2167-70C	$7 \mathrm{Cl} 167-45 \mathrm{C}$
7C292-50C	7C222-35C	$7 \mathrm{C510-55C}$	$7 \mathrm{C510-45}$	PALC16R8L-35	PALC16R8L-25C	2167.70M	7C16745M
7C293AL-35C	$7 \mathrm{C} 293 \mathrm{~A}-20 \mathrm{C}^{*}$	7C510.65C	$7 \mathrm{C510-55C}$	Palcligr8-25C	PALC16R8L-25C	2168.35 C	$7 \mathrm{Cl168-35C}$
7C293AL-50C	$7 \mathrm{C} 293 \mathrm{AL}-35 \mathrm{C}$	$7 \mathrm{C510-65M}$	7 C 10.55 M	PALC16R8-30M	PALC16R8-20M	2168-45C	$7 \mathrm{Cl168-45C}$
7C293A-35	$7 \mathrm{C} 293 \mathrm{AL}-35 \mathrm{C}$	7C510-75	$7 \mathrm{C510.65C}$	PALC16R8-35C	PALC16R8-25C	2168-45M	7C168-4M
7C293A-35M	7C293A-30M	$7 \mathrm{C} 510-75 \mathrm{M}$	$7 \mathrm{C} 10-65 \mathrm{M}$	PALC16R8-40M	PALC16R8-30M	2168-55C	$7 \mathrm{Cl168-4C}$
7C293A-50C	$7 C 293 \mathrm{AL} 50 \mathrm{C}$	$7 \mathrm{CS1645C}$	$7 \mathrm{C516-38C}$	PALC22V10L-25C	PALC22V10-25C*	2168-55M	7C168-45M
7C293A-50M	$7 \mathrm{C} 293 \mathrm{~A}-35 \mathrm{M}$	$7 \mathrm{CS16-55C}$	$7 \mathrm{C516-45}$	PALC22VIOL-35C	PALC22V10L-25C	2168.70 C	$7 \mathrm{C16845C}$
7C401-10C	$7{ }^{\text {c401-15C }}$	7C516-55M	7C516-42M	PALC22V10-35C	PALC22V10-25C	2168-70M	7 Cl 16845 M
7C401-10M	7C401-15M	$7 \mathrm{C516-65C}$	$7 \mathrm{CS16-55C}$	PALC22VI0-40M	PALC22V10-30M	$2169-40 \mathrm{C}$	$7 \mathrm{Cl169-40C}$
7C401-5C	$7 \mathrm{C401-10C}$	7C516-65M	7C516-55M	PLDC20G10-25C	PLDC20G10-15C	2169.50C	$7 \mathrm{Cl169-40}$
$7 \mathrm{C42}-10 \mathrm{C}$	$7 \mathrm{C4} 42$-15C	7C516-75C	$7 \mathrm{CS16-65C}$	PLDC20G10-35C	PLDC20G10-25C	2169.50M	7 Cl 169.40 M
7C402-10M	$7 \mathrm{C402-15M}$	7C516-75M	7C516-65M	PLDC20G10-40M	PLDC20G10-30M	2169.70 C	$7 \mathrm{Cl} 169-40 \mathrm{C}$
7C402-5C	$7 \mathrm{C402-10C}$	$7 \mathrm{C517-55C}$	$7 \mathrm{C517} 45 \mathrm{C}$			2169-70M	7 Cl 169.40 M
$7 \mathrm{C403-10C}$	$74^{403-15 C}$	$7 \mathrm{CS17}$-65C	$7 \mathrm{C517.55C}$	AMD	CYPRESS	21 L 47.45 C	$7 \mathrm{Cl147-45}$
7C403-10M	7C403-15M	$7 \mathrm{C517.65M}$	7 C 17.55 M	PREFIX:Am	PREFIX:CY	$21 \mathrm{LT7} .55 \mathrm{C}$	$7 \mathrm{Cl47-45C}$
7C403-15C	$7 \mathrm{C403-25C}$	7C517-75	7 C 517.65 C	PREFIX:SN	PREFIX:CY	21147-70C	$7 \mathrm{Cl147-45}$
7C403-15M	7C403-25M	7 C 517.75 M	7C517-65M	SUFFIX:B	SUFFIX:B	21148-45C	$21 \mathrm{~L} 48-45 \mathrm{C}$
7C404-10C	$7 \mathrm{C404}$-15C	7C901-31C	7 C901-23C+	SUFFIX:D	SUFFIX:D	$21 \mathrm{~L} 48-55 \mathrm{C}$	21148.55 C
7 C 404 -10M	7C404-15M	7C901-32M	7c901-27M	SUFFIX:F	SUFFIX:F	21 L 48.70 C	$21 \mathrm{~L} 48-5 \mathrm{C}$
$7 \mathrm{C404.15C}$	$7 \mathrm{C40425C}$	$7 \mathrm{C909-40C}$	$7 \mathrm{C909-30C}$	SUPFIX:L	SUFFIX:L	21L49-45C	21L49-45C
7C404-15M	7C404-25M	$7 \mathrm{C909-40M}$	$7 \mathrm{C909.30M}$	SUFFIX:P	SUFFIX:P	21L49-55C	$21 \mathrm{~L} 49-55 \mathrm{C}$
$7 \mathrm{C408-15C}$	$7 \mathrm{C408-25C}$	$7 \mathrm{Cc9101}-40 \mathrm{C}$	$7 \mathrm{C9101}-30 \mathrm{C}$	2130-100C	$7 \mathrm{Cl13-55C}$	211499-70C	$21 \mathrm{~L} 49-55 \mathrm{C}$
7 C 408 -15M	$7 \mathrm{C408-25M}$	$7 \mathrm{C9101}-45 \mathrm{M}$	7C9101-35M	2130-120C	7 C 13.55 C	27LS03C	27LS03C
7C408-25C	$7 \mathrm{C408-35C}$	7C910-50C	$7 \mathrm{C91040} \mathrm{C}$	$2130 \cdot 70 \mathrm{C}$	$7 \mathrm{Cl130-55C}$	27LS03M	27LS03M +
7C408-25M	7 C 408.35 M	7C910-51M	$7 \mathrm{C91046M}$	2147-35 C	2147-35	27L507C	27507C+
${ }^{7} \mathbf{C 4 0 9 - 1 5 C}$	${ }^{7} \mathrm{C} 409 \mathrm{~g} 25 \mathrm{C}$	$7 \mathrm{Cc910.93C}$	${ }^{7} \mathbf{C 9 1 0 - 5 0 C}$	2147-45C	${ }^{2147455}$	27LS191C	${ }^{7 C 222-35 C}$
7 C 409.15 M	7C409-25M	$7 \mathrm{C910}-99 \mathrm{M}$	7 C 910.51 M	2147-45	2147-45M	2715291C	$7 \mathrm{C} 291-35 \mathrm{C}$
7C409-25C	$7 \mathrm{C409-35C}$	7C91140C	$7 \mathrm{C911-30C}$	2147-55C	$2147-55 \mathrm{C}$	2715291M	7 C 291 -35M
7C409-25M	7C409-35M	$7 \mathrm{C911-40M}$	7C911-30M	2147-55	2147.55M	27PS181AC	7 C 28245 C
$7 \mathrm{C42}-40 \mathrm{C}$	7 C 42 O 3 C	93422AC	7 C 122 -35	2147.70 C	2147-55C	27PS181AM	7C282-45M +
$7 \mathrm{C} 420-40 \mathrm{M}$	$7 \mathrm{C} 420-30 \mathrm{M}$	93422AM	$7 \mathrm{C} 122-35 \mathrm{M}$	2147.70M	2147-55M	27PS181C	$7 \mathrm{C} 282-45 \mathrm{C}$
$7 \mathrm{C420-65C}$	$7 \mathrm{C420} 40 \mathrm{C}$	93422C	93L422AC	2148-35C	2148-35	27PS181M	7C282-45M +
7C42-65M	7C420-40M	93422M	93422AM	2148-35M	2148-35M	27PS191AC	7 C 292.50 C
7 C 421.40 C	$7 \mathrm{C} 421-3 \mathrm{C}$	93422M	93IA22AM	2148-45C	2148-45C	27PS191AM	$7 \mathrm{C} 292-50 \mathrm{M}+$
7 C 421.40 M	7 C 421.30 M	93L422AC	7 C 122.35 C	2148-45M	2148-45	27PS191C	$7 \mathrm{C} 292-50 \mathrm{C}$
$7 \mathrm{C421.65C}$	7 C 42140 C	93L422AM	$7 \mathrm{Cl22-35M}$	2148-55C	2148.55 C	27PS191M	$7 \mathrm{C} 292.50 \mathrm{M}+$
7C421-65M	7 C 21 1-40M	93L422C	93L422AC	2148-55M	2148-55M	27P9281AC	$7 \mathrm{C28145C}$

$t=$ meets all performance specs but may not meet I_{CC} or I_{SB};

* = meets all performance specs except 2 V data retention-may not meet I_{CC} or $\mathrm{I}_{\mathbf{S B}}$;
$-=$ functionally equivalent

AMD	CYPRESS	AMD	CYPRESS	AMD	CYPRESS	AMD	CYPRESS
27PS281AM	7C281-45M+	27S49C	7C264-55C	29L516C	7C516-75C	99C165-55M	7C166-45M+
27PS281C	$7 \mathrm{C} 281-45 \mathrm{C}$	27S49M	7C264-55M	29L516M	7C516-75M	99C165-70	$7 \mathrm{Cl} 66-45 \mathrm{C}+$
27PS281M	7C281-45M+	27551C	7C254-55C	29L517C	$7 \mathrm{C517} 75 \mathrm{C}$	99C165-70M	7C166-45M+
27PS291AC	$7 \mathrm{C291-50C}$	27S51M	7C254-65M	29L517M	7C517-75M	99C641-25C	$7 \mathrm{Cl} 187-25 \mathrm{C}$
27PS291AM	7C291-50M +	2841AC	3341C	3341C	3341C	99C641-35C	7C187-35C
27PS291C	7C291-50C	2841AM	3341M	3341M	3341M	99C641-45C	$7 \mathrm{Cl} 187-45 \mathrm{C}$
27PS291M	7C291-50M+	2841C	3341C	54S189M	548189M	99C641-45M	7C187-45M
27S03AC	27503AC	2841M	3341M	74S189C	74S189C	99C641-55C	7 Cl 18745 C
27S03AM	27S03AM	2901BC	2901 CC	9122-25C	9122-25C	99C641-55M	7C187-45M
27503C	27503C	2901BM	2901CM	9122-35C	9122-35C	99 C 641.70 C	7 Cl 187.45 C
27S03M	27S03M	2901CC	2901 CC	9122-35M	7C122-35M	99 C 641 -70M	7C187-45M
27507AC	27507AC	2901CM	2901CM	9128-100C	6116-55C	99C68-35	$7 \mathrm{Cl} 168-35 \mathrm{C}$
27S07AM	27S07AM	2909AC	2909AC	9128-120M	6116-55M	99C68-45	$7 \mathrm{Cl} 168.45 \mathrm{C}^{*}$
27S07C	27507C	2909 AM	2909 AM	9128-150C	6116-55C	99C68-45M	$7 \mathrm{Cl} 168-45 \mathrm{M}^{*}$
27507M	27S07M	2909 C	2909 AC	$9128-150 \mathrm{M}$	6116-55M	99C68-55	$7 \mathrm{Cl} 168-45 \mathrm{C}^{*}$
27S181AC	7 C 282 -30C	2909M	2909M	9128-200C	6116-55C	99C68-55M	$7 \mathrm{Cl} 68.45 \mathrm{M}^{*}$
27S181AM	7C282-45M	2910AC	2910AC	9128-200M	6116-55M	99C68-70	$7 \mathrm{Cl} 68-45 \mathrm{C}^{*}$
27S181C	7C282-45C	2910AM	2910AM	9128-70C	6116-55C	99C68-70M	$7 \mathrm{Cl} 68-45 \mathrm{M}^{*}$
278181M	7C282-45M	2910C	2910C	9128-90M	6116-55M	99C88H-35C	$7 \mathrm{Cl} 86-35 \mathrm{C}$
27S191AC	$7 \mathrm{C} 292-35 \mathrm{C}$	2910M	2910M	9150-20C	$7 \mathrm{Cl} 50-15 \mathrm{C}$	99C88H-45C	$7 \mathrm{Cl} 86-45 \mathrm{C}$
27S191AM	7C292-50M	2910-1C	2910C	9150-25C	$7 \mathrm{Cl50-25C}$	99C88H-45M	7C186-45M
27S191C	$7 \mathrm{C} 292-50 \mathrm{C}$	2910-1M	2910M	9150-25M	$7 \mathrm{C} 150-25 \mathrm{M}$	99C88H-55C	$7 \mathrm{Cl} 86-55 \mathrm{C}$
275191M	7C292-50M	2911AC	2911AC	9150-35C	$7 \mathrm{C} 150-35 \mathrm{C}$	$99 \mathrm{C88H}-55 \mathrm{M}$	$7 \mathrm{Cl} 186-55 \mathrm{M}$
27S191SAC	7C292A-20C	2911AM	2911AM	9150-35M	7C150-35M	$99 \mathrm{C} 88 \mathrm{H}-70 \mathrm{C}$	7C186-55C
27S25AC	$7 \mathrm{C} 225-30 \mathrm{C}$	2911 C	2911AC	0150-45C	$7 \mathrm{C} 150-35 \mathrm{C}$	99C88H-70M	7C186-55M
27S25AM	7C225-35M	2911M	2911M	9150-45M	$7 \mathrm{Cl} 50-35 \mathrm{M}$	$99 \mathrm{C88}$-10C	7C186L-55C+
27525C	$7 \mathrm{C225-40C}$	29116C	7C9116-79C	91L22-35C	91L22-35C	$99 \mathrm{C} 88-10 \mathrm{M}$	7C186L-55M +
27S25M	$7 \mathrm{C} 225-40 \mathrm{M}$	29116M	7C9116-99M	91L22-35M	$7 \mathrm{Cl} 22-35 \mathrm{M}$	$99 \mathrm{C} 88-12 \mathrm{C}$	7C186L-55C+
27525SAC	7C225-25C	29116AC	7C9116-53C	91L22-45C	91L22-45C	$99 \mathrm{C} 88-12 \mathrm{M}$	7C186L-55M +
27S25SAM	7C225-35M	29C116C	7C9116-79C	91L22-45M	7C122-35M	99C88-15C	7C186L-55C+
27S281AC	$7 \mathrm{C281-30C}$	29C116M	7C9116-99M	91L22-60C	$7 \mathrm{C} 122-35 \mathrm{C}+$	99C88-15M	7C186L-55M+
27S281AM	$7 \mathrm{C} 281-45 \mathrm{M}$	29C116AC	7C9116-53C	91L50-25C	$7 \mathrm{Cl50-25C}$	$99 \mathrm{C88} 820 \mathrm{C}$	7C186L-55C+
278281C	7 C 281.45 C	29117C	7C9117.79C	91L50-35C	$7 \mathrm{Cl} 150-35 \mathrm{C}$	$99 \mathrm{C} 88-20 \mathrm{M}$	7C186L-55M+
275281M	7C281-45M	29117M	7C9117-99M	91L50-45C	$7 \mathrm{Cl} 50-35 \mathrm{C}$	$99 \mathrm{C88} 8 \mathrm{70C}$	7C186L-55C+
27S291AC	$7 \mathrm{C291-35C}$	29C117C	7C9117-99C	93422AC	93422AC	99 C 88 -70M	7C186L-55M +
27S291AM	7C291-50M	29510 C	7C510-75C	93422AM	93422AM	99CL68-35	$7 \mathrm{Cl} 68-35 \mathrm{C}$
278291C	$7 \mathrm{C} 291-50 \mathrm{C}$	29510M	7C510.75M	93422C	93422C	99CL68-45	$7 \mathrm{Cl} 168-45 \mathrm{C}^{*}$
275291M	7C291-50M	29516AM	7C516-55M	93422M	93422M	99CL68-45M	$7 \mathrm{Cl} 68-45 \mathrm{M}^{*}$
275291SAC	$7 \mathrm{C} 291 \mathrm{~A}-20 \mathrm{C}$	29516C	$7 \mathrm{C} 516-55 \mathrm{C}$	93L422AC	93 L 222 AC	99CL68-55	7 C 168 -45C*
275291SAM	7C291A-30M	29516M	7C516-55M	93L422AM	93L422AM	99CL68-55M	$7 \mathrm{Cl} 68-45 \mathrm{M}^{*}$
27535AC	$7 \mathrm{C} 235-30 \mathrm{C}$	29517C	7C517-55C	93L422C	93L422C	99CL68-70	$7 \mathrm{C} 168.45 \mathrm{C}^{*}$
27S35AM	7C235-40M	29517M	7C517-55M	93L422M	93L422M	99CL68-70M	$7 \mathrm{Cl} 68-45 \mathrm{M}^{*}$
27535C	$7 \mathrm{C} 235-40 \mathrm{C}$	29701C	27507C	99C164-35	$7 \mathrm{Cl} 164-35 \mathrm{C}+$	99CL88-10C	7C186L-55C+
27S35M	$7 \mathrm{C} 235-40 \mathrm{M}$	29701M	27507M	99C164-45	$7 \mathrm{Cl} 164-45 \mathrm{C}+$	99CL 88 -12C	7C186L-55C+
27545AC	$7 \mathrm{C} 245-35 \mathrm{C}$	29703C	27503C	99C164-45M	7C164-45M+	99CL88-15C	7C186L-55C+
27S45AM	7C245-45M	29703M	27S03M	$99 \mathrm{C} 164-55$	7C164-45C+	99CL88-70C	7C186L-55C+
27545C	7C245-45C	29C01BC	7C901-31C	99C164-55M	7C164-45M+	$99 \mathrm{CS88} 810 \mathrm{M}$	7C186L-55M +
27545M	7C245-45M	$29 \mathrm{CO1CC}$	7C901-31C	99C164-70	$7 \mathrm{Cl} 164.45 \mathrm{C}+$	99CS88-12M	7C186L-55M +
27S45SAC	$7 \mathrm{C} 245-25 \mathrm{C}$	$29 \mathrm{Cl01C}$	7C9101-40C	$99 \mathrm{Cl} 164-70 \mathrm{M}$	7C164-45M	99CS88-15M	7C186L-55M+
27S45SAM	7C245A-25M -	29C101M	7C9101-35M	99C165-35	$7 \mathrm{Cl} 166.35 \mathrm{C}+$	99CS88-20M	7C186L-55M +
27549AC	$7 \mathrm{C} 264-45 \mathrm{C}$	29C10AC	$7 \mathrm{C910} 0.93 \mathrm{C}$	99C165-45	7C166-45C+	99CS88.70M	7C186L-55M +
27S49AM	7C264-55M	29L510C	$7 \mathrm{C510-75C}$	99C165-45M	7C166-45M+	PAL16L8AC	PALC16L8-25C
27549A-45C	$7 \mathrm{C} 264-45 \mathrm{C}$	29L510M	7C510-75M	99C165-55	7C166-45C+	PALI6L8ALC	PALC16L8-25C

Note: Unless otherwise noted, product meets all performance specs and is within 10 mA on $I_{C C}$ and 5 mA on $\mathrm{I}_{\text {SB }}$;

[^2]| AMD | CYPRESS | ANALOG DEV. | CYPRESS | FAIRCHILD | CYPRESS | FUJITSU | CYPRESS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PAL16L8ALM | PALCl6L8-30M | PREFIX:ADSP | PREFIX:CY | 16R6A | PALC16R6-20M | SUFFIX:Z | SUFFIX:D |
| PAL16L8AM | PALC16L8-30M | SUFFIX:883B | SUFFIX:B | 16R6A | PALC16R6-25C | 2147H-35 | 2147-35C |
| PAL16L8A-4C | PALC16L8L-35C | SUFFIX:D | SUFFIX:D | 16R8A | PALC16R8-25C | $2147 \mathrm{H}-45$ | 2147-45C |
| PAL16L8A-4M | PALC16L8-40M + | SUFFIX:E | SUFFIX:L | 16R8A | PALC16R8-20M | 2147H-55 | 2147-55C |
| PAL16L8BM | PALC16L8-20M | SUFFIX:F | SUFFIX:F | 16RP4A | PALC16R4-20M - | $2147 \mathrm{H}-70$ | 2147-55C |
| PAL16L8C | PALC16L8-35C | SUFFIX:G | SUFFIX:G | 16RP4A | PALC16R4-25C- | 2148-55L | 21L48-55C |
| PAL16L8LC | PALC16L8-35C | 1010A | 7C510-65C+ | 16RP6A | PALC16R6-20M - | 2148-70L | 21L48-55C |
| PAL16L8LM | PALC16L8-40M | 1010J | $7 \mathrm{C} 510-75 \mathrm{C}+$ | 16RP6A | PALC16R6-25C- | 2149-45 | 2149-45C |
| PAL16L8M | PALC16L8-40M | 1010K | $7 \mathrm{C} 510-75 \mathrm{C}+$ | 16RP8A | PALC16R8-20M - | 2149-55L | 21L49-55C |
| PAL16L8QC | PALC16L8L-35C | 1010S | $7 \mathrm{C} 510-75 \mathrm{M}+$ | 16RP8A | PALC16R8-25C - | 2149-70L | 21L49-55C |
| PAL16L8QM | PALC16L8-40M + | 1010T | $7 \mathrm{C} 510-75 \mathrm{M}+$ | 3341AC | 3341C | 7132 E | 7C282-45C |
| PAL16R4ALC | PALC16R4-25C | 7C901-27M | 7C901-32M | 3341 C | 3341C | 7132E-SK | 7C281-45C |
| PAL16R4ALM | PALC16R4-30M | 7C901-32M | 2901 CM | 54F189 | $7 \mathrm{Cl} 89-25 \mathrm{M}$ - | $7132 \mathrm{E}-\mathrm{W}$ | 7C282-45M |
| PAL16R4AM | PALC16R4-30M | | | 54F219 | $7 \mathrm{C190}-25 \mathrm{M}$ - | 7132 H | 7C282-45C |
| PAL16R4A-4C | PALC16R4L-35C | FAIRCHILD | CYPRESS | 54F413 | $7 \mathrm{C401-15M}$ | 7132 H -SK | 7C281-45C |
| PAL16R4A-4M | PALC16R4-40M + | PREFIX:F | PREFIX:CY | 54S189M | 54 S 189 M | 7132 Y | 7C282-30C |
| PAL16R4BM | PALC16R4-20M | SUFFIX:D | SUFFIX:D | 74AC1010-40 | 7C510-45C | 7132Y-SK | 7C281-30C |
| PAL16R4C | PALC16R4-35C | SUFFIX:F | SUFFIX:F | 74F189 | 7C189-25C- | 7138E | 7C292-50C |
| PAL16R4LC | PALC16R4-35C | SUFFIX:L | SUFFIX:L | 74F219 | $7 \mathrm{Cl} 90-25 \mathrm{C}$ - | $7138 \mathrm{E}-\mathrm{SK}$ | $7 \mathrm{C} 291-50 \mathrm{C}$ |
| PAL16R4LM | PALC16R4-40M | SUFFIX:P | SUFFIX:P | 74F413 | 7 C 401 -15C | $7138 \mathrm{E}-\mathrm{W}$ | $7 \mathrm{C} 292-50 \mathrm{M}$ |
| PAL16R4M | PALC16R4-40M | SUFFIX:QB | SUFFIX:B | 74LS189 | 27LS03C | 7138 H | $7 \mathrm{C} 292-35 \mathrm{C}$ |
| PALI6R4QC | PALC16R4L-35C | 1600C45 | 7C187-45C | 748189 | 74S189C | $7138 \mathrm{H}-\mathrm{SK}$ | 7C291-35C |
| PAL16R4QM | PALC16R4-40M + | 1600 C 55 | 7C187-45C | 93422AC | 93422AC | 7138Y | 7C292-35C |
| PAL16R6AC | PALC16R6-25C | 1600C70 | 7C187-45C | 93422 AM | 93422AM | 7138Y-SK | 7C291-35C |
| PAL16R6ALC | PALC16R6-25C | 1600M55 | $7 \mathrm{C} 187-45 \mathrm{M}$ | 93422 C | 93422C | 7144 E | $7 \mathrm{C} 264-55 \mathrm{C}$ |
| PAL16R6ALM | PALC16R6-30M | 1600M70 | $7 \mathrm{C} 187-45 \mathrm{M}$ | 93422M | 93422M | $7144 \mathrm{E}-\mathrm{W}$ | 7C264-55M |
| PALl6R6AM | PALC16R6-30M | 1601 C 45 | 7C187L-45C | 93475 C | 2149-45C | 7144H | 7C264-55C |
| PAL16R6A-4C | PALC16R6L-35C | 1601 C 55 | 7C187-45C | 93L422AC | 93L422AC | 7144 Y | 7C264-45C |
| PAL16R6A-4M | PALC16R6-40M | 1601 C 70 | 7C187L-45C | 93L422AM | 93L422AM | 7226RA-20 | 7C225-30C |
| PAL16R6BM | PALC16R6-20M | 1601M55 | 7C187L-45M | 93L422C | 93L422C | 7226RA-25 | 7C225-30C |
| PAL16R6C | PALC16R6-35C | 1601M70 | 7C187L-45M | 93L422M | 93L422M | 7232RA-20 | 7C235-30C |
| PAL16R6LC | PALC16R6-35C | 1620C25 | 7C164L-25C+ | 93Z451AC | $7 \mathrm{C} 282-30 \mathrm{C}$ | 7232RA-25 | $7 \mathrm{C} 235-30 \mathrm{C}$ |
| PAL16R6LM | PALC16R6-40M | 1620C35 | $7 \mathrm{C164-35C+}$ | $93 \mathrm{Z451AM}$ | $7 \mathrm{C} 282-45 \mathrm{M}$ | 7238RA-20 | $7 \mathrm{C} 245-25 \mathrm{C}$ |
| PAL16R6M | PALC16R6-40M | 1620M35 | $7 \mathrm{C} 164-35 \mathrm{M}$ | 93Z451C | $7 \mathrm{C} 282-30 \mathrm{C}$ | 7238RA-25 | 7C245-35C |
| PAL16R6QC | PALC16R6L-35C | 1620M45 | $7 \mathrm{C} 164-45 \mathrm{M}$ | 93Z451M | $7 \mathrm{C} 282-45 \mathrm{M}$ | 8128-10 | 7C128-55C |
| PAL16R6QM | PALC16R6-40M + | 1621 C 25 | 7C164-25C+ | 93Z511C | 7C292-35C | 8128-15 | 7C128-55C |
| PALI6R8AC | PALC16R8-25C | 1621 C 35 | 7C164L-35C+ | 93Z511M | $7 \mathrm{C} 292-50 \mathrm{M}$ | 8167A-55 | $7 \mathrm{Cl} 167-45 \mathrm{C}$ |
| PAL16R8ALC | PALC16R8-25C | 1621 M 35 | 7C164L-35M | 93Z565AC | 7 C 264.45 C | 8167A.70 | 7 Cl 67.45 C |
| PAL16R8ALM | PALC16R8-30M | 1621M45 | 7C164L-45M | 93Z565AM | $7 \mathrm{C} 264-55 \mathrm{M}$ | 8167.70 W | 7C167-45M |
| PAL16R8AM | PALC16R8-30M | 1622 C 25 | $7 \mathrm{Cl} 66-25 \mathrm{C}+$ | 93Z565C | $7 \mathrm{C} 264-55 \mathrm{C}$ | 8168-55 | $7 \mathrm{Cl} 68-45 \mathrm{C}$ |
| PAL16R8A-4C | PALC16R8L-35C | 1622 C 35 | $7 \mathrm{Cl} 166-35 \mathrm{C}+$ | 93Z565M | 7C264-55M | 8168-70 | $7 \mathrm{Cl} 168-45 \mathrm{C}$ |
| PAL16R8A-4M | PALC16R8-40M | 1622M35 | 7 Cl 66.35 M | $93 \mathrm{Z611C}$ | 7C292-25C | 8168-70W | 7C168-45M |
| PAL16R8BM | PALC16R8-20M | 1622M45 | $7 \mathrm{C1} 66-45 \mathrm{M}$ | 93 Z 611 M | 7C291A-30M | 8171-55 | 7C187-45 |
| PAL16R8C | PALC16R8-35C | 1623 C 25 | 7C166L-25C+ | 932665C | $7 \mathrm{C} 264-35 \mathrm{C}$ | $8171-70$ | 7C187-45C |
| PAL16R8LC | PALC16R8-35C | 1623 C 35 | 7C166L-35C+ | 93 Z 665 M | $7 \mathrm{C} 264-45 \mathrm{M}$ | 81C67-35 | 7C167-35C |
| PAL16R8LM | PALC16R8-40M | 1623 M 35 | 7C166L-35M | 932667 C | 7C263-35C | 81C67-45 | $7 \mathrm{Cl} 167-45 \mathrm{C}$ |
| PAL16R8M | PALC16R8-40M | 1623M45 | 7C166L-45M | 93Z667M | 7C261-45M | 81C67.55W | 7C167-45M |
| PAL16R8QC | PALC16R8L-35C | 16L8A | PALC16L8-20M | | | 81C68A-25 | 7C168L-25C |
| PAL16R8QM | PALC16R8-40M + | 16L8A | PALC16L8-25C | FUJITSU | CYPRESS | 81C68A-30 | 7C168L-25C |
| PAL22V10AC | PALC22V10-25C | 16P8A | PALC16L8-25C- | PREFIX:MB | PREFIX:CY | 81C68A-35 | 7C168L-35C |
| PAL22V10AM | PALC22V10-30M | 16P8A | PALC16L8-20M - | PREFIX:MBM | PREFIX:CY | 81C68.35 | 7C168L-35C |
| PAL22V10C | PALC22V10-35C | 16R4A | PALC16R4-25C | SUFFIX:F | SUFFIX:F | 81C68-45 | 7C168-45C |
| PAL22V10M | PALC22V10-40M | 16R4A | PALC16R4-20M | SUFFIX:M | SUFFIX:P | 81-68-55W | $7 \mathrm{Cl} 168-45 \mathrm{M}+$ |

[^3]| FUJITSU | CYPRESS | HARRIS | CYPRESS | HITACHI | CYPRESS | IDT | CYPRESS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 81C69A-25 | 7C169L-25C | 65262C-9 | 7C167-45M* | 6148HL-55 | $7 \mathrm{C} 148-45 \mathrm{C}^{*}$ | 39C01C | $7 \mathrm{C} 901-31 \mathrm{C}+$ |
| $81 \mathrm{C} 69 \mathrm{~A}-30$ | 7C169L-25C | 65262S-9 | 7C167-45M* | 6148H-35 | 21L48-35C | $39 \mathrm{CO1CB}$ | 7C901-32M + |
| 81C69A-35 | 7C169L-35C | 65262-8 | 7C167-45M* | 6148H-45 | $7 \mathrm{Cl} 148-45 \mathrm{C}+$ | 39C01D | $7 \mathrm{C901}-23 \mathrm{C}+$ |
| 81C71-45 | 7C187-45C | 65262-9 | 7C167-45M* | 6148H-55 | 7C148-45C+ | 39C01DB | 7C901-27M + |
| 81C71-55 | 7C187-45C | 6.76161A-2 | 7C291-50M | 6148L | $7 \mathrm{C} 148.45 \mathrm{C}^{*}$ | 39C09A | 7C909-40C+ |
| 81C74-25 | 7C164-25C | 6-76161A-5 | 7C291-50C | $6167 \mathrm{HL}-55$ | 7C167-45C* | $39 \mathrm{CO9AB}$ | $7 \mathrm{C} 909-40 \mathrm{M}+$ |
| 81C74-35 | $7 \mathrm{C164-35C+}$ | 6-76161B-5 | 7C291-35C | 6167 HL -70 | $7{ }^{\text {C167-45C*}}$ | 39 ClOB | 7C910-50C- |
| 81C74-45 | $7 \mathrm{Cl} 164-45 \mathrm{C}$ | 6-76161-2 | 7 C 29150 M | 6167H-55 | $7 \mathrm{C} 167-45 \mathrm{C}$ | 39 Cl 10 BB | 7C910-51M- |
| 81C75-25 | $7 \mathrm{Cl} 166-25 \mathrm{C}$ | 6.76161-5 | $7 \mathrm{C291-50C}$ | 6167H-70 | $7 \mathrm{C167-45C}$ | $39 \mathrm{Cl1A}$ | $7 \mathrm{C911-40C+}$ |
| 81C75-35 | $7 \mathrm{Cl} 166-35 \mathrm{C}$ | 6.7681A-5 | $7 \mathrm{C} 281-45 \mathrm{C}$ | 6167L-6 | 7C167-45C* | $39 \mathrm{Cl1AB}$ | $7 \mathrm{C911-40M}+$ |
| 81-77-45 | 7C186-45C | 6-7681-5 | 7C281-45C | 6167L-8 | 7C167-45C* | 49 C 401 | $7 \mathrm{C} 9101-40 \mathrm{C}-$ |
| 81-78-55 | 7C186-55C | 76161A-2 | 7C292-50M | 6167.6 | 7C167-45C+ | 49C401 | 7C9101-45M - |
| 81C81-45 | 7 Cl 19745 C | 76161A-5 | $7 \mathrm{C292-50C}$ | 6167.8 | 7C167-45C+ | 6116L120B | $6116-55 \mathrm{M}^{*}$ |
| 81C81-55 | 7 Cl 19745 C | 76161B-5 | 7C292-35C | $6168 \mathrm{HL}-45$ | $7{ }^{\text {C1 }} 168-45 \mathrm{C}^{*}$ | 6116 L 150 B | 6116-55M* |
| 81C84-45 | $7 \mathrm{Cl} 194-45 \mathrm{C}$ | 76161-2 | 7C292-50M | $6168 \mathrm{HL}-55$ | $7 \mathrm{C} 168.45 \mathrm{C}^{*}$ | 6116 L 55 | 6116-55C* |
| 81C84-55 | $7 \mathrm{Cl} 194-45 \mathrm{C}$ | 76641A-5 | 7C264-45C | $6168 \mathrm{HL}-70$ | $7 \mathrm{Cl}^{\text {c }}$-45C ${ }^{*}$ | 6116L55B | 6116-55M* |
| 81C86-55 | $7 \mathrm{Cl} 92-45 \mathrm{C}+$ | 76641-2 | 7C264-55M | 6168H-45 | 7C168-45C+ | 6116 L 70 | 6116-55C* |
| 81C86-70 | 7C192-45C+ | 76641-5 | 7 C 264.55 C | 6168H-55 | 7C168-45C+ | 6116L 70B | 6116-55M* |
| 8464L-100 | 7C185-55C+ | 7681A-5 | 7C282-45C | 6168H-70 | 7C168-45C+ | 6116 L 90 | 6116-55C* |
| 8464L-70 | 7C185-45C+ | 7681-2 | 7C282-45M | 6264L-10 | 7C186L-55C+ | 6116L90B | $6116-55 \mathrm{M}^{*}$ |
| | | 7681-5 | 7C282-45C | 6264L-12 | 7C186L-55C+ | 6116LAI20B | $6116-55 \mathrm{M}^{*}$ |
| HARRIS | CYPRESS | | | 6264L-15 | 7C186L-55C+ | 6116LA120TB | 7C128-55M* |
| PREFIX:1 | SUFFIX:D | HITACHI | CYPRESS | 6264-10 | 7C186-55C+ | 6116LA35 | 6116-35C* |
| PREFIX:3 | SUFFIX:P | PREFIX:HM | PREFIX:CY | 6264-12 | 7C186-55C+ | 6116LA35B | 6116-45M* |
| PREFIX:4 | SUFFIX:L | PREFIX:HN | PREFIX:CY | 6264-15 | $7 \mathrm{CLI} 86-55 \mathrm{C}+$ | 6116 LA 35 T | $7 \mathrm{Cl28-350}{ }^{*}$ |
| PREFIX:9 | SUFFIX:F | SUFFIX:CG | SUFFIX:L | 6267L-35 | 7C167L-35C | 6116LA35TB | $7 \mathrm{Cl} 28-35 \mathrm{M}^{*}$ |
| PREFIX:HM | PREFIX:CY | SUFFIX:G | SUFFIX:D | 6267-35 | 7C167-35C+ | 6116LA45 | 6116-45C* |
| PREFIX:HPL | PREFIX:CY | SUFFIX:P | SUFFIX:P | 6267-45 | 7C167L-35C | 6116LA45B | 6116-45M* |
| SUFFIX:8 | SUFFIX:B | 25089 | 7C282-45C | 6267-45 | $7 \mathrm{Cl} 167-45 \mathrm{C}$ | 6116LA45T | $7 \mathrm{Cl}^{28-45 \mathrm{C}^{*}}$ |
| 16LC8-5 | PALCI6L8L-35C- | 25089S | 7C282-45C | 6268L-25 | 7C168L-25C | 6116LA45TB | 7C128-45M* |
| 16LC8-8 | PALCI6L8-40M + | 251698 | $7 \mathrm{C292-50C}$ | 6268L-35 | $7 \mathrm{Cl168L-35C}$ | 6116LA55 | 6116-55C* |
| 16LC8-9 | PALC16L8-40M + | 4847 | 2147-55C | 6268-25 | $7 \mathrm{Cl} 168-25 \mathrm{C}$ | 6116LA55B | $6116-55 \mathrm{M}^{*}$ |
| 16RC4-5 | PALC16R4L-35C- | 4847-2 | 2147-45C | 6268-35 | $7 \mathrm{Cl} 168-35 \mathrm{C}$ | 6116LA55T | $7 \mathrm{Cl}^{\text {28-55C }}{ }^{*}$ |
| 16RC4-8 | PALC16R4-40M + | 4847-3 | 2147-55C | 6287L-55 | 7C187L-45C | 6116LA55TB | $7 \mathrm{Cl28-55M}{ }^{*}$ |
| 16RC4-9 | PALC16R4-40M + | 6116ALS-12 | 6116-55C* | 6287L-70 | 7C187L-45C | 6116LA70 | 6116-55C* |
| 16RC6-5 | PALCI6R6L-35C- | 6116ALS-15 | 6116-55C* | 6287-45 | 7C187-45C | 6116LA70B | 6116-55M* |
| 16RC6-8 | PALC16R6-40M + | 6116ALS-20 | 6116-55C* | 6287-55 | $7 \mathrm{Cl} 187-45 \mathrm{C}$ | 6116LA70T | $7 \mathrm{C} 128-55 \mathrm{C}^{*}$ |
| 16RC6.9 | PALC16R6-40M + | 6116AS-12 | 6116-55C+ | 6287-70 | 7 C 187 -45C | 6116LA70TB | $7 \mathrm{C128-55M}{ }^{*}$ |
| 16RC8-5 | PALC16R8L-35C- | 6116AS-15 | 6116-55C+ | 6288-35 | 7 C 16435 C | 6116LA90 | 6116-55C* |
| 16RC8-8 | PALC16R8-40M + | 6116AS-20 | $6116-55 \mathrm{C}+$ | 6288-45 | $7 \mathrm{Cl} 164-45 \mathrm{C}$ | 6116LA90B | 6116-55M* |
| 16RC8-9 | PALC16R8-40M + | 6147 | $7{ }^{1} 1477.45 \mathrm{C}^{*}$ | 6288-55 | 7C164-45C | 6116LA90T | $7 \mathrm{C} 128-55 \mathrm{C}^{*}$ |
| 65162B-5 | 6116-55C* | 6147 | 7C147-45C* | 6716 | $7 \mathrm{Cl28-25C}$ | 6116LA90TB | 7C128-55M* |
| 65162B-8 | $6116-55 \mathrm{M}^{*}$ | $6147 \mathrm{HL}-35$ | $7 \mathrm{C} 147.35 \mathrm{C}^{*}$ | 6787-30 | 7 Cl 187.25 C | 6116S120B | $6116-55 \mathrm{M}+$ |
| 65162B-9 | $6116-55 \mathrm{M}^{*}$ | $6147 \mathrm{HL}-45$ | 7C147-45C* | 6788-25 | $7 \mathrm{Cl} 164-25 \mathrm{C}$ | 6116S150B | 6116-55M+ |
| 65162C-8 | $6116.55 \mathrm{M}^{*}$ | 6147HL-55 | $7 \mathrm{C} 147-55 \mathrm{C}^{*}$ | 6788-30 | 7 C 16430 C | $6116 \mathrm{S55}$ | 6116-55C+ |
| 65162C-9 | $6116-55 \mathrm{M}^{*}$ | 6147H-35 | $7 \mathrm{Cl} 147-35 \mathrm{C}+$ | | | $6116555 B$ | 6116-55M+ |
| 65162S-5 | $6116-55 C^{*}$ | 6147H-45 | 7C147-45C+ | IDT | CYPRESS | $6116 \$ 70$ | 6116-55C+ |
| 65162S-9 | 6116-55M* | 6147H-55 | $7 \mathrm{Cl} 147-45 \mathrm{C}+$ | PREFIX:IDT | PREFIX:CY | 6116S70B | 6116-55M+ |
| 65162-5 | 6116-55C* | 6147-3 | $7 \mathrm{C} 147-45 \mathrm{C}^{*}$ | SUFFIX:B | SUFFIX:B | 6116590 | $6116.55 \mathrm{C}+$ |
| 65162.8 | 6116-55M ${ }^{*}$ | 6147-3 | $7 \mathrm{C} 147-45 \mathrm{C}^{*}$ | SUFFIX:D | SUFFIX:D | 6116590 B | $6116-55 \mathrm{M}+$ |
| 65162-9 | 6116-55M* | 6148 | $7 \mathrm{C} 148-45 \mathrm{C}$ | SUFFIX:F | SUFFIX:F | 6116SA120B | 6116-55M + |
| 65262B-8 | 7C167-45M* | $6148 \mathrm{HL}-35$ | 21L48-35C* | SUFFIX:L | SUFFIX:L | 6116SA120TB | $7 \mathrm{Cl} 28-55 \mathrm{M}+$ |
| 65262B-9 | 7C167-45M* | 6148HL-45 | $7 \mathrm{C} 148-45 \mathrm{C}^{*}$ | SUFFIX:P | SUFFIX:P | 6116SA35 | ${ }^{6116-35 C+}$ |

Note: Unless otherwise noted, product meets all performance specs and is within 10 mA on ICC and 5 mA on ISB ;
$+=$ meets all performance specs but may not meet I_{CC} or I_{SB};

* = meets all performance specs except 2 V data retention-may not meet I_{CC} or $\mathrm{I}_{\text {SB }}$;
- = functionally equivalent

IDT	CYPRESS	IDT	CYPRESS	IDT	CYPRESS	IDT	CYPRESS
6116SA35B	6116-45M+	6168L85B	7C168-45M ${ }^{*}$	7130855	$7 \mathrm{Cl} 30-55 \mathrm{C}$	71681s55B	$7 \mathrm{Cl} 17145 \mathrm{M}+$
6116SA35T	$7 \mathrm{Cl28-35C}+$	6168LA25	$7 \mathrm{C168-25C*}$	7130570	$7 \mathrm{Cl} 30-55 \mathrm{C}$	71681 S70	$7 \mathrm{Cl71}-45 \mathrm{C}+$
6116SA35TB	7C128-35M+	6168LA35	$7 \mathrm{Cl} 68-35 \mathrm{C}^{*}$	7130590	$7 \mathrm{C} 130-55 \mathrm{C}$	71681570B	7 Cl 17 l -45 +
6116SA45	6116-45C+	6168LA35B	$7 \mathrm{C168-35M}{ }^{*}$	7132L100	$7 \mathrm{Cl} 32-55 \mathrm{C}^{*}$	71681585B	7C171-45M+
6116SA45B	6116-45M +	6168LA45	$7 \mathrm{Cl} 68-45 \mathrm{C}^{*}$	7132 L 100 B	$7 \mathrm{Cl} 32-55 \mathrm{M}^{*}$	71681SA25	7C171-25C+
6116SA45T	${ }^{7} \mathrm{Cl} 28-45 \mathrm{C}+$	6168LA45B	$7 \mathrm{Cl} 68-45 \mathrm{M}$ *	7132 L 120 B	${ }^{7} \mathrm{Cl} 32-55 \mathrm{M}^{*}$	71681 SA35	$7 \mathrm{Cl} 11.35 \mathrm{C}+$
6116SA45TB	7C128-45M +	6168LA55	7C168-45C*	7132L55	$7 \mathrm{Cl} 32-55 \mathrm{C}^{*}$	71681SA35B	7C171-35M+
6116SA55	6116-55C+	6168LA55B	$7 \mathrm{Cl} 168-45 \mathrm{M}$ *	7132L70	$7 \mathrm{Cl} 32-55 \mathrm{C}^{*}$	71681SA45	$7 \mathrm{Cl171-45}+$
6116SA55B	6116-55M+	6168LA70B	$7 \mathrm{Cl} 168-45 \mathrm{M}$ *	7132L70B	${ }^{7} \mathrm{Cl} 32-55 \mathrm{M}^{*}$	71681SA45B	$7 \mathrm{Cl} 11-45 \mathrm{M}+$
6116SA55T	$7 \mathrm{Cl} 28.55 \mathrm{C}+$	6168S100B	$7 \mathrm{C} 168-45 \mathrm{M}+$	7132L90	$7 \mathrm{Cl} 32.55 \mathrm{C}^{*}$	71681SA55	$7 \mathrm{Cl71-45C+}$
6116SA55TB	7C128-55M +	6168545	$7 \mathrm{Cl} 168-45 \mathrm{C}+$	7132L90B	$7 \mathrm{Cl} 32-55 \mathrm{M}^{*}$	71681SA55B	7C171-45M +
6116 SA70	6116-55C+	6168555	$7 \mathrm{Cl} 168-45 \mathrm{C}+$	7132 S 100	$7 \mathrm{Cl} 132-55 \mathrm{C}+$	71681SA70B	$7 \mathrm{Cl} 11-45 \mathrm{M}+$
6116SA70B	$6116-55 \mathrm{M}+$	6168S55B	$7 \mathrm{Cl} 168-45 \mathrm{M}+$	7132S100B	7C132-55M+	71682L100B	$7 \mathrm{Cl} 172-45 \mathrm{M}^{*}$
6116SA70T	$7 \mathrm{C} 128-55 \mathrm{C}+$	6168570	7 C 168 -45C	7132S120B	$7 \mathrm{Cl} 32-55 \mathrm{M}+$	71682L45	$7 \mathrm{C} 172-45 \mathrm{C}^{*}$
6116SA70TB	7C128-55M+	6168870B	7C168-45M	$7132 \mathrm{S55}$	7C132-55C+	71682L55	$7 \mathrm{C} 172-45 \mathrm{C}^{*}$
6116SA90	6116-55C+	6168585	$7 \mathrm{C} 168-45 \mathrm{C}$	7132 S 70	7C132-55C+	71682L55B	$7 \mathrm{Cl} 172-45 \mathrm{M}$ *
6116SA90B	$6116-55 \mathrm{M}+$	6168S85B	7C168-45M	7132S70B	7C132-55M +	71682L70	$7 \mathrm{Cl}^{\text {c }} 2$-45C*
6116SA90T	$7 \mathrm{C} 128-55 \mathrm{C}+$	6168SA25	$7 \mathrm{Cl} 168-25 \mathrm{C}+$	7132590	7C132-55C+	71682L 70 B	$7 \mathrm{Cl} 172-45 \mathrm{M}^{*}$
6116SA90TB	$7 \mathrm{C} 128-55 \mathrm{M}+$	6168SA35	$7 \mathrm{Cl} 168-35 \mathrm{C}+$	7132590B	$7 \mathrm{Cl} 32-55 \mathrm{M}+$	71682L85B	$7 \mathrm{Cl} 172.45 \mathrm{M}^{*}$
6167L100B	$7 \mathrm{C} 167-45 \mathrm{M}^{*}$	6168SA35B	$7 \mathrm{Cl} 168-35 \mathrm{M}+$	7164L35	$7 \mathrm{Cl} 86 \mathrm{~L}-35 \mathrm{C}+$	71682LA25	$7 \mathrm{C} 172.25 \mathrm{C}^{*}$
6167 L 45	7C167L-35C	6168SA45	$7 \mathrm{Cl} 168-45 \mathrm{C}+$	7164L45	7C186L-45C+	71682LA35	$7 \mathrm{C} 172-35 \mathrm{C}^{*}$
6167L55B	$7 \mathrm{C167-45M}{ }^{*}$	6168SA45B	$7 \mathrm{Cl} 168-45 \mathrm{M}+$	7164L45B	7C186L-45M +	71682LA35B	$7 \mathrm{Cl} 172.35 \mathrm{M}^{*}$
6167L70B	7C167-45M*	6168SA55	$7 \mathrm{Cl} 168-45 \mathrm{C}+$	7164L55	7C186L-55C+	71682LA45	$7 \mathrm{C} 172-45 \mathrm{C}^{*}$
6167L85B	$7 \mathrm{C} 167-45 \mathrm{M}^{*}$	6168SA55B	7C168-45M+	7164L55B	7C186L-55M +	71682LA45B	7C172-45M*
6167LA25	$7 \mathrm{Cl} 167-25 \mathrm{C}^{*}$	6168SA70B	$7 \mathrm{Cl} 68-45 \mathrm{M}+$	7164L70	7C186L-55C+	71682LA55	$7 \mathrm{C} 172-45 \mathrm{C}^{*}$
6167LA35	$7 \mathrm{Cl167-35C*}$	71256545	7C198-45C	7164L70B	7C186L-55M +	71682LA55B	$7 \mathrm{Cl} 172-45 \mathrm{M}^{*}$
6167LA35B	$7 \mathrm{C} 167.35 \mathrm{M}^{*}$	71256555	$7 \mathrm{C} 198-55 \mathrm{C}$	7164L85B	7C186L-55M +	71682S100B	$7 \mathrm{C} 172-45 \mathrm{M}+$
6167LA45	$7 \mathrm{Cl} 67-45 \mathrm{C}^{*}$	71256S55B	7 C 198 -55M	7164 S 35	$7 \mathrm{Cl} 186-35 \mathrm{C}$	71682545	$7 \mathrm{C} 172-45 \mathrm{C}+$
6167LA45B	$7 \mathrm{Cl} 67-45 \mathrm{M}$ *	71256570	$7 \mathrm{Cl} 98-55 \mathrm{C}$	$7164 S 45$	7C186-45C	71682555	$7 \mathrm{Cl} 22-45 \mathrm{C}+$
6167LA55	7C167-45C*	71256970B	7C198-55M	7164S45B	7C186-45M	71682S55B	$7 \mathrm{Cl} 12-45 \mathrm{M}+$
6167LA55B	$7 \mathrm{C} 167-45 \mathrm{M}^{*}$	71257835	7C197-35C	7164555	$7 \mathrm{Cl} 186-55 \mathrm{C}$	71682 S70	$7 \mathrm{Cl} 72-45 \mathrm{C}+$
6167LA70B	$7 \mathrm{Cl67-45M}{ }^{*}$	71257545	7C197-45C	7164S55B	7C186-55M	71682S70B	$7 \mathrm{C} 172.45 \mathrm{M}+$
6167S100B	7C167-45M	71257S45B	7C197-45M	7164570	$7 \mathrm{Cl} 186-55 \mathrm{C}$	71682S85B	$7 \mathrm{C} 172-45 \mathrm{M}+$
6167S45	7C167-45C	71257555	7C197-45C	7164570B	7C186-55M	71682SA25	$7 \mathrm{C} 172.25 \mathrm{C}+$
$6167 \mathrm{S55}$	7C167-45C	71257S55B	7C197-45M	7164585B	7C186-55M	71682SA35	$7 \mathrm{Cl72-35C+}$
6167S55B	7C167-45M	71257570	7C197-45C	71681L100B	$7 \mathrm{C} 171-45 \mathrm{M}^{*}$	71682SA35B	7C172-35M +
6167570B	7C167-45M	71257570B	7C197-45M	71681 L 45	$7 \mathrm{C} 171-45 \mathrm{C}^{*}$	71682SA45	$7 \mathrm{Cl} 22-45 \mathrm{C}+$
6167885B	$7 \mathrm{Cl} 167-45 \mathrm{M}$	71258835	$7 \mathrm{C} 194-35 \mathrm{C}$	71681L55	$7 \mathrm{C} 171-45 \mathrm{C}^{*}$	71682SA45B	7C172-45M +
6167SA25	$7 \mathrm{Cl} 167.25 \mathrm{C}+$	71258545	$7 \mathrm{C} 194-45 \mathrm{C}$	71681L55B	7C171-45M*	71682SA55	$7 \mathrm{Cl} 72-45 \mathrm{C}+$
6167 SA 35	$7 \mathrm{Cl} 167.35 \mathrm{C}+$	71258545 B	7C194-45M	71681 L 70	7C171-45C*	71682SA55B	7C172-45M +
6167SA35B	7C167-35M+	71258555	7C194-45C	71681L70B	7C171-45M*	7187L30	7C187L-25C
6167 SA45	$7 \mathrm{Cl} 167.45 \mathrm{C}+$	71258 S55	7C194-45M	71681L85B	$7 \mathrm{Cl71.45M}{ }^{\text {- }}$	7187L35	7C187L-35C
6167SA45B	7C167-45M+	71258570	7C194-45C	71681LA25	$7 \mathrm{C} 171-25 \mathrm{C}^{*}$	7187L35B	7C187L-35M
6167 SA 55	7C167-45C+	71258870 B	7C194-45M	71681LA35	$7 \mathrm{C} 171.35 \mathrm{C}^{*}$	7187 L 45	7C187L-45C
6167SA55B	7C167-45M+	7130 L 100	$7 \mathrm{Cl} 30-55 \mathrm{C}^{*}$	71681LA35B	$7 \mathrm{Cl71-35M}{ }^{*}$	71871.45B	7C187L-45M
6167SA70B	7C167-45M+	7130 L 100 B	7C130-55M	71681LA45	$7 \mathrm{C} 171-45 \mathrm{C}^{*}$	71872.55	7C187L-45C
6168 L 100 B	$7 \mathrm{C} 168-45 \mathrm{M}^{*}$	7130 L 120 B	7C130-55M	71681LA45B	7C171-45M*	7187L.55B	7C187L-45M
6168 L45	$7 \mathrm{C} 168-45 \mathrm{C}^{*}$	7130 L 55	$7 \mathrm{Cl} 30-55 \mathrm{C}^{*}$	71681LA55	7C171-45C*	7187 L 70	7C187L-45C
6168 L55	$7 \mathrm{C} 168-45 \mathrm{C}^{*}$	7130 L 70	$7 \mathrm{C} 130-55 \mathrm{C}^{*}$	71681LA5SB	7C171-45M ${ }^{*}$	7187L85	7C187L-45C
6168L55B	$7 \mathrm{Cl} 168-45 \mathrm{M}^{*}$	7130 L 90	$7 \mathrm{Cl} 30-55 \mathrm{C}^{*}$	71681LA70B	$7 \mathrm{Cl71-45M}{ }^{*}$	7187L85B	7C187L-45M
6168 L 70	$7 \mathrm{C} 168.45 \mathrm{C}^{*}$	$7130 \$ 100$	$7 \mathrm{Cl} 30-55 \mathrm{C}$	71681S100B	$7 \mathrm{Cl} 71-45 \mathrm{M}+$	7187530	7 Cl 187.25 C
6168L70B	$7 \mathrm{C} 168-45 \mathrm{M}^{*}$	71308100 B	7C130-55M	71681545	7C171-45C+	7187535	7 Cl 187.35 C
6168 L 85	$7 \mathrm{C168-45C}{ }^{*}$	7130S120B	7C130-55M	71681S55	7C171-45C +	7187535B	7C187.35M

ote: Unless otherwise noted, product meets all performance specs and is within 10 mA on $I_{C C}$ and 5 mA on ISB ;
$+=$ meets all performance specs but may not meet I_{CC} or I_{SB};

* = meets all performance specs except 2 V data retention-may not meet I_{CC} or ISB ;
- = functionally equivalent

IDT	CYPRESS	IDT	CYPRESS	IDT	CYPRESS	IDT	CYPRESS
7187545	7C187-45C	71982L70B	7C162L-45M	7201LA-35	$7 \mathrm{C} 420-30 \mathrm{C}+$	7216 L 140	$7 \mathrm{C} 516.75 \mathrm{C}+$
7187S45B	7C187-45M	71982L85B	$7 \mathrm{Cl} 162 \mathrm{~L}-45 \mathrm{M}$	7201LA-40B	$7 \mathrm{C} 420-25 \mathrm{M}+$	7216L185B	$7 \mathrm{C} 516.75 \mathrm{M}+$
7187555	7C187-45C	71982535	$7 \mathrm{Cl} 162-35 \mathrm{C}$	7201LA-50	$7 \mathrm{C} 420-40 \mathrm{C}+$	7216 L 55	7 C 516 -55C+
7187555B	7C187-45M	71982S35B	$7 \mathrm{Cl} 162-35 \mathrm{M}$	7201LA-50B	7C420-40M +	7216L55B	7C516-55M
7187570	7C187-45C	71982545	7C162-45C	7201LA-65	$7 \mathrm{C} 420-65 \mathrm{C}+$	7216 L 65	7C516-65C+
7187570B	7C187-45M	71982S45B	7C162-45M	7201LA-65B	7C420-65M+	7216L65B	7C516-65M
7187585	7C187-45C	71982555	$7 \mathrm{Cl} 162-45 \mathrm{C}$	7201LA-80	$7 \mathrm{C} 420-65 \mathrm{C}+$	7216 L 75	$7 \mathrm{C} 16-75 \mathrm{C}+$
7187885B	7C187-45M	71982S55B	$7 \mathrm{Cl} 162-45 \mathrm{M}$	7201LA-80B	$7 \mathrm{C} 420-65 \mathrm{M}+$	7216L75B	7C516.75M
7188 L 30	7C164L-25C	71982570	$7 \mathrm{Cl} 12-45 \mathrm{C}$	7201LA-120	$7 \mathrm{C} 420-65 \mathrm{C}+$	7216L90	$7 \mathrm{C} 516-75 \mathrm{C}+$
7188 L 35	7C164L-35C	71982S70B	$7 \mathrm{Cl} 162-45 \mathrm{M}$	7201LA-120B	$7 \mathrm{C} 420.65 \mathrm{M}+$	7216L90B	7C516-75M +
7188L35B	7C164L-35M	71982S85B	7C162-45M	7201SA-35	$7 \mathrm{C} 420-30 \mathrm{C}$	7217L120B	7C517-75M +
7188L45	7C164L-45C	7198L35	$7 \mathrm{Cl} 166 \mathrm{~L}-35 \mathrm{C}$	7201SA-40B	$7 \mathrm{C} 420-40 \mathrm{M}$	7217 L 140	7 C 517 -75C+
7188LA5B	$7 \mathrm{C} 164 \mathrm{~L}-45 \mathrm{M}$	7198L35B	$7 \mathrm{Cl} 166 \mathrm{~L}-35 \mathrm{M}$	7201SA-50	$7 \mathrm{C} 42 \mathrm{O}-40 \mathrm{C}$	7217L185B	7C517-75M+
7188L55	7C164L-45C	7198L45	$7 \mathrm{Cl166L-45C}$	7201SA-50B	$7 \mathrm{C} 420-40 \mathrm{M}$	7217 L 45	$7 \mathrm{C} 517-45 \mathrm{C}+$
7188L55B	7C164L-45M	7198L45B	$7 \mathrm{Cl} 166 \mathrm{~L}-45 \mathrm{M}$	7201SA-65	$7 \mathrm{C420-65C}$	7217 L 55	$7 \mathrm{C} 517-55 \mathrm{C}+$
7188L70	7C164L-45C	7198L55	$7 \mathrm{Cl} 166 \mathrm{~L}-45 \mathrm{C}$	72015 SA .65 B	$7 \mathrm{C} 420-65 \mathrm{M}$	7217L55B	7C517-55M
7188L70B	7C164L-45M	7198L55B	7C166L-45M	7201SA-80	$7 \mathrm{C} 420-65 \mathrm{C}$	7217L65	7C517-65C+
7188L85B	7C164L-45M	7198L70	7C166L-45C	7201SA-80B	7C420-65M	7217L65B	7C517-65M
7188830	$7 \mathrm{Cl} 164-25 \mathrm{C}$	7198L70B	7C166L-45M	7201SA-120	7 C 420.65 C	7217 L 75	7C517-75C+
7188535	7 Cl 164.35 C	7198L85B	7C166L-45M	7201SA-120B	7 C 420.65 M	7217L75B	7C517-75M
7188535B	7C164L-35M	7198535	$7 \mathrm{Cl} 66-35 \mathrm{C}$	7202LA-35	7C424-30C+	7217L90	$7 \mathrm{C517}$-75 +
7188545	$7 \mathrm{Cl} 64-45 \mathrm{C}$	7198535B	7C166-35M	7202LA-40B	7C424-40M +	7217L90B	7C517-75M +
7188545B	7C164-45M	7198545	7C166-45C	7202LA-50	7C424-40C+		
7188855	$7 \mathrm{Cl} 164-45 \mathrm{C}$	7198545B	7C166-45M	7202LA-50B	$7 \mathrm{C} 424.40 \mathrm{M}+$	INMOS	CYPRESS
7188S55B	$7 \mathrm{Cl} 164-45 \mathrm{M}$	7198855	$7 \mathrm{Ci66-450}$	7202LA-65	7C424-65C+	PREFIX IMS	PREFIX:CY
7188570	7C164-45C	7198555B	7C166-45M	7202LA-65B	$7 \mathrm{C} 424-65 \mathrm{M}+$	SUFFIX:B	SUFFIX:B
7188570B	$7 \mathrm{Cl} 164-45 \mathrm{M}$	7198570	$7 \mathrm{Cl} 66-45 \mathrm{C}$	7202LA-80	7C424-65C+	SUFFIX:P	SUFFIX:P
7188885B	7C164-45M	7198570B	7C166-45M	7202LA-80B	$7 \mathrm{C} 424-65 \mathrm{M}+$	SUFFIX:S	SUFFIX:D
71981L35	7C161L-35C	7198885B	7C166-45M	7202LA-120	$7 \mathrm{C} 424-65 \mathrm{C}+$	SUFFIX:W	SUFFIX:L
71981L35B	7C161L-35M	$72401-10 \mathrm{C}$	$7 \mathrm{C401-10C}+$	7202LA-120B	7C424-65M+	1203M-35	7C147-35M +
71981 L 45	7C161L-45C	$72401-10 \mathrm{M}$	$7 \mathrm{C401-10M}$	7202SA-35	$7 \mathrm{C424-30C}$	1203M-45	7C147-45M+
71981L45B	7C161L-45M	$72401-15 \mathrm{C}$	7C401-15C+	7202SA-40B	$7 \mathrm{C} 424-40 \mathrm{M}$	1203-25	$7 \mathrm{C} 147-25 \mathrm{C}+$
$71981 L 55$	7C161L-45C	72401-15M	7C401-15M	7202SA-50	$7 \mathrm{C} 424-40 \mathrm{C}$	1203-35	$7 \mathrm{Cl47-35}++$
71981L55B	7C161L-45M	$72401-25 \mathrm{C}$	$7 \mathrm{C401-25C+}$	$7202 \mathrm{SA}-50 \mathrm{~B}$	7C424-40M	1203-45	$7 \mathrm{C} 147-45 \mathrm{C}+$
71981L70	7C161L-45C	72401-25M	7C401-25M	7202SA-65	7C424-65C	1223M-25	7C148-25M
71981L70B	7C161L-45M	72402 -10C	$7 \mathrm{C402-10C}+$	7202SA-65B	7C424-65M	1223M-35	7C148-25M +
71981L85B	7C161L-45M	72402 -10M	$7 \mathrm{C402-10M}$	7202SA-80	$7 \mathrm{C424.65C}$	1223M-45	$7 \mathrm{Cl} 48-45 \mathrm{M}+$
71981535	7C161-35C	72402-15C	$7 \mathrm{C402-15C}+$	7202SA-80B	7 C 424.65 M	1223-25	$7 \mathrm{C} 148-25 \mathrm{C}$
71981535B	7 Cl 1 1-35M	72402-15M	7C402-15M	7202SA-120	$7 \mathrm{C424-65C}$	1223-35	$7 \mathrm{Cl} 148-35 \mathrm{C}$
71981545	$7 \mathrm{Cl161-45C}$	$72402-25 \mathrm{C}$	$7 \mathrm{C402-25C+}$	7202SA-120B	7C424-65M	1223-45	$7 \mathrm{Cl} 48-45 \mathrm{C}$
71981545B	7C161-45M	72402-25M	7C402-25M	7210L100	$7 \mathrm{C} 510-75 \mathrm{C}+$	1400M-45	7C167-45M
71981555	$7 \mathrm{Cl} 161-45 \mathrm{C}$	72403-10C	$7 \mathrm{C403-10C}+$	7210 L165	$7 \mathrm{C} 510-75 \mathrm{C}+$	1400M-55	7C167-45M
71981S55B	7C161-45M	$72403-10 \mathrm{M}$	$7 \mathrm{C} 403 \mathrm{-10M}$	7210 L 45	$7 \mathrm{C} 510-45 \mathrm{C}+$	1400M-70	7C167-45M
71981570	7C161-45C	72403.15 C	$7 \mathrm{C403-15C}+$	7210 L 55	$7 \mathrm{C} 510-55 \mathrm{C}+$	1400-35	$7 \mathrm{Cl} 167-35 \mathrm{C}$
71981S70B	7C161-45M	72403-15M	7C403-15M	7210L65	$7 \mathrm{C} 510-65 \mathrm{C}+$	1400-45	$7 \mathrm{C} 167-45 \mathrm{C}$
71981585B	7C161-45M	72403.25C	$7 \mathrm{C403-25C}+$	7210 L 75	$7 \mathrm{C} 510-75 \mathrm{C}+$	1400-55	$7 \mathrm{C167-45C}$
71982L35	$7 \mathrm{Cl} 162 \mathrm{~L}-35 \mathrm{C}$	72403-25M	7C403-25M	7210-120B	7C510-75M+	1403LM-35	7C167-35M*
71982L35B	7C162L-35M	72404-10C	$7 \mathrm{C404-10C+}$	7210-200B	$7 \mathrm{C510-75M+}$	1403M-35	7C167-35M+
71982L45	$7 \mathrm{Cl} 162 \mathrm{~L}-45 \mathrm{C}$	72404-10M	7 C 404.10 M	7210-55B	7C510-55M	1403M-45	7C167-45M+
71982L45B	7C162L-45M	72404-15C	$7 \mathrm{C404-15C+}$	7210-65B	7C510-65M	1403M-55	7C167-45M +
71982L55	7C162L-45C	72404-15M	7 C 404.15 M	$7210-75 \mathrm{~B}$	7C510-75M	1403M-70	7C167-45M +
71982L55B	7C162L-45M	$72404-25 \mathrm{C}$	$7 \mathrm{C} 404.25 \mathrm{C}+$	7210-85B	7C510-75M	1403-25	$7 \mathrm{Cl} 167-25 \mathrm{C}$
71982L70	7C162L-45C	72404-25M	7C404-25M	7216L120B	7C516-75M+	1403-35	7C167-35C+

Note: Unless otherwise noted, product meets all performance specs and is within 10 mA on ICC and 5 mA on ISB ;
$+=$ meets all performance specs but may not meet $I_{C C}$ or $I_{S B}$;
$*=$ meets all performance specs except 2 V data retention-may not meet I_{CC} or $\mathrm{I}_{\text {SB }}$;

- = functionally equivalent

INMOS	CYPRESS	INMOS	CYPRESS	LATTICE	CYPRESS	LATTICE	CYPRESS
1403-45	7C167-45C+	1630LM-70	7C186-55M	PREFIX:SR	PREFIX:CY	20V8-35L	PLDC20G10-35C
1403-55	7C167-45C+	1630L-45	$7 \mathrm{C} 186 \mathrm{~L}-45 \mathrm{C}+$	SUFFIX:B	SUFFIX:B	20V8-35L	PLDC20G10-30M
1420L-10	$7 \mathrm{Cl} 168-45 \mathrm{C}$	1630L-55	7C186L-55C+	SUFFIX:D	SUFFIX:D	20V8-35Q	PLDC20G10-30M +
1420L-70	$7 \mathrm{C168-45C}$	1630L-70	$7 \mathrm{C} 186 \mathrm{~L}-55 \mathrm{C}+$	SUFFIX:L	SUFFIX:L	20V8-35Q	PLDC20G10-35C +
1420M-55	7C168-45M +	1630M-45	7C186-45M	SUFFIX:P	SUFFIX:P	64E4-35	$7 \mathrm{C} 166-35 \mathrm{C}$
1420M-70	7C168-45M	1630M-55	7C186-55M+	16K4-25	$7 \mathrm{Cl} 168-25 \mathrm{C}$	64E4-45	$7 \mathrm{Cl} 166-45 \mathrm{C}$
1420-45	$7 \mathrm{Cl} 168-35 \mathrm{C}$	1630M-70	7C186-55M	16K4.35	$7 \mathrm{C168-35C}$	64E4-55	7C166-45C
1420-55	$7 \mathrm{Cl} 168-45 \mathrm{C}$	1630-45	7C186-45C+	16K4-35M	7C168-35M	64K1-35	7 Cl 187.35 C
1421C-40	$7 \mathrm{Cl} 169-40 \mathrm{C}$	1630-55	7C186-55C+	16K4-45	7C168-45C	64K1-45	7C187-45C
1423M-35	$7 \mathrm{Cl} 68-35 \mathrm{M}^{*}$	$1630-70$	7C186-55C+	16K4-45M	7C168-45M	64K1-45M	7C187-45M
1423M-45	$7 \mathrm{Cl68-45M}{ }^{*}$			16K8-35	7C128-35C+	64K1-55	7C187-45C
1423M-55	7C168-45M*	INTEL	CYPRESS	16K8-55	$7 \mathrm{C} 128-45 \mathrm{C}+$	64K1-55M	7C187-45M
1423M-70	7C168-45M+	PREFIX:D	SUFFIX:D	16V8-25	PALC16R8-25C	64K4-35	$7 \mathrm{Cl} 164-35 \mathrm{C}$
1423-25	7C168-25C+	PREFIX:L	SUFFIX:L	$16 \mathrm{~V} 8-25$	PALC16L8-25C	64K4-45	$7 \mathrm{C} 164-45 \mathrm{C}$
1423-35	7C168-35C+	PREFIX:P	SUFFIX:P	$16 \mathrm{~V} 8-25$	PALC16R4-25C	64K4-45M	7C164-45M
1423-45	$7 \mathrm{C} 168-45 \mathrm{C}+$	SUFFIX:/B	SUFFIX:B	16 V 8.25	PALC16R6-25C	64K4.55	7C164-45C
1433M-35	7C128-35M +	2147H	2147-55C	16V8-25L	PALC16L8-25C	64K4-55M	7C164-45M
1433M-45	7C128-45M+	2147 HL	7C147-45C	16V8-25L	PALC16R6-25C	64K8-35	7C186-35C
1433M-55	$7 \mathrm{Cl} 28-55 \mathrm{M}+$	2147H-1	2147-35C	16V8-25L	PALC16R8-25C	64K8-45	$7 \mathrm{Cl} 186-45 \mathrm{C}$
1433-35	$7 \mathrm{Cl28-35C}+$	$2147 \mathrm{H}-1$	2147-35C	16V8-25L	PALC16R4-25C	64K8-45	7C264-45C
1433-45	$7 \mathrm{Cl28-45C+}$	$2147 \mathrm{H}-2$	2147-45C	16V8-25Q	PALC16R6L-25C	64K8-45M	7C186-45M
1433-55	$7 \mathrm{Cl28-55C}+$	2147-1-2	2147-45C	16V8-25Q	PALC16L8L-25C	64K8-55	$7 \mathrm{C} 264-55 \mathrm{C}$
1600M-45	7C187-45M +	2147H-3	2147-55C	16V8-25Q	PALC16R8L-25C	64K8-55	7C186-55C
1600M-55	7C187-45M +	2147\%-3	2147-55C	16V8-25Q	PALC16R4L-25C	64K8-55M	7C186-45M
1600M-70	7C187-45M +	2148H	2148-55C	16V8-30	PALC16L8-30M	64K8-70	7C264-55C
1600-35	7C187-35C	2148HL	21L48-55C	16V8-30	PALC16R8-30M	L1010-45	$7 \mathrm{C} 510-45 \mathrm{C}+$
1600-45	7C187-45C	2148HL-3	21L48-55C	16V8-30	PALC16R6-30M	L1010-65	$7 \mathrm{C} 510-65 \mathrm{C}+$
1600-55	7 Cl 18745 C	$2148 \mathrm{H}-2$	2148-45C	16V8-30	PALC16R430M	L1010-65B	$7 \mathrm{C510-65M}+$
1600-70	7C187-45C	2148H-3	2148-55C	16V8-30L	PALC16R6-30M	L1010-90	7C510-75C+
1601L-45	7C187L-45C+	2149H	2149-55C	16V8-30L	PALC16L8-30M	L1010-90B	$7 \mathrm{C} 510-75 \mathrm{M}+$
1601L-55	7C187L-45C+	2149HL	21L49-55C	16V8-30L	PALC16R4-30M		
1601L-70	7C187L-45C+	2149H-1	2149-35C	16V8-30L	PALC16R8-30M	MITSUBISHI	CYPRESS
1601LM-55	7C187L-45M+	2149H-2	2149-45C	16V8-300	PALC16L8-30M +	PREFIX:M5M	PREFIX:CY
1601LM-70	7C187L-45M+	2149H-3	2149-55C	16V8-300	PALCI6R8-30M +	SUFFIX:AP	SUFFIX:L
1620LM-45	7C164L-45M	51C66-25	$7 \mathrm{Cl} 167 \cdot 25 \mathrm{C}-$	16V8-30Q	PALC16R6-30M +	SUFFIX:FP	SUFFIX:F
1620LM-55	7C164L-45M	51C66-30	$7 \mathrm{Cl} 167-25 \mathrm{C}-$	16V8-300	PALC16R4-30M +	SUFFIX:K	SUFFIX:D
1620LM-70	7C164L-45M	51C66-35	$7 \mathrm{Cl} 167-25 \mathrm{C}-$	16V8-35	PALC16R6-35C	SUFFIX:P	SUFFIX:P
1620M-45	7C164-45M	51C66-35L	7C167-25C-	16V8-35	PALC16L8-35C	21C67P-35	7C167-35C
1620M-55	7C164-45M	51C67-30	7C167-25C+	16V8-35	PALC16R4-35C	21C67P-45	7C167-45C
1620M-70	7C164-45M	51C67-35	$7 \mathrm{Cl} 167-35 \mathrm{C}+$	16V8-35	PALCI6R8-35C	21C67P-55	$7 \mathrm{Cl} 167-45 \mathrm{C}$
1620-35	$7 \mathrm{C} 164-35 \mathrm{C}$	51C67.35L	7C167-35C+	16V8-35L	PALC16L8-35C	21C68P-35	$7 \mathrm{Cl} 68-35 \mathrm{C}$
1620-45	$7 \mathrm{Cl} 164-45 \mathrm{C}$	51C68L-35	$7 \mathrm{Cl} 168 \mathrm{~L}-35 \mathrm{C}+$	16V8-35L	PALCI6R4-35C	21C68P-45	7 Cl 168.45 C
1620-55	$7 \mathrm{C} 164-45 \mathrm{C}$	51C68-30	$7 \mathrm{Cl} 168-25 \mathrm{C}+$	16V8-35L	PALC16R8-35C	21 C 68 P - 55	$7 \mathrm{Cl} 168-45 \mathrm{C}$
1620-70	$7 \mathrm{Cl} 64-45 \mathrm{C}$	51C68-35	$7 \mathrm{Cl} 168-35 \mathrm{C}+$	16V8-35L	PALC16R6-35C	5165L-100	7C186-55C+
1620L-35	7C164L-35C	M2147H-3	$7 \mathrm{Cl} 169-40 \mathrm{M}$	16V8-35Q	PALC16R4L-35C	5165L-120	7C186-55C+
1620L-45	7C164L-45C	M2148H	2148-55M	16V8-35Q	PALC16R8L-35C	5165L-70	7C186-55C+
1620L-55	7C164L-45C	M2149H	2149-55M	16V8-35Q	PALC16L8L-35C	5165P-100	7C186-55C+
1620L-70	7C164L-45C	M2149H-2	2149-45M	16V8-35Q	PALC16R6L-35C	5165P-120	7C186-55C+
1624-35	7C166-35C+	M2149H-3	2149-55M	20V8-25	PLDC20G10-25C	5165P-70	7C186-55C+
1624-45	$7 \mathrm{Cl} 166-45 \mathrm{C}+$			20V8-25L	PLDC20G10-25C	5178P-45	7C186-45C+
1624-55	$7 \mathrm{Cl} 166-45 \mathrm{C}+$	LATTICE	CYPRESS	20V8-25Q	PLDC20G10-25C +	5178P-55	7C186-55C +
1630LM-45	7C186L-45M	PREFIX:EE	PREFIX:CY	20V8-35	PLDC20G10-35C	5187P-25	7C187-25C
1630LM-55	7C186L-55M +	PREFIX:GAL	PREFIX:CY	20V8-35	PLDC20G10-30M	5187P-35	7C187-35C

[^4]
Product Line Cross Reference (Coninuad)

MITSUBISHI	CYPRESS	MMI	CYPRESS	MMI	CYPRESS	MMI	CYPRESS
5187P-45	7C187-45C	63 S 881	$7 \mathrm{C} 282-45 \mathrm{C}$	PAL16R4A-4C	PALC16R4L-35C	PAL20R4A-2C	PLDC20G10-35C
5187P-55	$7 \mathrm{Cl} 187-45 \mathrm{C}$	635881	$7 \mathrm{C} 281-45 \mathrm{C}$	PAL16R4A-4M	PALC16R4-40M +	PAL20R4A-2M	PLDC20G10-40M
5188P-25	$7 \mathrm{Cl} 164-25 \mathrm{C}$	635881A	7 C 282 -30C	PAL16R4BM	PALC16R420M	PAL20R4B	PLDC20G10-15C
5188P-35	$7 \mathrm{C} 164-35 \mathrm{C}$	638881A	$7 \mathrm{C} 281-30 \mathrm{C}$	PAL16R4B-2C	PALC16R4-25C	PaL20R6AC	PLDC20G10-25C
5188P-45	$7 \mathrm{Cl} 164-45 \mathrm{C}$	67401	$7 \mathrm{C401-10C}$	PAL16R4B-2M	PALC16R4-30M	PAL20R6AM	PLDC20G10-30M
5188P-55	7C164-45C	67401	$7 \mathrm{C401-10C}$	PAL16R4B-4C	PALC16R4L-35C	PAL20R6A-2C	PLDC20G10-35C
		67401A	$7 \mathrm{C401-15C}$	PAL16R4B-4M	PALC16R4-40M +	PAL20R6A-2M	PLDC20G10-40M
MMI	CYPRESS	67401B	$7 \mathrm{C403-25C}$	PAL16R4C	PALC16R4-35C	PAL20R6B	PLDC20G10-15C
SUFFIX:883B	SUFFIX:B	67401D	$7 \mathrm{C403-25C}$	PAL16R4D-4C	PALC16R4L-25C	PAL20R8AC	PLDC20G10-25C
SUFFIX:F	SUFFIX:F	67402	$7 \mathrm{C402-10C}$	PAL16R4M	PALC16R4-40M +	PAL20R8AM	PLDC20G10-30M
SUFFIX:J	SUFFIX:D	67402A	7C402-15C	PAL16R6AC	PALC16R6-25C	PAL20R8A-2C	PLDC20G10-35C
SUFFIX:L	SUFFIX:L	67402B	$7 \mathrm{C402-25C}$	PAL16R6AM	PALC16R6-30M	PAL20R8A-2M	PLDC20G10-40M
SUFFIX:N	SUFFIX:P	67402D	74404.25 C	PAL16R6A-2C	PALC16R6-35C	PAL20R8B	PLDC20G10-15C
SUFFIX:SHRP	SUFFIX:B	67411	$7 \mathrm{C403-25C}$	PAL16R6A-2M	PALC16R6-40M	PAL20RA10C	PALC20RA10-30C
5381S-1	7C281-45M	67412	$7 \mathrm{C402-25C}$	PAL16R6A-4C	PALC16R6L-35C	PAL20RA10M	PALC20RA10-35M
5381S-2	7C281-45M	67L402	$7 \mathrm{C402-10C}$	PAL16R6A-4M	PALC16R6-40M	PALC22V10/A	PALC22V10-35C
5381-1	7C282-45M	C57401	7C401-10M	PAL16R6BM	PALC16R6-20M	PLEIOP8C	$7 \mathrm{C} 282 \cdot 30 \mathrm{C}$
5381-2	7C282-45M	C57401A	7C401-10M	PAL16R6B-2C	PALC16R6-25C	PLE10P8C	$7 \mathrm{C} 281-30 \mathrm{C}$
53RA1681AS	7C245-35M -	C57402	7C402-10M	PAL16R6B-2M	PALC16R6-30M	PLE10P8M	7C281-45M
53RA1681S	7C245-45M -	C57402A	$7 \mathrm{C} 402 \mathrm{-10M}$	PAL16R6B-4C	PALC16R6L-35C	PLE10P8M	7C282-45M
53RA481AS	7C225-35M	C67401A	$7 \mathrm{C401-15C}$	PAL16R6B-4M	PALC16R6-40M +	PLE10R8C	$7 \mathrm{C} 235-30 \mathrm{C}-$
53RA481S	7C225-40M	C67401B	7C403-25C	PAL16R6C	PALC16R6-35C	PLE10R8M	7C235-40M -
53RS1681AS	7C245-35M -	C67402	7 C 402 -10C	PAL16R6D-4C	PALC16R6L-25C	PLE11P8C	$7 \mathrm{C} 291-35 \mathrm{C}$
53RS1681S	7C245-45M -	C67402A	$7 \mathrm{C402-15C}$	PAL16R6M	PALC16R6-40M +	PLE11P8M	7C291-35M
53RS881AS	7C235-40M -	C67402B	$7 \mathrm{C404-25C}$	PAL16R8AC	PALC16R8-25C	PLE11RA8C	$7 \mathrm{C} 245-35 \mathrm{C}$ -
53RS881S	$7 \mathrm{C} 235-40 \mathrm{M}$ -	C67L401	7C401-5C	PAL16R8AM	PALC16R8-30M	PLE11RA8M	7C245-35M -
53S1681	7C292-50M	C67L401D	$7 \mathrm{C401-15C}$	PAL16R8A-2C	PALC16R8-35C	PLE11RS8C	7C245-35C-
53S1681AS	7C291-35M	C67L402D	$7 \mathrm{C402-15C}$	PAL16R8A-2M	PALC16R8-40M	PLE11RS8M	7C245-35M -
53S1681S	7C291-50M	PAL12L10C	PLDC20G10-35C	PAL16R8A-4C	PALC16R8L-35C	PLE9R8C	$7 \mathrm{C} 225-30 \mathrm{C}$
535881	7C282-45M	PAL12L10M	PLDC20G10-40M	PAL16R8A-4M	PALCI6R8-40M	PLE9R8M	7C225-35M
538881A	7C282-45M	PAL14L8C	PLDC20G10-35C	PAL16R8BM	PALC16R8-20M		
53S881AS	7C281-45M	PAL14L8M	PLDC20G10-40M	PAL16R8B-2C	PALC16R8-25C	MOTOROLA	CYPRESS
538881S	7C281-45M	PAL16L6C	PLDC20G10-35C	PAL16R8B-2M	PALC16R8-30M	PREFIX:MCM	PREFIX:CY
57401	$7 \mathrm{C401-10M}$	PAL16L6M	PLDC20G10-40M	PAL16R8B-4C	PALC16R8L-35C	SUFFIX:P	SUFFIX:P
57401A	7C401-10M	PAL16L8AC	PALC16L8-25C	PAL16R8B-4M	PALC16R8-40M +	SUFFIX:S	SUFFIX:D
57402	7C402-10M	PAL16L8AM	PALC16L8-30M	PAL16R8C	PALC16R8-35C	SUFFIX:Z	SUFFIX:L
57402A	7 C 402 -10M	PAL16L8A-2C	PALC16L8-35C	PAL16R8D-4C	PALC16R8L-25C	1423-45	7C168-45C+
6381S-1	7 C 281 -45C	PAL16L8A-2M	PALC16L8-40M	PAL16R8M	PALC16R8-40M +	2016H-45	6116-45
6381S-2	$7 \mathrm{C} 281-45 \mathrm{C}$	PAL16L8A-4C	PALC16L8L-35C	PAL18LAC	PLDC20G10-35C	2016H-55	6116.55C
6381-1	$7 \mathrm{C} 282-45 \mathrm{C}$	PAL16L8A-4M	PALC16L8-40M +	PAL18L4M	PLDC20G10-40M	2016H-70	6116-55C
6381-2	7 C 282 -45C	PALI6L8BM	PALC16L8-20M	PAL20L10AC	PLDC20G10-35C	2018-35	$7 \mathrm{Cl28-35C}$
63RA1681AS	7 C 245 -35 C -	PAL16L8B-2C	PALC16L8-25C	PAL20L10AM	PLDC20G10-30M	2018-35	$7 \mathrm{Cl28-35C}$
63RA1681S	7 C 245 -35C-	PAL16L8B-2M	PALC16L8-30M	PAL20L10C	PLDC20G10-35C	2018-45	$7 \mathrm{Cl} 28-45 \mathrm{C}$
63RA481AS	$7 \mathrm{C} 225-25 \mathrm{C}$	PAL16L8B-4C	PALC16L8L-35C	PAL20L10M	PLDC20G10-40M	2167H-35	7 Cl 167.35 C
63RA481S	$7 \mathrm{C} 225-30 \mathrm{C}$	PAL16L8B-4M	PALC16L8-40M+	PAL20L2C	PLDC20G10-35C	2167H-45	$7 \mathrm{Cl} 67-45 \mathrm{C}$
63RS1681AS	7C245-35C-	PALI6L8C	PALC16L8-35C	PAL20L2M	PLDC20G10-40M	2167H-55	$7 \mathrm{Cl} 167-45 \mathrm{C}$
63RS1681S	7C245-35C-	PAL16L8D-4C	PALC16L8L-25C	PAL20L8AC	PLDC20G10-25C	6147-55	$7 \mathrm{Cl47-45C}{ }^{*}$
63RS881AS	7C235-30C-	PAL16L8D-4M	PALC16L8-30M +	PAL20L8AM	PLDC20G10-30M	6147.70	$7{ }^{7} 147-45 \mathrm{C}^{*}$
63RS881S	7C235-30C-	PAL16L8M	PALC16L8-40M	PAL20L8A-2C	PLDC20G10-35C	6164-45	$7 \mathrm{Cl} 86-45 \mathrm{C}$
63 S1681	$7 \mathrm{C} 292-50 \mathrm{C}$	PAL16R4AC	PALCl6R4-25C	PAL20L8A-2M	PLDC20G10-40M	6164-55	7C186-55C
63S1681A	$7 \mathrm{C} 292-35 \mathrm{C}$	PAL16R4AM	PALC16R4-30M	PAL20L8B	PLDC20G10-15C	6164-70	7C186-55C
63S1681AS	7 C 291 -35C	PAL16R4A-2C	PALC16R4-35C	PAL20R4AC	PLDC20G10-25C	6168-35	$7 \mathrm{Cl} 168-35 \mathrm{C}+$
63S1681S	7C291-50C	PAL16R4A-2M	PALC16R4-40M	PAL20R4AM	PLDC20G10-30M	6168-45	7C168-45C+

Note: Unless otherwise noted, product meets all performance specs and is within 10 mA on I ICC and 5 mA on ISB ;
$+=$ meets all performance specs but may not meet I_{CC} or I_{SB};

* = meets all performance specs except 2 V data retention-may not meet I_{CC} or $\mathrm{I}_{\text {SB }}$;
- = functionally equivalent

MOTOROLA	CYPRESS	NATIONAL	CYPRESS	NATIONAL	CYPRESS	NATIONAL	CYPRESS
6168.55	$7 \mathrm{Cl} 168-45 \mathrm{C}+$	2147H	2147-55M	87S191	7C292-50C	PALI6R8AM	PALC16R8-30M
6168.70	$7 \mathrm{C} 168-45 \mathrm{C}+$	2147H	2147-55C	87S191A	$7 \mathrm{C} 292-35 \mathrm{C}$	PALI6R8B2C	PALC16R8-25C
61 L 47.55	$7 \mathrm{C} 147-45 \mathrm{C}^{*}$	$2147 \mathrm{H}-1$	2147-35C	87S191B	$7 \mathrm{C} 292-35 \mathrm{C}$	PAL16R8B2M	PALC16R8-30M
$61 \mathrm{~L} 47-70$	$7 \mathrm{C147-45C}{ }^{*}$	$2147 \mathrm{H}-2$	2147-45C	87S281	$7 \mathrm{C} 281-45 \mathrm{C}$	PALI6R8B4C	PALC16R8L-35C
61L64-45	7C186-45C	$2147 \mathrm{H}-3$	2147-55C	87S281A	7C281-45C	PAL16R8B4M	PALC16R8-40M +
61 L 64.55	7C186-55C	2147H-3	2147.55M	875291	$7 \mathrm{C} 291-50 \mathrm{C}$	PAL16R8BM	PALC16R8-20M
$61 \mathrm{~L} 64-70$	$7 \mathrm{C} 186-55 \mathrm{C}$	2147H-3L	7C147-45C	875291A	$7 \mathrm{C} 291-35 \mathrm{C}$	PAL16R8C	PALC16R8-35C
6268-25	$7 \mathrm{Cl} 168-25 \mathrm{C}$	2148H	2148.55C	875291B	$7 \mathrm{C} 291-35 \mathrm{C}$	PALI6R8M	PALC16R8-40M +
6268-35	$7 \mathrm{C} 168-35 \mathrm{C}$	2148HL	21L48-55C	87S401	$7 \mathrm{C401-10C}$	PAL20L10B2C	PLDC20G10-25C
6269-25	$7 \mathrm{C} 169-25 \mathrm{C}$	2148H-2	2148-45C	87S401A	$7 \mathrm{C401-15C}$	PAL20L10B2M	PLDC20G10-30M
6269-35	$7 \mathrm{Cl} 169-35 \mathrm{C}$	2148H-3	2148-55C	875402	$7 \mathrm{C402-10C}$	PAL20L10C	PLDC20G10-35C
6270-25	7C170-25C	2148H-3L	21L48-55C	875402A	$7 \mathrm{C402-15C}$	PAL20L10M	PLDC20G10-40M
6270-35	$7 \mathrm{Cl} 70-35 \mathrm{C}$	2901AC	$7 \mathrm{C901-31C}$	87SR181	$7 \mathrm{C} 235-30 \mathrm{C}$	PAL20L2C	PLDC20G10-35C
6270-45	$7 \mathrm{Cl} 10-45 \mathrm{C}$	2901AM	7C901-32M	87SR25	$7 \mathrm{C} 225-40 \mathrm{C}$	Pal20L8AC	PLDC20G10-25C
6287.25	7C187-25C	2901A-1C	$7 \mathrm{C901-315}$	87SR25B	$7 \mathrm{C} 225-30 \mathrm{C}$	PAL20L8AM	PLDC20G10-30M
6287-35	7 C 187.35 C	2901A.1M	7C901-32M	87SR476	$7 \mathrm{C225-40} \mathrm{C}-$	PAL20L8BC	PLDC20G10-25C
6287-45	7C187-45C	2901A-2C	7C901-31C	87SR476B	7 C 225.30 C -	PAL20L8BM	PLDC20G10-30M
6288-25C	$7 \mathrm{Cl} 164-25 \mathrm{C}$	2901A-2M	7C901-32M	PAL16L8A2C	PALC16L8-35C	PAL20L8C	PLDC20G10-35C
6288-35C	7 C 164.35 C	2909AC	2909AC	PAL16L8A2M	PALC16L8-40M	PAL20L8M	PLDC20G10-40M
6288-35M	7C164-35M	2909AM	2909M	PAL16L8AC	PALC16L8-25C	PAL20R4AC	PLDC20G10-25C
6288-45M	7C164-45M	2911AC	2911 AC	PAL16L8AM	PALC16L8-30M	PaL20R4AM	PLDC20G10-30M
6290-25C	$7 \mathrm{Cl} 166-25 \mathrm{C}$	2911AM	2911M	PAL16L8B2C	PALC16L8-25C	PAL20R4BC	PLDC20G10-25C
6290-35C	7C166-35C	54S189	54S189M	PAL16L8B2M	PALC16L8-30M	PAL20R4BM	PLDC20G10-30M
6290-35M	7C166-35M	54S189A	7C189-25M	PAL16L8B4C	PALC16L8L-35C	PAL20R4C	PLDC20G10-35C
6290-45C	$7 \mathrm{C} 166-45 \mathrm{C}$	74S189	74S189C	PAL16L8B4M	PALCI6L8-40M+	PAL20R4M	PLDC20G10-40M
6290-45M	7C166-45M	74S189A	27503AC	PAL16L8BM	PALC16L8-20M	PAL20R6AC	PLDC20G10-25C
62L87-25	$7 \mathrm{C} 187-25 \mathrm{C}$	75S07	7C190-25M	PALI6L8C	PALC16L8-35C	PAL20R6AM	PLDC20G10-30M
62L87-35	7C187-35C+	75S07A	27S07AM	PAL16L8M	PALC16L8-40M	PAL20R6BC	PLDC20G10-25C
7681	7C282-45C	77LS181	7C282-45M	PAL16R4A2C	PALC16R4-35C	PAL20R6BM	PLDC20G10-30M
7681A	$7 \mathrm{C} 282-45 \mathrm{C}$	77S181	7C282-45M	PAL16R4A2M	PALC16R4-40M	PAL20R6C	PLDC20G10-35C
93422	93422 C	77S181A	7C282-45M	PaL16R4AC	PALC16R4-25C	PAL20R6M	PLDC20G10-40M
93422	93422M	77S191	7C292-50M	PAL16R4AM	PALC16R430M	PAL20R8AC	PLDC20G10-25C
93422A	93422AM	77S191A	7C292-50M	PAL16R4B2C	PALC16R4-25C	PAL20R8AM	PLDC20G10-30M
93422A	93422AC	77S191B	$7 \mathrm{C} 292-50 \mathrm{M}$	PAL16R4B2M	PALC16R4-30M	PAL20R8BC	PLDC20G10-25C
93 L 422	93L422C	775281	7C281-45M	PAL16R4B4C	PALC16R4L-35C	PAL20R8BM	PLDC20G10-30M
93 L 422	93L422M	775281A	7C281-45M	PAL16R4B4M	PALC16R4-40M +	PAL20R8C	PLDC20G10-35C
93L422A	93L422AC	775291	7C291.50M	PAL16R4BM	PALC16R4-20M	PAL20R8M	PLDC20G10-40M
93L422A	93L422AM	775291A	7C291-50M	PAL16R4C	PALC16R435C		
		775291B	$7 \mathrm{C} 291-50 \mathrm{M}$	PAL16R4M	PALC16R4-40M +	NEC	CYPRESS
NATIONAL	CYPRESS	775401	$7 \mathrm{C} 401-10 \mathrm{M}$	PAL16R6A2C	PALC16R6-35C	PREFIX:uPD	PREFIX:CY
PREFIX:DM	PREFIX:CY	775401A	7C401-10M	PAL16R6A2M	PALC16R6-40M	SUFFIX:C	SUFFIX:P
PREFIX:IDM	PREFIX:CY	775402	7C402-10M	PAL16R6AC	PALC16R6-25C	SUFFIX:D	SUFFIX:D
PREFIX:NMC	PREFIX:CY	77S402A	7 C 402 -10M	PAL16R6AM	PALC16R6-30M	SUFFIX:K	SUFFIX:L
SUFFIX:J	SUFFIX:D	77 SR181	$7 \mathrm{C} 235-40 \mathrm{M}$	PAL16R6B2C	PALC16R6-25C	SUFFIX:L	SUFFIX:F
SUFFIX:N	SUPFIX:P	77SR25	7C225-40M	PAL16R6B2M	PALC16R6-30M	2147A-25	7 Cl 147.25 C
12L10C	PLDC20G10-35C	77SR25B	7C225-40M	PAL16R6B4C	PALC16R6L-35C	2147A-35	2147.35C
14L8C	PLDC20G10-35C	77SR476	7C225-40M -	PAL16R6B4M	PALC16R6-40M +	2147A-45	2147-45C
14L8M	PLDC20G10-40M	77SR476B	7C225-40M -	PAL16R6BM	PALC16R6-20M	2147.2	2147.55C
16L6C	PLDC20G10-35C	85S07	27S07C	PAL16R6C	PaLC16R6-35C	2147-3	2147-55C
16L6M	PLDC20G10-40M	85S07A	27507AC	PAL16R6M	PALC16R6-40M +	2149	2149-55C
18L4C	PLDC20G10-35C	85S07A	$7 \mathrm{Cl} 28-45 \mathrm{C}+$	PALI6R8A2C	PALC16R8-35C	2149-1	2149-45C
18L4M	PLDC20G10-40M	87LS181	$7 \mathrm{C} 282-45 \mathrm{C}$	PALI6R8A2M	PALC16R8-40M	2149-2	2149-35C
20L2M	PLDC20G10-40M	87S181	$7 \mathrm{C} 282-45 \mathrm{C}$	Pali6R8AC	PALC16R8-25C	2167-2	7C167-45C

[^5]$+=$ meets all performance specs but may not meet $I_{C C}$ or $I_{S B}$;

* = meets all performance specs except 2 V data retention-may not meet I_{CC} or $\mathrm{I}_{\text {SB }}$;
- = functionally equivalent

Product Line Cross Reference (Coninued)

NEC	CYPRESS	RAYTHEON	CYPRESS	TI	CYPRESS	TI	CYPRESS
2167-3	$7 \mathrm{Cl} 167-45 \mathrm{C}$	29683AC	$7 \mathrm{C} 292.50 \mathrm{C}+$	PREFIX:TBP	PREFIX:CY	PAL16L8A-2M	PALC16L8-40M
429	$7 \mathrm{C} 292-50 \mathrm{C}$	29683AM	7C292-50M +	PREFIX:TIB	PREFIX:CY	PAL16L8-20M	PALC16L8-20M
429-1	7 C 292.50 C	29683ASC	$7 \mathrm{C291.50C}+$	SUFFIX:F	SUFFIX:F	PAL16L8-25C	PALC16L8B-2C
429-2	7 C 292.50 C	29683ASM	7C291-50M +	SUFFIX:J	SUFFIX:L	PAL16L830M	PALC16L8-30M
429-3	7C292-35C	29683C	7C292-50C+	SUFFIX:N	SUFFIX:D	PAL16R4AC	PALC16R4-25C
4311-35	7C167L-35C	29683M	7C292-50M +	22V10AC	PALC22V10-25C	PAL16R4AM	PALC16R4-30M
4311-45	7 Cl 167.45 C	29683SC	$7 \mathrm{C291.50C+}$	22V10AM	PALC22V10-30M	PAL16R4A-2C	PALC16R4-25C
4311-55	7C167-45C	29683SM	$7 \mathrm{C} 291.50 \mathrm{M}+$	27C291-3	7C291L-35C+	PAL16R4A-2M	PALC16R4-40M
4314-35	7C168L-35C+	29VP864DB	7C264-55M	27C291-30	7C291L-35C+	PAL16R4-20M	PALC16R4-20M
4314-45	7C168L-45C+	29VP864SB	7 C 263 -55M	27C291-5	$7 \mathrm{C} 291 \mathrm{~L}-50 \mathrm{C}+$	PAL16R4-25C	PALC16R4-25C
4314.55	7C168L-45C+	29VS864SB	7C261-55M	27C291-50	7C291L-50C+	PAL16R430M	PALC16R430M
4361-40	7 Cl 187.35 C	39VP864D	7C264-55C	27C292-3	7C292L-35C+	PAL16R6AC	PALC16R6-25C
4361-45	7 Cl 18745 C	39VP864S	7C263-55C	27C292-35	7C292L-35C+	PAL16R6AM	PALC16R6-30M
4361-55	7 Cl 18745 C	39VS864S	$7 \mathrm{C} 261-55 \mathrm{C}$	27C292-5	$7 \mathrm{C} 292 \mathrm{~L}-50 \mathrm{C}+$	PAL16R6A-2C	PALC16R6-25C
4361-70	7 Cl 18745 C			27C292-50	$7 \mathrm{C} 292 \mathrm{~L}-50 \mathrm{C}+$	PAL16R6A-2M	PALC16R6-40M
4362-45	$7 \mathrm{Cl} 64-45 \mathrm{C}$	SIGNETICS	CYPRESS	28L166W	$7 \mathrm{C} 292-50 \mathrm{C}$	PAL16R6-20M	PALC16R6-20M
4362-55	$7 \mathrm{Cl} 164-45 \mathrm{C}$	PREFIX:N	PREFIX:CY	28L86AMW	7C282-45M	PAL16R6-25C	PALC16R6-25C
4362-70	7C164-45C	PREFIX:S	PREFIX:CY	28L86AW	7C282-45C	PAL16R6-30M	PALC16R6-30M
4363-45	$7 \mathrm{C} 166-45 \mathrm{C}$	SUFFIX:883B	SUFFIX:B	28S166W	7C292-50C	PAL16R8AC	PALC16R8-25C
4363-55	$7 \mathrm{Cl} 66-45 \mathrm{C}$	SUFFIX:F	SUFFIX:D	28886AMW	7C282-45M	PAL16R8AM	PALC16R8-30M
4363-70	7C166-45C	SUFFIX:G	SUFFIX:L	28S86AW	$7 \mathrm{C} 282-45 \mathrm{C}$	PAL16R8A-2C	PALC16R8-25C
		SUFFIX:N	SUFFIX:P	38L165-35C	7 C 291.35 C	PAL16R8A-2M	PALC16R8-40M
RAYTHEON	CYPRESS	SUFFIX:R	SUFFIX:F	38L165-45C	7 C 291 -35C	PAL16R8-20M	PALC16R8-20M
PREFIX:R	PREFIX:CY	N74S189	74S189C	38L166-35	7C292-35C	PAL16R8-25C	PALC16R8-25C
SUFFIX:B	SUFFIX:B	N82HS641	$7 \mathrm{C} 264-55 \mathrm{C}$	38L166-45	7C292-35C	PAL16R8-30M	PALC16R8-30M
SUFFIX:D	SUFFIX:D	N82HS641A	7C264-45C	38L85-45C	7C281-45C	PAL20L10AC	PLDC20G10-35C
SUFFIX:F	SUFFIX:F	N82HS641B	$7 \mathrm{C} 264-35 \mathrm{C}$	38R165-18C	$7 \mathrm{C} 245-25 \mathrm{C}$	PAL20L10AM	PLDC20G10-30M
SUFFIX:L	SUFFIX:L	N82LS181	7C282-45C	38R165-25C	$7 \mathrm{C} 245-35 \mathrm{C}$	PAL20L10A-2C	PLDC20G10-25C
SUFFIX:S	SUFFIX:S	N82S181	$7 \mathrm{C} 282-45 \mathrm{C}$	38R85-15C	7C235-30C	PAL20L10A-2M	PLDC20G10-30M
29631AC	$7 \mathrm{C} 282-45 \mathrm{C}$	N82S181A	7C282-45C	388165-25C	7C291-25C	PAL20L8AC	PLDC20G10-25C
29631AM	7C282-45M	N82S181B	$7 \mathrm{C282-45C}$	38S165-35C	$7 \mathrm{C} 291-35 \mathrm{C}$	PAL20L8AM	PLDC20G10-30M
29631ASC	7C281-45C	N82S191A-3	$7 \mathrm{C291-50C}$	38885-30C	$7 \mathrm{C} 281-30 \mathrm{C}$	PAL20L8A-2C	PLDC20G10-25C
29631ASM	7C281-45M	N82S191A-6	7C292-50C	54HC189	7C189-25M	PAL20L8A-2M	PLDC20G10-30M
29631 C	$7 \mathrm{C} 282-45 \mathrm{C}$	N82S191B-3	$7 \mathrm{C291-35C}$	54HCT189	7C189-25M	PAL20R4AC	PLDC20G10-25C
29631M	7C282-45M	N82S191B-6	$7 \mathrm{C292}-35 \mathrm{C}$	54LS189A	27LS03M	PAL20R4AM	PLDC20G10-30M
29631SC	$7 \mathrm{C} 281-45 \mathrm{C}$	N82S191-3	$7 \mathrm{C291.50C}$	54LS219A	7C190-25M +	PAL20R4A-2C	PLDC20G10-25C
29631SM	7C281-45M	N82S191-6	7C292-50C	54S189A	54S189M	PAL20R4A-2M	PLDC20G10-30M
29633AC	7C282-45C+	S54S189	54S189M	74ACT29116	7C9116AC	PAL20R6AC	PLDC20G10-25C
29633AM	7C282-45M +	S82HS641	7C264-55M	74ACT29116-1	7C9116AC	PAL20R6AM	PLDC20G10-30M
29633ASC	7C281-45C+	S82LS181	7C282-45M	7489	7C189-25C	PAL20R6A-2C	PLDC20G10-25C
29633ASM	7C281-45M+	S82S181	7C282-45M	$74 \mathrm{HC189}$	7C189-25C	PAL20R6A-2M	PLDC20G10-30M
29633 C	7C282-45C+	S82S181A	7C282-45M	$74 \mathrm{HC219}$	7C190-25C	PAL20R8AC	PLDC20G10-25C
29633M	7C282-45M +	S82S191A-3	7C291-50M	74HCT189	7C189-25C	PAL20R8AM	PLDC20G10.30M
29633SC	$7 \mathrm{C} 281-45 \mathrm{C}+$	S82S191A-6	7C292-50M	74LS189A	27LS03C	PAL20R8A-2C	PLDC20G10-25C
29633SM	7C281-45M +	S82S191B-3	$7 \mathrm{C} 291-50 \mathrm{M}$	74LS219A	27S07C+	PAL20R8A-2M	PLDC20G10.30M
29681AC	7C292-50C	S82S191B-6	7C292.50M	745189A	74S189C		
29681AM	7C292-50M	. $8825191-3$	7C291.50M	7451898	$7 \mathrm{Cl} 189-25 \mathrm{C}$	TOSHIBA	CYPRESS
29681ASC	7 C 29150 C	S82S191-6	7C292-50M	HCT9510E	${ }^{7} 5510-75 \mathrm{C}+$	PREFIX:P	SUFFIX:P
29681ASM	7 C 291.50 M			HCT9510E-10	$7 \mathrm{C510-75C}+$	PREFIX:TMM	PREFIX:CY
29681C	7 C 292.50 C	TI	CYPRESS	HCT9510M	7C510-75M+	SUFFIX:D	SUFFIX:D
29681M	7C292-50M	PREFIX:JBP	PREFIX:CY	PAL16L8AC	PALC16L8-25C	2015A-10	$7 \mathrm{Cl} 28-55 \mathrm{C}+$
29681SC	$7 \mathrm{C} 291-50 \mathrm{C}$	PREFIX:PAL	SUFFIX:P	PALI6L8AM	PALC16L8-30M	2015A-12	$7 \mathrm{Cl} 28.55 \mathrm{C}+$
29681SM	7C291-50M	PREFIX:SN	PREFIX:CY	PAL16L8A-2C	PALC16L8-35C	2015A-15	$7 \mathrm{Cl28-55C+}$

Note: Unless otherwise noted, product meets all performance specs and is within 10 mA on $I_{C C}$ and 5 mA on ISB;
$+=$ meets all performance specs but may not meet I_{CC} or I_{SB};

* = meets all performance specs except 2 V data retention-may not meet I_{CC} or I_{SB};
- = functionally equivalent

Jote: Unless otherwise noted, product meets all performance specs and is within 10 mA on $I_{C C}$ and 5 mA on ISB ;
$+=$ meets all performance specs but may not meet $\mathrm{I}_{\mathbf{C C}}$ or I $_{\text {SB }}$;

* = meets all performance specs except 2 V data retention-may not meet I_{CC} or $\mathrm{I}_{\text {SB }}$;
- = functionally equivalent

BRIDGEMOS
7

QUICKPRO
 8

APPLICATION BRIEFS

Static RAMs (Random Access Memory)

Device Number

CY2147
CY2148
CY21L48
CY2149
CY21L49
CY6116
CY7C122
CY7C123
CY7C128
CY7C130
CY7C140
CY7C132
CY7C142
CY7C147
CY7C148
CY7C149
CY7C150
CY7C152
CY7C158
CY7C159
CY7C161
CY7C162
CY7C164
CY7C166
CY7C167
CY7C168
CY7C169
CY7C170
CY7C171
CY7C172
CY7C185
CY7C186
CY7C187
CY7C189
CY7C190
CY7C191
CY7C192
CY7C194
CY7C196
CY7C197
CY7C198
CY7C199
CY74S189
CY27LS03
CY27S03
CY27S07
CY93422A
CY93L422A
CY93422
CY93L422
DescriptionPage Number
4096×1 Static RAM 2-1
1024×4 Static RAM 2-6
1024×4 Static RAM, Low Power 2-6
1024×4 Static RAM 2-6
1024×4 Static RAM, Low Power 2-6
2048×8 Static RAM 2-12
256 x 4 Static RAM Separate I/O 2-19
256×4 Static RAM Separate I/O 2-26
2048×8 Static RAM 2-33
1024×8 Dual Port Static RAM 2-40
1024×8 Dual Port Static RAM 2-40
2048×8 Dual Port Static RAM 2-50
2048×8 Dual Port Static RAM 2-50
4096×1 Static RAM 2-60
1024×4 Static RAM 2-67
1024×4 Static RAM 2-67
1024×4 Static RAM Separate I/O 2-74
Self-Timed Cache Static RAM 2-82
Self-Timed Pipelined Static RAM 2-83
Self-Timed Pipelined Static RAM 2-83
16,384 x 4 Static RAM Separate I/O 2-84
16,384 x 4 Static RAM Separate I/O 2-84
$16,384 \times 4$ Static RAM 2-92
16,384 x 4 Static RAM with Output Enable 2-92
$16,384 \times 1$ Static RAM 2-101
4096×4 Static RAM 2-108
4096×4 Static RAM 2-108
4096×4 Static RAM with Output Enable 2-115
4096×4 Static RAM Separate I/O 2-121
4096×4 Static RAM Separate I/O 2-121
8192×8 Static RAM 2-128
8192×8 Static RAM 2-128
65,536 x 1 Static RAM 2-137
16×4 Static RAM 2-146
16×4 Static RAM 2-146
65,536 x 4 Static RAM Separate I/O 2-153
65,536 x 4 Static RAM Separate I/O 2-153
$65,536 \times 4$ Static RAM 2-159
65,536 x 4 Static RAM with Output Enable 2-159
$262,144 \times 1$ Static RAM 2-165
$32,768 \times 8$ Static RAM 2-171
$32,768 \times 8$ Static RAM 2-171
16×4 Static RAM 2-177
16×4 Static RAM 2-177
16×4 Static RAM 2-177
16×4 Static RAM 2-177
256×4 Static RAM Separate I/O 2-183
256×4 Static RAM Separate I/O 2-183
256×4 Static RAM Separate I/O 2-183
256×4 Static RAM Separate I/O 2-183

Features

- Automatic power-down when deselected
- CMOS for optimum speed/power
- High speed
$-35 \mathrm{~ns}$
- Low active power
- 690 mW (commercial)
- 770 mW (military)
- Low standby power
- 140 mW
- TTL compatible inputs and outputs
- Capable of withstanding greater than 2000 V electrostatic discharge

Functional Description

The CY2147 is a high performance CMOS static RAM organized as 4096×1 bit. Easy memory expansion is provided by an active LOW chip enable ($\overline{\mathrm{CE}})$ and three-state drivers. The CY2147 has an automatic power-down feature, reducing the power consumption by 80% when deselected.
Writing to the device is accomplished when the chip enable ($\overline{\mathrm{CE}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the input pin (DI) is written into the memory location specified on the address pins (A_{0} through A_{11}).

Reading the device is accomplished by taking the chip enable ($\overline{\mathrm{CE}}$) LOW, while write enable ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the data output (DO) pin.
The output pin stays in high impedance state when chip enable ($\overline{\mathrm{CE}})$ is HIGH or write enable ($\overline{\mathbf{W E}}$) is LOW.

Logic Block Diagram

Pin Configuration

0013-2

Selection Guide (For higher performance and lower power refer to CY7C147 data sheet.)

		$2147-35$	$2147-45$	$2147-55$
Maximum Access Time (ns)		35	45	55
Maximum Operating Current (mA)	Commercial	125	125	125
	Military		140	140
Maximum Standby Current (mA)	Commercial	25	25	25
	Military		25	25

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature \qquad
Ambient Temperature with
Power Applied \qquad
Supply Voltage to Ground Potential
(Pin 18 to Pin 9) . -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State.
-0.5 V to +7.0 V
DC Input Voltage -3.0 V to +7.0 V
Output Current into Outputs (Low)
.20 mA

Static Discharge Voltage . > 2001 V
(Per MIL-STD-883 Method 3015)
Latchup Current
$>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	VCC
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[5]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range ${ }^{4]}$

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	5	pF
COUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	6	

Notes:

1. Duration of the short circuit should not exceed 30 seconds.
2. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CE}}$ input is required to keep the device deselected during $V_{\text {CC }}$ power-up, otherwise $I_{\text {SB }}$ will exceed values given.
3. Tested initially and after any design or process changes that may affect these parameters.
4. See the last page of this specification for Group A subgroup testing information.
5. T_{A} is the "instant on" case temperature.

AC Test Loads and Waveforms

Figure 1a

Figure 1b

INPUT PULSES

0013-4

Figure 2

Equivalent to:
THÉVENIN EQUIVALENT

Switching Characteristics Over Operating Range ${ }^{[4, ~ 6]}$

Parameters	Description	2147-35		2147-45		2147.55		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	35		45		55		ns
t_{AA}	Address to Data Valid		35		45		55	ns
toha	Data Hold from Address Change	5		5		5		ns
$\mathrm{t}_{\mathrm{ACE}}$	$\overline{\text { CE LOW }}$ to Data Valid		35		45		55	ns
tizCE	$\overline{\text { CE }}$ LOW to Low ${ }^{\text {[8] }}$	5		5		5		ns
$\mathrm{t}_{\mathrm{HZCE}}$	$\overline{\mathrm{CE}}$ HIGH to High Z [7, 8]		30		30		30	ns
tpu	$\overline{\text { CE }}$ LOW to Power Up	0		0		0		ns
tPD	$\overline{\mathrm{CE}}$ HIGH to Power Down		20		20		20	ns
WRITE CYCLE ${ }^{[9]}$								
twc	Write Cycle Time	35		45		55		ns
$\mathrm{t}_{\text {SCE }}$	CE LOW to Write End	35		45		45		ns
$\mathrm{t}_{\text {AW }}$	Address Set-up to Write End	35		45		45		ns
t_{HA}	Address Hold from Write End	0		0		10		ns
tSA	Address Set-up to Write Start	0		0		0		ns
tpwe	WE Pulse Width	20		25		25		ns
tSD	Data Set-up to Write End	20		25		25		ns
t_{HD}	Data Hold from Write End	10		10		10		ns
t LZWE	WE HIGH to Low Z[8]	0		0		0		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE LOW to High } \mathrm{Z}^{[7, ~ 8]}}$	0	20	0	25	0	25	ns

Notes:
6. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance.
7. $\mathrm{t}_{\mathrm{HZCE}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in Figure $1 b$. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
8. At any given temperature and voltage condition, t_{HZ} is less than t_{LZ} for all devices.
9. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
10. $\bar{W} E$ is HIGH for read cycle.
11. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
12. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.

Switching Waveforms

Read Cycle No. 1 (Notes 10, 11)

Read Cycle No. 2 (Notes 10, 12)

Switching Waveforms (Continued)
Write Cycle No. 1 (WE Controlled) (Note 9)

Write Cycle No. 2 ($\overline{\mathbf{C E}}$ Controlled) (Note 9)

0013-9
Note: If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with WE HIGH, the output remains in a high impedance state.
Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
35	CY2147-35 PC	P3	Commercial
	CY2147-35 DC	D4	
	CY2147-45 PC	P3	Commercial
	CY2147-45 DC	D4	
	CY2147-45 DMB	D4	Military
55	CY2147-55 PC	P3	Commercial
	CY2147-55 DC	D4	
	CY2147-55 DMB	D4	Military

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
I_{SB}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	7,8,9,10,11
$\mathrm{t}_{\text {AA }}$	7,8,9,10,11
toha	7,8,9,10,11
$\mathrm{t}_{\text {ACE }}$	7,8,9,10,11
WRITE CYCLE	
twC	7,8,9,10,11
$t_{\text {SCE }}$	7,8,9,10,11
$\mathrm{t}_{\text {AW }}$	7,8,9,10,11
t_{HA}	7,8,9,10,11
$\mathrm{t}_{\text {SA }}$	7,8,9,10,11
tPWE	7,8,9,10,11
$\mathrm{t}_{\text {SD }}$	7,8,9,10,11
t_{HD}	7,8,9,10,11

Document \# : 38-00023-B

Features

- Automated power-down when deselected (2148)
- CMOS for optimum speed/ power
- Low power
- 660 mW (commercial)
- 770 mW (military)
- 5 volt power supply $\pm 10 \%$ tolerance both commercial and military
- TTL compatible inputs and outputs

Functional Description

The CY2148 and CY2149 are high performance CMOS static RAMs organized as 1024×4 bits. Easy memory expansion is provided by an active LOW chip select ($\overline{\mathrm{CS}})$ input, and threestate outputs. The CY2148 and CY2149 are identical except that the CY2148 includes an automatic ($\overline{\text { CS }}$) power-down feature. The CY2148 remains in a low power mode as long as the device remains unselected, i.e. ($\overline{\mathbf{C S}}$) is HIGH, thus reducing the average power requirements of the device. The chip select ($\overline{\mathrm{CS}}$) of the CY2149 does not affect the power dissipation of the device.
An active LOW write enable signal ($\overline{\mathrm{WE}}$) controls the writing/reading operation of the memory. When the chip
select ($\overline{\mathbf{C S}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW, data on the four data input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{3}$) is written into the memory location addressed by the address present on the address pins (A_{0} through A_{9}).
Reading the device is accomplished by selecting the device, ($\overline{\mathrm{CS}}$) active LOW, while (WE) remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins (A_{0} through A_{9}) is present on the four data input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{3}$).
The input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{3}$) remain in a high impedance state unless the chip is selected, and write enable ($\overline{\mathrm{WE}}$) is high.

Logic Block Diagram

Pin Configuration

0015-2

Selection Guide (For Higher Performance and Lower Power Refer to CY7C148/9 Data Sheet)

		$\mathbf{2 1 4 8 / 9 - 3 5}$	$\mathbf{2 1 L 4 8 / 9 - 3 5}$	$\mathbf{2 1 4 8 / 9 - 4 5}$	21L48/9-45	2148/9-55	21L48/9-55
Maximum Access Time (ns)		35	35	45	45	55	55
Maximum Operating Current (mA)	Commercial	140	120	140	120	140	120
	Military			140		140	

CY2148/CY21L48
CY2149/CY21L49
SEMICONDUCTOR

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 18 to Pin 9)
-0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State.
-0.5 V to +7.0 V

Output Current into Outputs (Low) 20 mA

Operating Range

Range	Ambient Temperature	V CC
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[11]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range ${ }^{[12]}$

Parameters	Description	Test Conditions		21L48/9		2148/9		Units
				Min.	Max.	Min.	Max.	
IOH	Output HIGH Current	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-4		-4		mA
IOL	Output LOW Current	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	8		8		mA
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$			8		
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.0	6.0	2.0	6.0	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	-3.0	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {I }} \leq \mathrm{V}_{\text {CC }}$		-10	10	-10	10	$\mu \mathrm{A}$
Ioz	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$ Output Disabled	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-50	50	-50	50	$\mu \mathrm{A}$
$\mathrm{C}_{\text {I }}$	Input Capacitance ${ }^{\text {[13] }}$	$\begin{aligned} & \text { Test Frequency }=1.0 \mathrm{MHz} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text {, All Pins at } 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$			5		5	
$\mathrm{C}_{\text {I/O }}$	Input/Output Capacitance ${ }^{[13]}$				7		7	pF
I CC	$\mathrm{V}_{\text {CC }}$ Operating	Max. $\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}} \leq \mathrm{V}_{\text {IL }}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		120		140	mA
ICC	Supply Current	Output Open	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				140	
ISB	Automatic $\overline{\text { CS }}$	Max. VCC, 2148	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		20		30	mA
$\mathrm{I}_{\text {SB }}$	Power Down Current	$\overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}} \quad$ only	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				30	
IPO	Peak Power-On	Max. $\mathrm{V}_{\text {CC }}$, 2148	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		30		50	mA
	Current	$\mathrm{CS} \geq \mathrm{V}_{\text {IH }}{ }^{[3]}$ only	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				50	
Ios	Output Short	GND $\leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathbf{C C}}{ }^{[10]}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		± 275		± 275	mA
Ios	Circuit Current		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				± 350	

1. Test conditions assume signal transition times of 10 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance. Output timing reference is 1.5 V .
2. The internal write time of the memory is defined by the overlap of CS LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
3. A pull up resistor to $V_{C C}$ on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected during $V_{C C}$ power up. Otherwise current will exceed values given (CY2148 only).
4. Chip deselected greater than 55 ns prior to selection.
5. Chip deselected less than 55 ns prior to selection.

AC Test Loads and Waveforms

0015-3
6. At any given temperature and voltage condition, t_{HZ} is less than $\mathrm{t}_{\mathbf{L Z}}$ for all devices. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage with specified loading in Figure 1b.
7. $\bar{W} \bar{E}$ is HIGH for read cycle.
8. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.
9. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW.
10. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
11. T_{A} is the "instant on" case temperature.
12. See the last page of this specification for Group A subgroup testing information.
13. Tested initially and after any design or process changes that may affect these parameters.

Figure 1a

o:

[^6]
Switching Characteristics ${ }^{[12]}$

Parameters	Description		2148/9-35		2148/9-45		2148/9-55		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE									
trC	Address Valid to Address Do Not Care Time (Read Cycle Time)		35		45		55		ns
${ }^{\text {taA }}$	Address Valid to Data Out Valid Delay (Address Access Time)			35		45		55	ns
$\mathrm{taCS1}^{[4]}$	Chip Select LOW to Data Out Valid (CY2148 only)			35		45		55	ns
$\mathrm{taCS2}^{[5]}$				45		55		65	
${ }^{\text {taCS }}$	Chip Select LOW to Data Out Valid (CY2149 only)			15		20		25	ns
$\mathrm{t}_{\mathrm{LZ}}{ }^{[6]}$	Chip Select LOW to Data Out On	2148	10		10		10		ns
		2149	5		5		5		
$\mathrm{t}_{\mathrm{HZ}}{ }^{[6]}$	Chip Select HIGH to Data Out Off		0	20	0	20	0	20	ns
${ }^{\text {toH }}$	Address Unknown to Data Out Unknown Time		0		5		5		ns
tPD	Chip Select HIGH to Power-Down Delay	2148		30		30		30	ns
tPu	Chip Select LOW to Power-Up Delay	2148	0		0		0		ns
WRITE CYCLE									
twc	Address Valid to Address Do Not Care (Write Cycle Time)		35		45		55		ns
$\mathrm{twP}^{[2]}$	Write Enable LOW to Write Enable HIGH		30		35		40		ns
twR	Address Hold from Write End		5		5		5		ns
$\mathrm{twz}^{[6]}$	Write Enable LOW to Output in High Z		0	10	0	15	0	20	ns
tDW	Data in Valid to Write Enable HIGH		20		20		20		ns
${ }^{\text {t }}$ H	Data Hold Time		0		0		0		ns
$\mathrm{t}_{\text {AS }}$	Address Valid to Write Enable LOW		0		0		0		ns
$\mathrm{t}_{\mathrm{CW}}{ }^{[2]}$	Chip Select LOW to Write Enable HIGH		30		40		50		ns
tow ${ }^{[6]}$	Write Enable High to Output in Low Z		0		0		0		ns
$t_{\text {AW }}$	Address Valid to End of Write		30		35		50		ns

Switching Waveforms

Read Cycle No. 1 (Notes 7, 8)

Switching Waveforms (Continued)

Read Cycle No. 2 (Notes 7, 9)

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled)

Write Cycle No. 2 ($\overline{\mathrm{CS}}$ Controlled)

0015-7
Note: If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a HIGH impedance state.

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
35	$\begin{aligned} & \text { CY2148-35 PC } \\ & \text { CY2149-35 PC } \end{aligned}$	P3	Commercial
	$\begin{aligned} & \text { CY2148-35 DC } \\ & \text { CY2149-35 DC } \end{aligned}$	D4	
	CY21L48-35 PC CY21L49-35 PC	P3	Commercial
	$\begin{aligned} & \text { CY21L48-35 DC } \\ & \text { CY21L49-35 DC } \end{aligned}$	D4	
45	$\begin{aligned} & \text { CY2148-45 PC } \\ & \text { CY2149-45 PC } \end{aligned}$	P3	Commercial
	$\begin{aligned} & \text { CY2148-45 DC } \\ & \text { CY2149-45 DC } \end{aligned}$	D4	
	$\begin{aligned} & \hline \text { CY2148-45 DMB } \\ & \text { CY2149-45 DMB } \\ & \hline \end{aligned}$	D4	Military
	$\begin{aligned} & \text { CY21L48-45 PC } \\ & \text { CY21L49-45 PC } \end{aligned}$	P3	Commercial
	$\begin{aligned} & \text { CY21L48-45 DC } \\ & \text { CY21L49-45 DC } \end{aligned}$	D4	
55	$\begin{aligned} & \hline \text { CY2148-55 PC } \\ & \text { CY2149-55 PC } \end{aligned}$	P3	Commercial
	$\begin{aligned} & \text { CY2148-55 DC } \\ & \text { CY2149-55 DC } \end{aligned}$	D4	
	$\begin{aligned} & \text { CY2148-55 DMB } \\ & \text { CY2149-55 DMB } \\ & \hline \end{aligned}$	D4	Military
	$\begin{aligned} & \text { CY21L48-55 PC } \\ & \text { CY21L49-55 PC } \end{aligned}$	P3	Commercial
	$\begin{aligned} & \text { CY21L48-55 DC } \\ & \text { CY21L49-55 DC } \end{aligned}$	D4	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
I_{OH}	$1,2,3$
I_{OL}	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB}}{ }^{[1]}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
$\mathrm{t}_{\text {RC }}$	7,8,9,10,11
t_{AA}	7,8,9,10,11
$\mathrm{taCS}^{\text {a }}$ [1]	7,8,9,10,11
$\mathrm{t}_{\mathrm{ACS} 2}{ }^{[1]}$	7,8,9,10,11
$\mathrm{taCS}^{\text {[2] }}$	7,8,9,10,11
tor	7,8,9,10,11
WRITE CYCLE	
twC	7,8,9,10,11
twp	7,8,9,10,11
twr	7,8,9,10,11
tDw	7,8,9,10,11
$\mathrm{t}_{\text {DH }}$	7,8,9,10,11
$\mathrm{t}_{\text {AS }}$	7,8,9,10,11
${ }_{\text {taw }}$	7,8,9,10,11

Notes:

1. CY2148 only.
2. CY2149 only.

Document \#: 38-00024-B

Features

- Automatic power-down when deselected
- CMOS for optimum speed/power
- High speed- $\mathbf{3 5}$ ns
- Low active power
- 660 mW
- Low standby power
- $\mathbf{1 1 0 \mathrm { mW }}$
- TTL compatible inputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge

Functional Description

The CY6116 is a high performance CMOS static RAM organized as 2048 words by 8 bits. Easy memory expansion is provided by an active LOW chip enable ($\overline{\mathrm{CE}}$), and active LOW output enable ($\overline{\mathrm{OE}}$) and three-state drivers. The CY6116 has an automatic powerdown feature, reducing the power consumption by 83% when deselected.
An active LOW write enable signal ($\overline{\mathrm{WE}}$) controls the writing/reading operation of the memory. When the chip enable ($\overline{\mathrm{CE}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW, data on the eight data input/output pins ($1 / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$) is written into the memory loca-
tion addressed by the address present on the address pins (A_{0} through A_{10}). Reading the device is accomplished by selecting the device and enabling the outputs, $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ active LOW, while ($\overline{\mathrm{WE}}$) remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins is present on the eight data input/output pins.
The input/output pins remain in a high impedance state unless the chip is selected, outputs are enabled, and write enable ($\overline{\mathrm{WE}}$) is HIGH.
The CY6116 utilizes a die coat to ensure alpha immunity.

Selection Guide

		CY6116-35	CY6116-45	CY6116-55
Maximum Access Time (ns)		35	45	55
Maximum Operating Current (mA)	Commercial	120	120	120
	Military	130	130	130
Maximum Standby Current (mA)	Commercial	20	20	20
	Military	20	20	20

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\ldots \ldots . \ldots \ldots . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied
.$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 24 to Pin 12)..................... -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State. -0.5 V to +7.0 V

Output Current into Outputs (Low)
.20 mA

Static Discharge Voltage . $>2001 \mathrm{~V}$
(Per MIL-STD-883 Method 3015)
Latch-up Current. $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	V CC
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[4]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range ${ }^{[3]}$

Capacitance ${ }^{[2]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	5	pF
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	7	

Notes:

1. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
2. Tested initially and after any design or process changes that may affect these parameters.
3. See the last page of this specification for Group A subgroup testing information.
4. T_{A} is the "instant on" case temperature.

AC Test Loads and Waveforms

Figure 1a

Figure 1b

Equivalent to:
THÉVENIN EQUIVALENT

$$
\text { OUTPUT O—OM } 1.73 \mathrm{~V} \quad 0087-7
$$

Switching Characteristics Over Operating Rangel ${ }^{[4, ~ 6]}$

Parameters	Description	6116-35		6116-45		6116-55		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	35		45		55		ns
t_{AA}	Address to Data Valid		35		45		55	ns
toha	Data Hold from Address Change	5		5		5		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid		35		45		55	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		15		20		25	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\mathrm{OE}}$ LOW to Low Z	0		0		0		ns
$\mathrm{t}_{\mathrm{HZOE}}$	$\overline{\text { OE HIGH to High }{ }^{\text {[}} 7 \text {] }}$		15		15		20	ns
t LZCE	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[8]}$	5		5		5	.	ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\mathrm{CE}}$ HIGH to High $\mathrm{Z}^{[7,8]}$		15		20		20	ns
tPU	$\overline{\mathrm{CE}}$ LOW to Power Up	0		0		0		ns
tPD	$\overline{\text { CE }}$ HIGH to Power Down		20		25		25	ns
WRITE CYCLE ${ }^{\text {[9] }}$								
twC	Write Cycle Time	35		45		55		ns
tSCE	$\overline{\mathrm{CE}}$ LOW to Write End	30		40		40		ns
$\mathrm{t}_{\text {AW }}$	Address Set-up to Write End	30		40		40		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
tSA	Address Set-up to Write Start	0		0		0		ns
tPWE	WE Pulse Width	20		20		25		ns
$\mathrm{t}_{\text {SD }}$	Data Set-up to Write End	15		20		25		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
thzWE	$\overline{\text { WE L L }}$ LOW to High Z		15		15		20	ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low Z	0		0		0		ns

Notes:
5. Data I/O Pins enter high-impedance state, as shown, when $\overline{\mathrm{OE}}$ is held LOW during write.
6. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance.
7. $\mathrm{t}_{\mathrm{HzOE}}, \mathrm{t}_{\mathrm{HzCE}}$ and $\mathrm{t}_{\mathrm{HzWE}}$ are specified with $\mathrm{C}_{\mathbf{L}}=5 \mathrm{pF}$ as in Figure 1 b. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
8. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than tLzCE for any given device.
9. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
10. $\overline{W E}$ is HIGH for read cycle.
11. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
12. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.

Switching Waveforms

Read Cycle No. 1 (Notes 10, 11)

Switching Waveforms (Continued)
Read Cycle No. 2 (Notes 10, 12)

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) (Notes 5, 9)

Write Cycle No. 2 ($\overline{\text { CE }}$ Controlled) (Notes 5, 9)

Typical DC and AC Characteristics

NORMALIZED ACCESS TIME

TYPICAL POWER-ON CURRENT

NORMALIZED SUPPLY CURRENT vs. AMBIENT TEMPERATURE

NORMALIZED ACCESS TIME

TYPICAL ACCESS TIME CHANGE vs. OUTPUT LOADING

OUTPUT SOURCE CURRENT vs. OUTPUT VOLTAGE

NORMALIZED ICC
vs. CYCLE TIME

Address Designators

Address Name	Address Function	Pin Number
A_{0}	Y_{3}	8
$\mathrm{~A}_{1}$	Y_{2}	7
$\mathrm{~A}_{2}$	Y_{1}	6
$\mathrm{~A}_{3}$	Y_{0}	5
$\mathrm{~A}_{4}$	X_{2}	4
$\mathrm{~A}_{5}$	X_{4}	3
$\mathrm{~A}_{6}$	X_{3}	2
$\mathrm{~A}_{7}$	X_{0}	1
$\mathrm{~A}_{8}$	X_{5}	23
$\mathrm{~A}_{9}$	X_{6}	22
$\mathrm{~A}_{10}$	X_{1}	19

Bit Map

[^7]MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
I_{SB}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
$t_{\text {RC }}$	$7,8,9,10,11$
$t_{\text {AA }}$	$7,8,9,10,11$
$t_{\text {OHA }}$	$7,8,9,10,11$
$t_{\text {ACE }}$	$7,8,9,10,11$
$t_{\text {DOE }}$	$7,8,9,10,11$
WRITE CYCLE	
$t_{\text {WC }}$	$7,8,9,10,11$
$t_{\text {SCE }}$	$7,8,9,10,11$
$t_{\text {AW }}$	$7,8,9,10,11$
$t_{\text {HA }}$	$7,8,9,10,11$
$t_{\text {SA }}$	$7,8,9,10,11$
$t_{\text {tWE }}$	$7,8,9,10,11$
$t_{\text {SD }}$	$7,8,9,10,11$
$t_{\text {HD }}$	$7,8,9,10,11$

Document \# : 38-00055-B

256 x 4 Static R/W RAM

Features

- 256×4 static RAM for control store in high speed computers
- CMOS for optimum speed/power
- High speed
-15 ns (commercial)
- 25 ns (military)
- Low power
- 330 mW (commercial)
- 495 mW (military)
- Separate inputs and outputs
- 5 volt power supply $\pm 10 \%$ tolerance both commercial and military
- Capable of withstanding greater than 2000 V static discharge
- TTL compatible inputs and outputs

Functional Description

The CY7C122 is a high performance CMOS static RAM organized as 256 words x 4 bits. Easy memory expansion is provided by an active LOW chip select one $\left(\overline{\mathrm{CS}}_{1}\right)$ input, an active HIGH chip select two (CS_{2}) input, and threestate outputs.
An active LOW write enable input ($\overline{\mathrm{WE}}$) controls the writing/reading operation of the memory. When the chip select one ($\overline{\mathrm{CS}}_{1}$) and write enable ($\overline{\mathrm{WE}}$) inputs are LOW and the chip select two $\left(\mathrm{CS}_{2}\right)$ input is HIGH, the information on the four data inputs D_{0} to D_{3} is written into the addressed memory word and the output circuitry is preconditioned so that the correct data is present at the outputs when the write cycle is complete. This preconditioning
operation insures minimum write recovery times by eliminating the "write recovery glitch."
Reading is performed with the chip select one (CS_{1}) input LOW, the chip select two input (CS_{2}) and write enable (WE) inputs HIGH, and the output enable input ($\overline{\mathrm{OE}}$) LOW. The information stored in the addressed word is read out on the four non-inverting outputs O_{0} to O_{3}.
The outputs of the memory go to an active high impedance state whenever chip select one ($\overline{\mathrm{CS}}_{1}$) is HIGH, chip select two $\left(\mathrm{CS}_{2}\right)$ is LOW, output enable $(\overline{\mathrm{OE}})$ is HIGH , or during the writing operation when write enable ($\overline{\mathrm{WE}}$) is LOW.

Logic Block Diagram

Pin Configurations

0003-2

Jelection Guide

		7C122-15	7C122-25	7C122-35
Maximum Access Time (ns)	Commercial	15	25	35
	Military	NA	25	35
Maximum Operating Current (mA)	Commercial	90	60	60
	Military	NA	90	90

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Static Discharge Voltage . $>2001 \mathrm{~V}$
Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
(per MIL-STD-883 Method 3015)
Latchup Current
$>200 \mathrm{~mA}$
Supply Voltage to Ground Potential
Pin 22 to Pin 8)
-0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage -3.0 V to +7.0 V
Output Current, into Outputs (Low)
.20 mA

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[5]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Logic Table

Inputs					Outputs	Mode
$\overline{\mathbf{O E}}$	$\overline{\mathbf{C S}}_{\mathbf{1}}$	$\mathbf{C S}_{\mathbf{2}}$	$\overline{\mathbf{W E}}$	$\mathbf{D}_{\mathbf{0}}-\mathbf{D}_{\mathbf{3}}$		
\mathbf{X}	\mathbf{H}	\mathbf{X}	\mathbf{X}	\mathbf{X}	High Z	Not Selected
\mathbf{X}	\mathbf{X}	\mathbf{L}	\mathbf{X}	\mathbf{X}	High Z	Not Selected
\mathbf{L}	\mathbf{L}	\mathbf{H}	\mathbf{H}	\mathbf{X}	$\mathbf{O}_{0}-\mathrm{O}_{\mathbf{3}}$	Read Stored Data
\mathbf{X}	\mathbf{L}	\mathbf{H}	\mathbf{L}	\mathbf{L}	High Z	Write " 0 "
\mathbf{X}	\mathbf{L}	\mathbf{H}	\mathbf{L}	\mathbf{H}	High Z	Write "1"
\mathbf{H}	\mathbf{L}	\mathbf{H}	\mathbf{H}	\mathbf{X}	High Z	Output Disabled

Notes: $\mathrm{H}=$ HIGH Voltage $\quad \mathrm{L}=$ LOW Voltage $\quad \mathrm{X}=$ Don't Care
High $\mathrm{Z}=$ High Impedance
Electrical Characteristics Over the Operating Range[4]

Parameters	Description	Test Conditions		7-122-15		$\begin{aligned} & \text { 7C122-25 } \\ & \text { 7C122-35 } \end{aligned}$		Units
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}$	$=-5.2 \mathrm{~mA}$	2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., I_{O}	$=8.0 \mathrm{~mA}$		0.4		0.4	V
V_{IH}	Input HIGH Voltage			2.1	V_{CC}	2.1	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	-3.0	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	GND $\leq \mathrm{V}_{1} \leq \mathrm{V}$			10		10	$\mu \mathrm{A}$
V_{CD}	Input Diode Clamp Voltage				Note 2		Note 2	V
Ioz	Output Current (High-Z)	$\mathrm{V}_{\text {OL }} \leq \mathrm{V}_{\text {OUT }} \leq$ Output Disabled		-10	+ 10	-10	+ 10	$\mu \mathrm{A}$
Ios	Output Short Circuit Current (Note 1)	$\begin{aligned} & \mathbf{V}_{\text {CC }}=\text { Max. }, \\ & \mathbf{V}_{\text {OUT }}=\mathbf{G N D} \end{aligned}$	Commercial		-70		-70	mA
			Military		-80		-80	mA
I_{CC}	Power Supply Current	$\begin{aligned} & \mathbf{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA} \end{aligned}$	Commercial		90		60	mA
			Military		NA		90	mA

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$		4
COUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	$\mathbf{y y}$	$\mathbf{p F}$

Notes:

1. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
2. The CMOS process does not provide a clamp diode. However, the CY7C122 is insensitive to -3 V dc input levels and -5 V undershoot pulses of less than 10 ns (measured at 50% point).
3. Tested initially and after any design or process changes that may affect these parameters.
4. See the last page of this specification for Group A subgroup testing information.
5. T_{A} is the "instant on" case temperature.

Switching Characteristics Over the Operating Range ${ }^{[6,7]}$

Parameters	Description	Test Conditions	CY7C122-15		CY7C122-25		CY7C122-35		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE									
$\mathrm{t}_{\mathrm{R} C}$	Read Cycle Time		15		25		35		ns
$\mathrm{t}_{\mathrm{ACS}}$	Chip Select Time			8		15		25	ns
tzRCS	Chip Select to High-Z	Note 8		12		20		30	ns
$\mathrm{t}_{\text {AOS }}$	Output Enable Time			8		15		25	ns
$\mathrm{t}_{\text {ZROS }}$	Output Enable to High-Z	Note 8		12		20		30	ns
${ }_{\text {taA }}$	Address Access Time			15		25		35	ns
WRITE CYCLE									
twC	Write Cycle Time		15		25		35		ns
tzws	Write Disable to High-Z	Note 8		12		20		30	ns
twR	Write Recovery Time			12		20		25	ns
${ }_{\text {tw }}$	Write Pulse Width	Note 6	11		15		25		ns
twSD	Data Setup Time Prior to Write		0		5		5		ns
twhD	Data Hold Time After Write		2		5		5		ns
twSA	Address Setup Time	Note 6	0		5		10		ns
twHA	Address Hold Time		4		5		5		ns
twscs	Chip Select Setup Time		0		5		5		ns
twhes	Chip Select Hold Time		2		5		5		ns

Notes:

6. t_{W} measured at $t_{W S A}=$ min.; $t_{W S A}$ measured at $t_{W}=\mathrm{min}$.
7. Test conditions assume signal transition times of 5 ns or less for the -15 product and 10 ns or less for the -25 and -35 product. Timing reference levels of 1.5 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance as in Figure la.
8. Transition is measured at steady state HIGH level -500 mV or steady state LOW level +500 mV on the output from 1.5 V level on the input with load shown in Figure 1 b.

Bit Map

Address Designators

Address Name	Address Function	Pin Number
A_{0}	AX0	4
$\mathrm{~A}_{1}$	AX1	3
$\mathrm{~A}_{2}$	AX2	2
$\mathrm{~A}_{3}$	AX3	1
$\mathrm{~A}_{4}$	AX4	21
$\mathrm{~A}_{5}$	AY0	5
$\mathrm{~A}_{6}$	AY1	6
$\mathrm{~A}_{7}$	AY2	7

AC Test Loads and Waveforms

Figure 1a

Equivalent to:
THÉVENIN EQUIVALENT

Read Mode

Write Mode

(All above measurements referenced to 1.5 V unless otherwise stated.)
Note:
Timing diagram represents one solution which results in an optimum cycle time. Timing may be changed in various applications as long as the worst case limits are not violated.

Cypical DC and AC Characteristics

ACCESS TIME CHANGE vs, OUTPUT LOADING

NORMALIZED ICC vs. FREQUENCY

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
15	CY7C122-15PC	P7	Commercial
	CY7C122-15DC	D8	Commercial
	CY7C122-25PC	P7	Commercial
	CY7C122-25DC	D8	Commercial
	CY7C122-25LC	L53	Commercial
	CY7C122-25DMB	D8	Military
35	CY7C122-35PC	P7	Commercial
	CY7C122-35DC	D8	Commercial
	CY7C122-35LC	L53	Commercial
	CY7C122-35DMB	D8	Military
	CY7C122-35LMB	L53	Military

$=$

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Jwitching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	7,8,9,10,11
$t_{\text {ACS }}$	7,8,9,10,11
$\mathrm{t}_{\mathrm{A} O S}$	7,8,9,10,11
$t_{\text {AA }}$	7,8,9,10,11
WRITE CYCLE	
twC	7,8,9,10,11
twR	7,8,9,10,11
tw	7,8,9,10,11
twSD	7,8,9,10,11
twhD	7,8,9,10,11
twSA	7,8,9,10,11
twha	7,8,9,10,11
twscs	7,8,9,10,11
twhes	7,8,9,10,11

)ocument \#: 38-00025-B

Features

- 256×4 static RAM for control store in high speed computers
- CMOS for optimum speed/power
- High speed
-7 ns (commercial)
- 15 ns (military)
- Low power
- 660 mW (commercial)
-825 mW (military)
- Separate inputs and outputs
- 5 volt power supply $\pm 10 \%$ tolerance both commercial and military
- TTL compatible inputs and outputs
- 24 pin
- 300 MIL package

Functional Description

The CY7C123 is a high performance CMOS static RAM organized as 256 words $x 4$ bits. Easy memory expansion is provided by an active LOW chip select one $\left(\mathrm{CS}_{1}\right)$ input, an active HIGH chip select two (CS_{2}) input, and threestate outputs.
An active LOW write enable input (WE) controls the writing/reading operation of the memory. When the chip select one (CS_{1}) and write enable ($\overline{\mathrm{WE}}$) inputs are LOW and the chip select two $\left(\mathrm{CS}_{2}\right)$ input is HIGH, the information on the four data inputs D_{0} to D_{3} is written into the addressed memory word and the output circuitry is preconditioned so that the write data is present at the outputs when the write cycle is complete. This preconditioning operation insures minimum write re-
covery times by eliminating the "write recovery glitch."
Reading is performed with the chip select one ($\overline{\mathrm{CS}}_{1}$) input LOW, the chip select two input $\left(\mathrm{CS}_{2}\right)$ and write enable (WE) inputs HIGH, and the output enable input ($\overline{\mathrm{OE}}$) LOW. The information stored in the addressed word is read out on the four non-inverting outputs O_{0} to O_{3}.
The outputs of the memory go to an active high impedance state whenever chip select one ($\overline{\mathrm{CS}}_{1}$) is HIGH, chip select two $\left(\mathrm{CS}_{2}\right)$ is LOW, output enable ($\overline{\mathrm{OE}}$) is HIGH, or during the writing operation when write enable (WE) is LOW.
A die coat is used to insure alpha immunity.

Logic Block Diagram

Pin Configurations

Selection Guide

		7C123-7	7C123-12	7C123-15
Maximum Access Time (ns)	Commercial	7	12	15
	Military	NA	NA	15
Maximum Operating Current (mA)	Commercial	120	120	120
	Military	NA	NA	150

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Output Current, into Outputs (Low)		
Ambient Temperature with	Latchup Cur		$>200 \mathrm{~mA}$
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			
Supply Voltage to Ground Potential	Operating Range		
Pins $24 \& 18$ to Pins $7 \& 12 \ldots \ldots \ldots .00 .5 \mathrm{~V}$ to +7.0 V DC Voltage Applied to Outputs	Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
in High Z State. -0.5 V to +7.0 V	Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
DC Input Voltage -3.5 V to +7.0 V	Military ${ }^{\text {[3] }}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Logic Table

Inputs					Outputs	Mode
$\overline{\mathrm{OE}}$	$\overline{\mathbf{C S}}_{\mathbf{1}}$	CS_{2}	$\overline{\mathbf{W E}}$	$\mathrm{D}_{0}-\mathrm{D}_{3}$		
X	H	X	X	X	High Z	Not Selected
X	X	L	X	X	High Z	Not Selected
L	L	H	H	X	$\mathrm{O}_{0}-\mathrm{O}_{3}$	Read Stored Data
X	L	H	L	L	High Z	Write "0"
X	L	H	L	H	High Z	Write "1"
H	L	H	H	X	High Z	Output Disabled
					Notes: H = HIGH Voltage \quad L $=$ LOW Voltage $\quad X=D$ High Z = High Impedance	

Electrical Characteristics Over the Operating Range ${ }^{[4]}$

Parameters	Description	Test Conditions		$\begin{gathered} \text { 7C123-7 } \\ \text { 7C123-12 } \end{gathered}$		7C123-15		Units
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-5.2 \mathrm{~mA}$		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.2	V_{CC}	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	-3.0	0.8	V
$\mathrm{IIX}^{\text {I }}$	Input Load Current	$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$			10		10	$\mu \mathrm{A}$
I_{OZ}	Output Current (High-Z)	$\mathrm{V}_{\mathrm{OL}} \leq \mathrm{V}_{\mathrm{OUT}} \leq \mathrm{V}_{\mathrm{OH}}$ Output Disabled		-10	+ 10	-10	+ 10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CC }}$	Power Supply Current	$\begin{aligned} & \mathbf{v}_{\mathrm{CC}}=\text { Max. }, \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Commercial		120		120	mA
			Military		NA		150	mA

Capacitance ${ }^{[2]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	4	pF
COUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	7	

Notes:

1. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
2. Tested initially and after any design or process changes that may affect these parameters.
3. T_{A} is the "instant on" case temperature.
4. See the last page of this specification for Group A subgroup testing information.

Switching Characteristics Over the Operating Range ${ }^{[4]}$

Parameters	Description	Test Conditions	7C123-7		7C123-12		7C123-15		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE									
tre	Read Cycle Time		7		12		15		ns
t_{AA}	Address Access Time			7		12		15	ns
$\mathrm{t}_{\mathrm{ACS}}$	Chip Select Time			7		8		10	ns
t ${ }_{\text {daE }}$	Output Enable Time			7		8		10	ns
$\mathrm{t}_{\mathrm{HZCS}}$	Chip Select to Output Hi-Z	Notes 5, 6		5		6.5		8	ns
$\mathrm{t}_{\text {HzOE }}$	Output Enable to Out Hi-Z	Note 5		5		6.5		8	ns
tLZCS	Chip Select to Out Low-Z	Notes 5, 6	2		2		2		ns
$\mathrm{t}_{\text {LZOE }}$	Output Enable to Out Low-Z	Note 5	2		2		2		ns
WRITE CYCLE									
twc	Write Cycle Time		7		12		15		ns
thZWE	Write Enable to Hi-Z			5.5		7		8	ns
t LZWE	Write Enable to Low-Z		2		2		2		ns
tPWE	Write Pulse Width		5		8		11		ns
$\mathrm{t}_{\text {SD }}$	Data Setup to End of Write		5		8		11		ns
thD	Data Hold Time After Write		1		1		1		ns
$\mathrm{t}_{\text {SA }}$	Add Setup to Start of Write		1		2		2		ns
$\mathrm{tha}^{\text {a }}$	Address Hold Time		1		2		2		ns
tscs	CS Active Low to End of Write		5		8		11		ns
$\mathrm{t}_{\text {AW }}$	Add Setup to End of Write		6		10		13		ns

Notes:
5. Transition is measured at steady state HIGH Ievel -500 mV or steady state LOW level +500 mV on the output from 1.5 V level on the input with load shown in Figure 1 b.
6. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCS}}$ is less than $\mathrm{t}_{\text {LZCS }}$ for any given device.

AC Test Loads and Waveforms

Figure 1a
Equivalent to:
THEVENIN EQUIVALENT

0088-4
Figure 1b

Read Mode

Write Mode

Note:

Timing diagram represents one solution which results in an optimum cycle time. Timing may be changed in various applications as long as the worst case limits are not violated.

Typical DC and AC Characteristics

NORMALIZED SUPPLY CURRENT
vs. AMBIENT TEMPERATURE

NORMALIZED ACCESS TIME vs. AMBIENT TEMPERATURE

OUTPUT SOURCE CURRENT vs. OUTPUT VOLTAGE

OUTPUT SINK CURRENT vs. OUTPUT VOLTAGE

NORMALIZED ICC vs. CYCLE TIME

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
7	CY7C123-7PC	P13A	Commercial
	CY7C123-7DC	D14	
12	CY7C123-7LC	L53	
	CY7C123-12PC	P13A	
	CY7C123-12DC	D14	
15	CY7C123-12LC	L53	
	CY7C123-15DMB	D14	Military
	CY7C123-15LMB	L53	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{IZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	7,8,9,10,11
$\mathrm{t}_{\text {AA }}$	7,8,9,10,11
$\mathrm{t}_{\text {ACS }}$	7,8,9,10,11
tDOE	7,8,9,10,11
WRITE CYCLE	
twC	7,8,9,10,11
tpWe	7,8,9,10,11
$\mathrm{t}_{\text {SD }}$	7,8,9,10,11
thD	7,8,9,10,11
$\mathrm{t}_{\text {SA }}$	7,8,9,10,11
$\mathrm{tha}^{\text {a }}$	7,8,9,10,11
tscs	7,8,9,10,11
$t_{\text {AW }}$	7,8,9,10,11

Document \#:38-00060-B

Features

- Automatic power-down when deselected
- CMOS for optimum speed/power
- High speed-25 ns
- Low active power
- 660 mW (commercial)
- 825 mW (military)
- Low standby power
- 110 mW
- SOIC package
- TTL compatible inputs and outputs
- Capable of withstanding greater than 2000 V electrostatic discharge

Functional Description

The CY7C128 is a high performance CMOS static RAM organized as 2048 words by 8 bits. Easy memory expansion is provided by an active LOW chip enable ($\overline{\mathrm{CE}}$), and active LOW output enable $(\overline{\mathrm{OE}})$ and three-state drivers. The CY7C128 has an automatic powerdown feature, reducing the power consumption by 83% when deselected.
An active LOW write enable signal ($\overline{\mathrm{WE}}$) controls the writing/reading operation of the memory. When the chip enable ($\overline{\mathrm{CE}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW, data on the eight data input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$) is written into the memory loca-
tion addressed by the address present on the address pins (A_{0} through A_{10}). Reading the device is accomplished by selecting the device and enabling the outputs, $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ active LOW, while ($\overline{\mathrm{WE}}$) remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins is present on the eight data input/output pins.
The input/output pins remain in a high impedance state unless the chip is selected, outputs are enabled, and write enable ($\overline{\mathrm{WE}}$) is HIGH.
The 7C128 utilizes a die coat to ensure alpha immunity.

Selection Guide

		7C128-25	7C128-35	7C128-45	7C128-55
Maximum Access Time (ns)	25	35	45	55	
Maximum Operating Current (mA)	Commercial	120	120	120	90
	Military		150	130	100
Maximum Standby Current (mA)	Commercial	20	20	20	20
	Military		20	20	20

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature
$\ldots5^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 24 to Pin 12) -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State.
-0.5 V to +7.0 V
DC Input Voltage \qquad -3.0 V to +7.0 V

Output Current into Outputs (Low)
).

$$
-3.0 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

Electrical Characteristics Over Operating Range ${ }^{[3]}$

Static Discharge Voltage . > 2001 V
(Per MIL-STD-883 Method 3015)
Latch-up Current . $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[4]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Parameters	Description	Test Conditions		7C128		Units
				Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., I	- 4.0 mA	2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., I	8.0 mA		0.4	V
V_{IH}	Input HIGH Voltage	Commercial -25	litary -35	2.2	V_{CC}	V
		All Others		2.0	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	GND $\leq \mathrm{V}_{\mathrm{I}} \leq$		-10	10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{I}} \leq$ Output Disable		-40	40	$\mu \mathrm{A}$
IOS	Output Short Circuit Current ${ }^{[1]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}^{\text {}}$	$=\mathrm{GND}$		-300	mA
I_{CC}	$V_{C C}$ Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Commercial -25, -35, -45		120	mA
			Commercial -55		90	mA
			Military -35		150	mA
			Military -45		130	mA
			Military -55		100	mA
ISB	Automatic $\overline{\mathrm{CE}}$ Power Down Current	$\frac{M a x .}{V_{C C}}$	Commercial		20	mA
			Military*		20	

*35 ns and 55 ns only

Capacitance ${ }^{[2]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	5	pF
COUT	Output Capacitance		7	

Notes:

1. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
2. Tested initially and after any design or process changes that may affect these parameters.
3. See the last page of this specification for Group A subgroup testing information.
4. T_{A} is the "instant on" case temperature.

AC Test Loads and Waveforms

Figure 1a

Figure 1b

Equivalent to:
THÉVENIN EQUIVALENT

Switching Characteristics Over Operating Range ${ }^{[3,6]}$

Parameters	Description	7C128-25		7C128-35		7C128-45		7C128-55		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	

READ CYCLE

tre	Read Cycle Time	25		35		45		55		ns
t_{AA}	Address to Data Valid		25		35		45		55	ns
toha	Data Hold from Address Change	3		5		5		5		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\text { CE LOW to Data Valid }}$		25		35		45		55	ns
$t_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		12		15		20		25	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\mathrm{OE}}$ LOW to Low Z	0		0		0		0		ns
thZOE	$\overline{\mathrm{OE}}$ HIGH to High Z ${ }^{\text {[] }}$		12		15		15		20	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[8]}$	5		5		5		5		ns
$\mathrm{t}_{\mathrm{HZCE}}$	$\overline{\text { CE }}$ HIGH to High Z ${ }^{[7,8]}$		12		15		20		20	ns
tPU	$\overline{\text { CE }}$ LOW to Power Up	0		0		0		0		ns
tPD	$\overline{\text { CE }}$ HIGH to Power Down		20		20		25		25	ns

WRITE CYCLE ${ }^{[9]}$

twC	Write Cycle Time	25		35		45		55		ns
tsce	$\overline{C E}$ LOW to Write End	20		30		40		50		ns
$\mathrm{t}_{\text {AW }}$	Address Set-up to Write End	20		30		40		50		ns
t_{HA}	Address Hold from Write End	0		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-up to Write Start	0		0		0		0		ns
tPWE	WE Pulse Width	20		20		20		25		ns
$\mathrm{t}_{\text {SD }}$	Data Set-up to Write End	10		15		20		25		ns
t_{HD}	Data Hold from Write End	0		0		0		0		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[7]}$		10		15		15		20	ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low Z	0		0		0		0		ns

Notes:

5. Data I/O Pins enter high-impedance state, as shown, when $\overline{\mathrm{OE}}$ is held LOW during write.
6. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance.
7. $\mathrm{t}_{\mathrm{HZOE}}, \mathrm{t}_{\mathrm{HzCE}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in Figure ll. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
8. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $t_{\text {LZCE }}$ for any given device.
9. The internal write time of the memory is defined by the overlap of $\overline{C E}$ LOW and $\overline{\text { WE }}$ LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
10. WE is HIGH for read cycle.
11. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
12. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.

Switching Waveforms

Read Cycle No. 1 (Notes 10, 11)

Switching Waveforms (Continued)

Read Cycle No. 2 (Notes 10, 12)

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) (Notes 5, 9)

0036-9
Write Cycle No. 2 ($\overline{\text { CE }}$ Controlled) (Notes 5, 9)

Typical DC and AC Characteristics

NORMALIZED SUPPLY CURRENT vs. SUPPLY VOLTAGE

NORMALIZED ACCESS TIME
vs. SUPPLY VOLTAGE

TYPICAL POWER-ON CURRENT vs. SUPPLY VOLTAGE

NORMALIZED SUPPLY CURRENT
vs. AMBIENT TEMPERATURE

NORMALIZED ACCESS TIME Fs. AMBIENT TEMPERATURE

TYPICAL ACCESS TIME CHANGE
vs. OUTPUT LOADING

OUTPUT SOURCE CURRENT vs. OUTPUT VOLTAGE

NORMALIZED ICC vs. CYCLE TIME

0036-11

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C128-25PC	P13	Commercial
	CY7C128-25SC	S13	
	CY7C128-25DC	D14	
35	CY7C128-25LC	L53	
	CY7C128-35PC	P13	Commercial
	CY7C128-35SC	S13	
	CY7C128-35DC	D14	
	CY7C128-35DMB	D14	Military
	CY7C128-35LMB	L53	
45	CY7C128-45PC	P13	Commercial
	CY7C128-45SC	S13	
	CY7C128-45DC	D14	
	CY7C128-45LC	L53	
	CY7C128-45DMB	D14	Military
	CY7C128-45LMB	L53	
	CY7C128-55PC	P13	Commercial
	CY7C128-55SC	S13	
	CY7C128-55DC	D14	
	CY7C128-55LC	L53	
	CY7C128-55DMB	D14	Military
	CY7C128-55LMB	L53	

Address Designators

Address Name	Address Function	Pin Number
A_{0}	Y_{3}	8
$\mathrm{~A}_{1}$	Y_{2}	7
$\mathrm{~A}_{2}$	Y_{1}	6
$\mathrm{~A}_{3}$	Y_{0}	5
$\mathrm{~A}_{4}$	X_{2}	4
$\mathrm{~A}_{5}$	X_{4}	3
$\mathrm{~A}_{6}$	X_{3}	2
$\mathrm{~A}_{7}$	X_{0}	1
$\mathrm{~A}_{8}$	X_{5}	23
$\mathrm{~A}_{9}$	X_{6}	22
$\mathrm{~A}_{10}$	X_{1}	19

Bit Map

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
I_{SB}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	7,8,9,10,11
$\mathrm{t}_{\text {AA }}$	7,8,9,10,11
toha	7,8,9,10,11
$\mathrm{t}_{\text {ACE }}$	7,8,9,10,11
$\mathrm{t}_{\text {DOE }}$	7,8,9,10,11
WRITE CYCLE	
twC	7,8,9,10,11
tsCE	7,8,9,10,11
$\mathrm{t}_{\text {AW }}$	7,8,9,10,11
t_{HA}	7,8,9,10,11
tsA	7,8,9,10,11
tPWE	7,8,9,10,11
$\mathrm{t}_{\text {SD }}$	7,8,9,10,11
t_{HD}	7,8,9,10,11

Document \# : 38-00026-B

1024 x 8 Dual Port Static RAM

Features

- 0.8 micron CMOS for optimum speed/power
- Automatic power-down
- TTL compatible
- Capable of withstanding greater than 2001V electrostatic discharge
- Fully asynchronous operation
- Master CY7C130 easily expands data bus width to 16 or more bits using SLAVE CY7C140
- BUSY output flag on CY7C130; BUSY input on CY7C140
- INT flag for port to port communication

Functional Description

The CY7C130/CY7C140 are high speed CMOS $1 \mathrm{~K} \times 8$ Dual Port Static RAMS. Two ports are provided permitting independent access to any location in memory. The CY7C130 can be utilized as either a stand-alone 8-bit Dual Port Static RAM or as a MASTER Dual Port RAM in conjunction with the CY7C140 SLAVE Dual Port device in systems requiring 16 -bit or greater word widths. It is the solution to applications requiring shared or buffered data such as cache memory for DSP, Bit-Slice, or multiprocessor designs.

Each port has independent control pins; Chip Enable (CE), Write Enable
($\overline{\mathrm{WE}}$), and Output Enable ($\overline{\mathrm{OE}}$). Two flags are provided on each port, BUSY and INT. BUSY signals that the port is trying to access the same location currently being accessed by the other port. INT is an interrupt flag indicating that data has been placed in a unique location by the other port. An automatic power down feature is controlled independently on each port by the Chip Enable ($\overline{\mathrm{CE}}$) pin.
The CY7C130/CY7C140 are available in both 48-pin DIP, 48-pin LCC and 52-pin PLCC.

A die coat is used to insure alpha immunity.

Logic Block Diagram

Notes:

1. CY7C130 (Master): BUSY is open drain output and requires pullup resistor. CY7C140 (Slave): $\bar{B} U S Y$ is input
2. Open drain outputs: pullup resistor required.

Pin Configuration

DIP
0114-2

Top View

Selection Guide

		$\begin{aligned} & \text { 7C130-25 } \\ & \text { 7C140-25 } \end{aligned}$	$\begin{aligned} & \text { 7C130-35 } \\ & \text { 7C140-35 } \end{aligned}$	$\begin{aligned} & \text { 7C130-45 } \\ & \text { 7C140-45 } \end{aligned}$	$\begin{aligned} & \text { 7C130-55 } \\ & \text { 7C140-55 } \end{aligned}$
Maximum Access Time (ns)		25	35	45	55
Maximum Operating Current (mA)	Commercial	120	90	90	90
	Military		120	120	120
Maximum Standby Current (mA)	Commercial	30	30	30	30
	Military		40	40	40

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Static Discharge Voltage $>2001 \mathrm{~V}$
(Per MIL-STD-883 Method 3015)
Latch-up Current
.$>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V C C}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[7]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range ${ }^{[8]}$

Parameters	Description	Test Conditions		$\begin{aligned} & \text { 7C130-25 } \\ & \text { 7C140-25 } \end{aligned}$		$\begin{aligned} & \text { 7C130-35, 45, } 55 \\ & \text { 7C140-35, 45, } 55 \end{aligned}$		Units
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{IOL}=4.0 \mathrm{~mA}$			0.4		0.4	V
		$\mathrm{I}_{\mathrm{OL}}=16.0 \mathrm{~mA}^{[6]}$			0.5		0.5	
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.2		2.2		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8		0.8	V
IIX	Input Load Current	GND $\leq \mathrm{V}_{\mathrm{I}} \leq$		-5	+ 5	-5	+ 5	$\mu \mathrm{A}$
IOZ	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$ Output Disabled		-5	+5	-5	+5	$\mu \mathrm{A}$
Ios	Output Short ${ }^{[3]}$ Circuit Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max. } \\ & \mathrm{V}_{\text {OUT }}=\mathrm{GND} \end{aligned}$			-350		-350	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathbf{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA} \end{aligned}$	Commercial		120		90	mA
			Military				120	
 $\mathbf{I}_{\text {SB }}$ $\mathbf{I}_{\text {SB1 }}$ $\mathbf{I}_{\text {SB2 }}$ $\mathbf{I}_{\text {SB3 }}$ $\mathbf{I}_{\text {SB4 }}$	Automatic $\overline{\mathbf{C E}}{ }^{[4]}$ Power Down Current Both Ports, TTL Inputs One Port, TTL Input Both Ports, CMOS Inputs One Port, CMOS Inputs		Commercial		$\begin{aligned} & 30 \\ & 75 \\ & 15 \\ & 65 \\ & \hline \end{aligned}$		$\begin{array}{r} 30 \\ 75 \\ 15 \\ 65 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
$\mathbf{I}_{\text {SB1 }}$ $\mathbf{I}_{\text {SB2 }}$ $\mathbf{I}_{\text {SB3 }}$ $\mathbf{I}_{\text {SB4 }}$	Both Ports, TTL Inputs One Port, TTL Input Both Ports, CMOS Inputs One Port, CMOS Inputs		Military				$\begin{gathered} 40 \\ 100 \\ 30 \\ 80 \end{gathered}$	mA mA mA mA

Capacitance ${ }^{[5]}$

Parameters	Description	Test Condtions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	10	pF
	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$			

Notes:

3. Duration of the short circuit should not exceed 30 seconds.
4. A pull-up resistor to $V_{C C}$ on the $\overline{C E}$ input is required to keep the device deselected during $V_{C C}$ power-up, otherwise $I_{S B}$ will exceed values given.
5. Tested initially and after any design or process changes that may affect these parameters.
6. $\overline{\text { BUSY }}$ and $\overline{\text { INT }}$ pins only.
7. T_{A} is the "instant on" case temperature.
8. See the last page of this specification for Group A subgroup testing information.

AC Test Loads and Waveforms

Figure 2

0114-4
Figure 3. BUSY Output Load
(CY7C130 Only)

Equivalent to: THÉVENIN EQUIVALENT

ALL INPUT PULSES

0114-6

Figure 4
Switching Characteristics Over Operating Range ${ }^{[8,10]}$

Parameters	Description	$\begin{aligned} & \text { 7C130-25 } \\ & \text { 7C140-25 } \end{aligned}$		$\begin{aligned} & \text { 7C130-35 } \\ & \text { 7C140-35 } \end{aligned}$		$\begin{aligned} & \text { 7C130-45 } \\ & \text { 7C140-45 } \end{aligned}$		$\begin{aligned} & \text { 7C130-55 } \\ & \text { 7C140-55 } \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE										
$\mathrm{t}_{\mathrm{R} C}$	Read Cycle Time	25		35		45		55		ns
t_{AA}	Address to Data Valid		25		35		45		55	ns
toha	Data Hold from Address Change	2		3		3		3		ns
$\mathrm{t}_{\mathrm{ACE}}$	$\overline{\mathrm{CE}}$ LOW to Data Valid		30		35		45		55	ns
tDOE	$\overline{\mathrm{OE}}$ LOW to Data Valid		15		15		20		25	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{O E}$ LOW to Low Z	2		3		3		3		ns
thzoe	$\overline{\text { OE HIGH to High }}$ [11]		15		15		20		25	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[12]}$	2		5		5		5		ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\mathrm{CE}}$ HIGH to High Z ${ }^{\text {[11, 12] }}$		15		15		20		25	ns
tPU	$\overline{\text { CE LOW to Power Up }}$	0		0		0		0		ns
$t_{\text {PD }}$	$\overline{\mathrm{CE}}$ HIGH to Power Down		20		20		25		30	ns
WRITE CYCLE[13]										
t_{WC}	Write Cycle Time	25		35		45		55		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CE}}$ LOW to Write End	20		30		35		40		ns
$\mathrm{t}_{\text {AW }}$	Address Set-up to Write End	20		30		35		40		ns
t_{HA}	Address Hold from Write End	2		2		2		2		ns
$t_{\text {SA }}$	Address Set-up to Write Start	0		0		0		0		ns
tpwe	$\overline{\text { WE Pulse Width }}$	15		20		20		25		ns
$\mathrm{t}_{\text {SD }}$	Data Set-up to Write End	15		15		20		20		ns
t_{HD}	Data Hold from Write End	0		0		0		0		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE L L }}$ W to High Z		15		15		20		25	ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low Z	0		0		0		0		ns

Switching Characteristics Over Operating Range ${ }^{[8,10]}$ (Continued)

Parameters	Description	$\begin{aligned} & \text { 7C130-25 } \\ & \text { 7C140-25 } \end{aligned}$		$\begin{array}{r} \text { 7C130-35 } \\ \text { 7C140-35 } \\ \hline \end{array}$		$\begin{aligned} & \text { 7C130-45 } \\ & \text { 7C140-45 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C130-55 } \\ & \text { 7C140-55 } \\ & \hline \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
BUSY/INTERRUPT TIMING										
t_{RC}	Read Cycle Time	25		35		45		55		ns
twe	Write Cycle Time	25		35		45		55		ns
t ${ }_{\text {BLA }}$	BUSY LOW from Address Match		15		20		25		30	ns
$\mathrm{t}_{\text {BHA }}$	BUSY HIGH from Address Mismatch		20		20		25		30	ns
$\mathrm{t}_{\text {BLC }}$	BUSY LOW from CE LOW		20		20		25		30	ns
$\mathrm{t}_{\mathrm{BHC}}$	$\overline{\text { BUSY }}$ HIGH from $\overline{\mathrm{CE}} \mathrm{HIGH}$		20		20		25		30	ns
tPS	Port Set Up for Priority	5		5		5		5		ns
$t_{\text {WINS }}$	$\overline{\text { WE }}$ to INTERRUPT Set Time		12		15		20		25	ns
teins	$\overline{\mathrm{CE}}$ to INTERRUPT Set Time		20		25		35		45	ns
$\mathrm{t}_{\text {INS }}$	Add to INTERRUPT Set Time		20		25		35		45	ns
toink	$\overline{\mathrm{OE}}$ to INTERRUPT Reset Time		15		15		20		25	ns
teInR	$\overline{\mathrm{CE}}$ to INTERRUPT Reset Time		20		25		35		45	ns
$\mathrm{t}_{\mathrm{INR}}$	Add to INTERRUPT Reset Time		20		25		35		45	ns
BUSY TIMING										
twB*	WE LOW after BUSY	0		0		0		0		ns
twh	WE HIGH after BUSY	10		15		15		15		ns
$t_{\text {BDD }}$	BUSY HIGH to Valid Data		20		20		25		30	ns
${ }^{\text {t DDD }}$	Write Data Valid to Read Data Valid		Note 17		Note 17		Note 17		Note 17	ns
twDD	Write Pulse to Data Delay		Note 17		Note 17		Note 17		Note 17	ns

* CY7C140 Only

Notes:

9. Data I/O pins enter high impedance state, as shown when $\overline{\mathrm{OE}}$ is held LOW during write.
10. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 V to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance.
11. $\mathrm{t}_{\mathrm{HZOE}}, \mathrm{t}_{\mathrm{HZCE}}$, and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ in Figure 2. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
12. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than ${ }^{\text {t }}$ LZCE for any given device.
13. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
14. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
15. Device is continuously selected $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
16. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
17. A write operation on Port A, where Port A has priority, leaves the data on Port B's outputs undisturbed until one access time after one of the following:
A. $\overline{\text { BUSY }}$ on Port B goes HIGH.
B. Port B's address toggled.
C. $\overline{\mathrm{CE}}$ for Port B is toggled.
D. $\overline{W E}$ for Port B is toggled.

Switching Waveforms

Read Cycle No. 1 (Notes 14, 15)
Either Port Address Access

Switching Waveforms (Continued)
Read Cycle No. 2 (Notes 14, 16)

Either Port $\overline{\mathrm{CE}} / \overline{\mathrm{OE}}$ Access

Timing Waveform of Read with BUSY (Note 14)

Write Cycle No. 1 (Notes 9, 13)
Either Port

Switching Waveforms (Continued)
Write Cycle No. 2 (Notes 9, 13)

Either Port

Busy Timing Diagram No. 1 ($\overline{\mathbf{C E}}$ Arbitration)

$\overline{\mathbf{C E}}_{\mathbf{L}}$ Valid First:

0114-14
$\overline{\mathbf{C E}}_{\mathbf{R}}$ Valid First:

Switching Waveforms (Continued)
Busy Timing Diagram No. 2 (Address Arbitration)

Left Address Valid First:

0114-16
Right Address Valid First:

0114-17
Busy Timing Diagram No. 3
Write with $\overline{\text { BUSY }}$ (Slave: CY7C140):

0114-11

Switching Waveforms (Continued)

Interrupt Timing Diagrams

Left Side Sets $\overline{\text { INT }}_{\mathbf{R}}$:

Right Side Clears $\overline{\mathbf{N T}}_{\mathbf{R}}$:

Right Side Sets $\overline{\mathbf{I N T}}_{\mathbf{L}}$:

0114-20
Left Side Clears $\overline{\mathbf{I N T}}_{\mathbf{L}}$:

Pin Configurations

PLCC
Top View

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C130-25PC	P25	Commercial
	CY7C130-25DC	D26	
	CY7C130-25LC	L68	
	CY7C130-25JC	J69	
35	CY7C130-35PC	P25	Commercial
	CY7C130-35DC	D26	
	CY7C130-35LC	L68	
	CY7C130-35JC	J69	
	CY7C130-35DMB	D26	Military
	CY7C130-35LMB	L68	
45	CY7C130-45PC	P25	Commercial
	CY7C130-45DC	D26	
	CY7C130-45LC	L68	
	CY7C130-45JC	J69	
	CY7C130-45DMB	D26	Military
	CY7C130-45LMB	L68	
55	CY7C130-55PC	P25	Commercial
	CY7C130-55DC	D26	
	CY7C130-55LC	L68	
	CY7C130-55JC	J69	
	CY7C130-55DMB	D26	Military
	CY7C130-55LMB	L68	

LCC

0114-22
Top View

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C140-25PC	P25	Commercial
	CY7C140-25DC	D26	
	CY7C140-25LC	L68	
	CY7C140-25JC	J69	
35	CY7C140-35PC	P25	Commercial
	CY7C140-35DC	D26	
	CY7C140-35LC	L68	
	CY7C140-35JC	J69	
	CY7C140-35DMB	D26	Military
	CY7C140-35LMB	L68	
45	CY7C140-45PC	P25	Commercial
	CY7C140-45DC	D26	
	CY7C140-45LC	L68	
	CY7C140-45JC	J69	
	CY7C140-45DMB	D26	Military
	CY7C140-45LMB	L68	
55	CY7C140-55PC	P25	Commercial
	CY7C140-55DC	D26	
	CY7C140-55LC	L68	
	CY7C140-55JC	J69	
	CY7C140-55DMB	D26	Military
	CY7C140-55LMB	L68	

MILITARY SPECIFICATIONS

Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{OS}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 3}$	$1,2,3$

Parameters	Subgroups
ISB4	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{AA}	7,8,9,10,11
toha	7,8,9,10,11
$\mathrm{t}_{\mathrm{ACE}}$	7,8,9,10,11
$\mathrm{t}_{\text {DOE }}$	7,8,9,10,11
WRITE CYCLE	
$t_{\text {SCE }}$	7,8,9,10,11
$\mathrm{t}_{\text {AW }}$	7,8,9,10,11
t_{HA}	7,8,9,10,11
$\mathrm{t}_{\text {SA }}$	7,8,9,10,11
tPWE	7,8,9,10,11
$\mathrm{t}_{\text {SD }}$	7,8,9,10,11
t_{HD}	7,8,9,10,11
BUSY/INTERRUPT TIMING	
$\mathrm{t}_{\text {BLA }}$	7,8,9,10,11
$\mathrm{t}_{\text {BHA }}$	7,8,9,10,11
$\mathrm{t}_{\text {BLC }}$	7,8,9,10,11
$\mathrm{t}_{\mathrm{BHC}}$	7,8,9,10,11
$\mathrm{t}_{\text {PS }}$	7,8,9,10,11
tWINS	7,8,9,10,11
teins	7,8,9,10,11
tins	7,8,9,10,11

Parameters	Subgroups
BUSY/INTERRUPT TIMING (Continued)	
toinr	7,8,9,10,11
teINR	7,8,9,10,11
tinR	7,8,9,10,11
BUSY TIMING	
$\mathrm{twB}^{\text {[1] }}$	7,8,9,10,11
twh	7,8,9,10,11
$t_{\text {BDD }}$	7,8,9,10,11
$t_{\text {DDD }}$	7,8,9,10,11
tWDD	7,8,9,10,11

Note:

1. CY7C140 only.

Document \#: 38-00027-B

2048 x 8 Dual Port Static RAM

Features

- 0.8 micron CMOS for optimum speed/power
- Automatic power-down
- TTL compatible
- Capable of withstanding greater than 2001V electrostatic discharge
- Fully asynchronous operation
- MASTER CY7C132 easily expands databus width to 16 or more bits using SLAVE CY7C142
- $\overline{\text { BUSY }}$ output flag on CY7C132; BUSY input on CY7C142
- INT flag for port to port communication (LCC version)

Functional Description

The CY7C132/CY7C142 are high speed CMOS 2K x 8 Dual Port Static RAMs. Two ports are provided permitting independent access to any location in memory. The CY7C132 can be utilized as either a stand-alone 8-Bit Dual Port RAM or as a MASTER Dual Port RAM in conjunction with the CY7C142 SLAVE Dual Port device in systems requiring 16-Bit or greater word widths. It is the solution to applications requiring shared or buffered data such as cache memory for DSP, bit-slice or multiprocessor designs.
Each port has independent control pins; Chip Enable (CE), Write Enable ($\overline{\mathrm{WE}}$), and Output Enable ($\overline{\mathrm{OE}}) . \overline{\mathrm{BUSY}}$ flags are provided on each port. In ad-
dition, an interrupt flag (INT) is provided on each port of the LCC version. $\overline{\text { BUSY }}$ signals that the port is trying to access the same location currently being accessed by the other port. On the LCC version, $\overline{\mathrm{INT}}$ is an interrupt flag indicating that data has been placed in a unique location by the other port.
An automatic power-down feature is controlled independently on each port by the Chip Enable ($\overline{\mathrm{CE}}$) pin.
The CY7C132/CY7C142 are available in both 48-pin DIP, 48-pin LCC and 52-pin PLCC.
A die coat is used to insure alpha immunity.

Logic Block Diagram

Notes:
0106-1

1. CY7C132 (MASTER): BUSY is open drain output and requires pullup resistor.

CY7C142 (SLAVE): BUSY is input.
2. Open drain outputs: pullup resistor required.

Pin Configuration

DIP
Top View

Selection Guide

		7C132-25 7C142-25	7C132-35 7C142-35	7C132-45 7C142-45	7C132-55 7C142-55
Maximum Access Time (ns)		25	35	45	55
Maximum Operating Current (mA)	Commercial	120	90	90	90
	Military		120	120	120
Maximum Standby Current (mA)	Commercial	30	30	30	30
	Military		40	40	40

Maximum Ratings

Above which the useful life may be impaired. For user guidelines, not tested.)

rage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
tmbient Temperature with	
? ower Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
;upply Voltage to Ground Potential	
Pin 48 to Pin 24)	7.0V
)C Voltage Applied to Outputs	
n	-0.5 V to +7.0 V
)C Input Vol	-3.5 V to +7.0 V
Jutput Current into Outputs (Low)	

Static Discharge Voltage
. $>2001 \mathrm{~V}$
tmbient Temperature with
ower Applied
thod 3015)
Latch-up Current
$>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[8]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range ${ }^{[9]}$

Parameters	Description	Test Conditions		$\begin{aligned} & \text { 7C132-25 } \\ & \text { 7C142-25 } \end{aligned}$		$\begin{aligned} & \text { 7C132-35, 45, } 55 \\ & \text { 7C142-35, 45, } 55 \end{aligned}$		Units
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		2.4		V
VOL	Output LOW Voltage	$\mathrm{IOL}=6.0 \mathrm{~mA}$			0.4		0.4	V
		$\mathrm{IOL}=8.0 \mathrm{~mA}$			0.5		0.5	
		$\mathrm{IOL}=16.0 \mathrm{~mA}^{[7]}$			0.5		0.5	
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.2		2.2		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8		0.8	V
$\mathrm{IIX}^{\text {I }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-5	+ 5	-5	+5	$\mu \mathrm{A}$
Ioz	Output Leakage Current	$\begin{aligned} & \mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}} \\ & \text { Output Disabled } \end{aligned}$		-5	+ 5	-5	+5	$\mu \mathrm{A}$
Ios	Output Short [3] Circuit Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max. }, \\ & \mathrm{V}_{\text {OUT }}=\text { GND } \end{aligned}$			-350		-350	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Commercial		120		90	mA
			Military				120	
ISB $\mathrm{I}_{\text {SB1 }}$ $\mathrm{I}_{\mathrm{SB} 2}$ IsB3 ISB4 ISB1 ISB2 ISB3 ISB4	Automatic $\overline{\mathrm{CE}}$ [4] Power Down Current Both Ports, TTL Inputs One Port, TTL Input Both Ports, CMOS Inputs One Port, CMOS Inputs		Commercial		$\begin{aligned} & 30 \\ & 75 \\ & 15 \\ & 65 \\ & \hline \end{aligned}$		$\begin{aligned} & 30 \\ & 75 \\ & 15 \\ & 65 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
	Both Ports, TTL Inputs One Port, TTL Input Both Ports, CMOS Inputs One Port, CMOS Inputs		Military				40 100 30 80	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$

Japacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	10	pF
COUT	Output Capacitance		10	

otes:
Duration of the short circuit should not exceed 30 seconds.
A pull-up resistor to $V_{C C}$ on the $\overline{\mathrm{CE}}$ input is required to keep the device deselected during $V_{C C}$ power-up, otherwise ISB will exceed values given.
Tested initially and after any design or process changes that may affect these parameters.
6. LCC version only.
7. $\overline{\mathrm{BUSY}}$ and $\overline{\mathrm{INT}}$ pins only.
8. T_{A} is the "instant on" case temperature.
9. See the last page of this specification for Group A subgroup testing information.

AC Test Loads and Waveforms

Figure 1

Figure 2

0106-6

Figure 3. BUSY Output Load (CY7C132 Only)

ALL INPUT PULSES

0106-8

0106-7
Figure 4

Switching Characteristics Over Operating Range [9, 11]

Parameters	Description	$\begin{aligned} & \text { 7C132-25 } \\ & \text { 7C142-25 } \\ & \hline \end{aligned}$		$\begin{array}{r} 7 \mathrm{C} 132-35 \\ 7 \mathrm{C} 142-35 \\ \hline \end{array}$		$\begin{array}{r} 7 \mathrm{C} 132-45 \\ \text { 7C142-45 } \\ \hline \end{array}$		$\begin{array}{r} 7 \mathrm{C} 132-55 \\ \text { 7C142-55 } \\ \hline \end{array}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE										
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	25		35		45		55		ns
t_{AA}	Address to Data Valid		25		35		45		55	ns
$\mathrm{t}_{\mathrm{OHA}}$	Data Hold from Address Change	2		3		3		3		ns
$\mathrm{t}_{\mathrm{ACE}}$	$\overline{\text { CE LOW to Data Valid }}$		30		35		45		55	ns
$t_{\text {DOE }}$	$\overline{\text { OE }}$ LOW to Data Valid		15		15		20		25	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\mathrm{OE}}$ LOW to Low Z	2		3		3		3		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\text { OE HIGH to High } \mathrm{Z}^{[12]}}$		15		15		20		25	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low Z [13]	2		5		5		5		ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\mathrm{CE}}$ HIGH to High Z ${ }^{\text {[12, 13] }}$		15		15		20		25	ns
t_{PU}	$\overline{\mathrm{CE}}$ LOW to Power Up	0		0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}$ HIGH to Power Down		20		20		25		30	ns

WRITE CYCLE[14]

t_{WC}	Write Cycle Time	25		35		45		55		ns
tSCE	$\overline{\text { CE LOW to Write End }}$	20		30		35		40		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	20		30		35		40		ns
t_{HA}	Address Hold from Write End	2		2		2		2		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		0		ns
tPWE	$\overline{\text { WE Pulse Width }}$	15		20		20		25		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	15		15		20		20		ns
t_{HD}	Data Hold from Write End	0		0		0		0		ns
thzwE	$\overline{\text { WE L L }}$ L to High Z		15		15		20		25	ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low Z	0		0		0		0		ns

Switching Characteristics Over Operating Range ${ }^{[9,11]}$ (Continued)

Parameters	Description	$\begin{array}{r} \text { 7C132-25 } \\ \text { 7C142-25 } \\ \hline \end{array}$		$\begin{array}{r} 7 \mathrm{C} 132-35 \\ 7 \mathrm{C} 142-35 \\ \hline \end{array}$		$\begin{aligned} & \text { 7C132-45 } \\ & \text { 7C142-45 } \end{aligned}$		$\begin{aligned} & \text { 7C132-55 } \\ & \text { 7C142-55 } \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
BUSY/INTERRUPT TIMING										
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	25		35		45		55		ns
twC	Write Cycle Time	25		35		45		55		ns
${ }^{\text {t }}$ BLA	BUSY LOW from Address Match		15		20		25		30	ns
${ }^{\text {tBHA }}$	BUSY HIGH from Address Mismatch		20		20		25		30	ns
$\mathrm{t}_{\text {BLC }}$	$\overline{\text { BUSY LOW from } \overline{\text { CE }} \text { LOW }}$		20		20		25		30	ns
$\mathrm{t}_{\text {BHC }}$	$\overline{\text { BUSY }}$ HIGH from CE HIGH		20		20		25		30	ns
tPS	Port Set-Up for Priority	5		5		5		5		ns
twINS	$\overline{\text { WE }}$ to INTERRUPT Set Time		12		15		20		25	ns
teIns	$\overline{\text { CE }}$ to INTERRUPT Set Time		20		25		35		45	ns
tins	Add to INTERRUPT Set Time		20		25		35		45	ns
toink	$\overline{\mathrm{OE}}$ to INTERRUPT Reset Time		15		15		20		25	ns
tEINR	$\overline{\mathbf{C E}}$ to INTERRUPT Reset Time		20		25		35		45	ns
tINR	Add to İINTERRUPT Reset Time		20		25		35		45	ns

BUSY TIMING

twB*		0		0		0		0		ns
twh		10		15		15		15		ns
$\mathrm{t}_{\text {BDD }}$	BUSY HIGH to Valid Data		20		20		25		30	ns
tDDD	Write Data Valid to Read Data Valid		Note 18		Note 18		Note 18		Note 18	ns
twDD	Write Pulse to Data Delay		Note 18		Note 18		Note 18		Note 18	

'CY7C142 Only

votes:

.0. Data I/O pins enter high-impedance state, as shown, when $\overline{\mathrm{OE}}$ is held LOW during write.

1. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance.
2. $\mathrm{t}_{\text {HZOE }} \mathrm{t}_{\mathrm{HZCE}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in Figure 2. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
3. At any given temperature and voltage condition, thZCE is less than $t_{\text {LZCE }}$ for any given device.
4. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
5. WE is HIGH for read cycle.
6. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
7. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
8. A write operation on Port A, where Port A has priority, leaves the data on Port B's outputs undisturbed until one access time after one of the following:
A. $\overline{\text { BUSY }}$ on Port B goes HIGH.
B. Port B's address toggled.
C. $\overline{\mathbf{C E}}$ for Port \mathbf{B} is toggled.
D. $\bar{W} E$ for Port B is toggled.

Switching Waveforms

2ead Cycle No. 1 (Notes 15, 16)
Either Port—Address Access

Switching Waveforms (Continued)

Read Cycle No. 2 (Notes 15, 17)

Either Port- $\overline{\mathbf{C E}} / \overline{\mathbf{O E}}$ Access

Read Cycle No. 3 (Note 15)

0106-11
Write Cycle No. 1 (Notes 10, 14)
Either Port

Switching Waveforms (Continued)

Write Cycle No. 2 (Notes 10, 14)
Either Port

BUSY Timing Diagram No. 1 ($\overline{\mathrm{CE}}$ Arbitration)

$\overline{\mathrm{CE}}_{\mathrm{L}}$ Valid First:

0106-15
$\overline{\mathrm{TE}}_{\mathrm{R}}$ Valid First:

Switching Waveforms (Continued)

BUSY Timing Diagram No. 2 (Address Arbitration)

LEFT Address Valid First:

0106-17

BUSY Timing Diagram No. 2

RIGHT Address Valid First:

BUSY Timing Diagram No. 3

WRITE with BUSY (SLAVE: CY7C142)

Switching Waveforms (Continued)

Interrupt Timing Diagram (Note 6)

LEFT Side Sets $\overline{\text { INT }}_{\text {R }}$:

0106-19
RIGHT Side Clears $\overline{\text { INT }}_{\mathbf{R}}$:

RIGHT Side Sets $\overline{\mathbf{I N T}}_{\mathbf{L}}$:

0106-21
EFT Side Clears $\overline{\mathbf{I N T}}_{\mathbf{L}}$:

Pin Configurations

PLCC
0106-23 Top View

Ordering Information

Speed (ms)	Ordering Code	Package Type	Operating Range
25	CY7C132-25PC	P25	Commercial
	CY7C132-25DC	D26	
	CY7C132-25LC	L68	
	CY7C132-25JC	J69	
35	CY7C132-35PC	P25	Commercial
	CY7C132-35DC	D26	
	CY7C132-35LC	L68	
	CY7C132-35JC	J69	
	CY7C132-35DMB	D26	Military
	CY7C132-35LMB	L68	
45	CY7C132-45PC	P25	Commercial
	CY7C132-45DC	D26	
	CY7C132-45LC	L68	
	CY7C132-45JC	J69	
	CY7C132-45DMB	D26	Military
	CY7C132-45LMB	L68	
55	CY7C132-55PC	P25	Commercial
	CY7C132-55DC	D26	
	CY7C132-55LC	L68	
	CY7C132-55JC	J69	
	CY7C132-55DMB	D26	Military
	CY7C132-55LMB	L68	

Speed (ms)	Ordering Code	Package Type	Operating Range
25	CY7C142-25PC	P25	Commercial
	CY7C142-25DC	D26	
	CY7C142-25LC	L68	
	CY7C142-25JC	J69	
35	CY7C142-35PC	P25	Commercial
	CY7C142-35DC	D26	
	CY7C142-35LC	L68	
	CY7C142-35JC	J69	
	CY7C142-35DMB	D26	Military
	CY7C142-35LMB	L68	
45	CY7C142-45PC	P25	Commercial
	CY7C142-45DC	D26	
	CY7C142-45LC	L68	
	CY7C142-45JC	J69	
	CY7C142-45DMB	D26	Military
	CY7C142-45LMB	L68	
55	CY7C142-55PC	P25	Commercial
	CY7C142-55DC	D26	
	CY7C142-55LC	L68	
	CY7C142-55JC	J69	
	CY7C142-55DMB	D26	Military
	CY7C142-55LMB	L68	

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{OS}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 3}$	$1,2,3$

Parameters	Subgroups
ISB4	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
$\mathrm{t}_{\text {AA }}$	7,8,9,10,11
toha	7,8,9,10,11
$\mathrm{t}_{\text {ACE }}$	7,8,9,10,11
$\mathrm{t}_{\text {DOE }}$	7,8,9,10,11
WRITE CYCLE	
tsCE	7,8,9,10,11
$t_{\text {AW }}$	7,8,9,10,11
${ }^{\text {H }} \mathrm{HA}$	7,8,9,10,11
tSA	7,8,9,10,11
tpwe	7,8,9,10,11
$\mathrm{t}_{\text {SD }}$	7,8,9,10,11
t_{HD}	7,8,9,10,11
BUSY/INTERRUPT TIMING	
t ${ }_{\text {BLA }}$	7,8,9,10,11
tBHA	7,8,9,10,11
$\mathrm{t}_{\text {BLC }}$	7,8,9,10,11
$\mathrm{t}_{\mathrm{BHC}}$	7,8,9,10,11
$\mathrm{t}_{\text {PS }}$	7,8,9,10,11
twins	7,8,9,10,11
teIns	7,8,9,10,11
${ }_{\text {tins }}$	7,8,9,10,11

Parameters	Subgroups
BUSY/INTERRUPT TIMING (Continued)	
toink	7,8,9,10,11
teINR	7,8,9,10,11
tiNR	7,8,9,10,11
BUSY TIMING	
$\mathrm{twB}^{\text {[1] }}$	7,8,9,10,11
twh	7,8,9,10,11
$\mathrm{t}_{\text {BDD }}$	7,8,9,10,11
tDDD	7,8,9,10,11
twDD	7,8,9,10,11

Note:

1. CY7C142 only.

Document \#: 38-00061-A

Features

- Automatic power-down when deselected
- CMOS for optimum speed/power
- High speed-25 ns
- Low active power
- 440 mW (commercial)
- 605 mW (military)
- Low standby power
$-55 \mathrm{~mW}$
- TTL compatible inputs and outputs
- Capable of withstanding greater than $\mathbf{2 0 0 0 V}$ electrostatic discharge

Functional Description

The CY7C147 is a high performance CMOS static RAM organized as 4096 words by 1 bit. Easy memory expansion is provided by an active LOW chip enable ($\overline{\mathrm{CE}}$) and three-state drivers. The CY7C147 has an automatic pow-er-down feature, reducing the power consumption by 80% when deselected.
Writing to the device is accomplished when the chip enable ($\overline{\mathrm{CE}})$ and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the input pin (DI) is written into the memory location specified on the address pins (A_{0} through A_{11}).

Reading the device is accomplished by taking the chip enable ($\overline{\mathrm{CE}}$) LOW, while write enable ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the data output (DO) pin.
The output pin stays in high impedance state when chip enable $(\overline{\mathrm{CE}})$ is HIGH or write enable ($\overline{\mathrm{WE}}$) is LOW.

Pin Configurations

0019-2

0019-3

Selection Guide

		7C147-25	7C147-35	7C147-45
Maximum Access Time (ns)	Commercial	25	35	45
		110	80	

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Ambient Temperature with	
Power Applied	to $+125^{\circ}$
pply Voltage to Ground Potential in 18 to Pin 9)	0.5 V to +7.0 V
DC Voltage Applied to Outputs in High Z State.	-0.5 V to +7.0 V
Input V	to +7.0 V
utput Current into Outputs (L	

Static Discharge Voltage . > 2001 V
(Per MIL-STD-883 Method 3015)
Latchup Current
. $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	VCC $^{\text {Com }}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[3]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range ${ }^{[4]}$

Parameters	Description	Test Conditions		7C147-25		7C147-35, 45		Units
				Min.	Max.	Min.	Max.	
$\mathrm{VOH}^{\text {O }}$	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min.	$\mathbf{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min.	$\mathrm{I}_{\mathrm{OL}}=12.0 \mathrm{~mA}$		0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input High Voltage			2.0	6.0	2.0	6.0	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage			-3.0	0.8	-3.0	0.8	V
IIX	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq$		-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\begin{aligned} & \text { GND } \leq \mathrm{V}_{\mathrm{O}} \leq \\ & \text { Output Disable } \end{aligned}$		-50	$+50$	-50	$+50$	$\mu \mathrm{A}$
Ios	Output Short ${ }^{[1]}$ Circuit Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$.	$\mathrm{V}_{\text {OUT }}=\mathrm{GND}$		-350		-350	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathbf{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Commercial		90		80	mA
			Military				110	
ISB_{1}	Automatic $\overline{\mathrm{CE}}[2]$ Power Down Current	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}}, \\ & \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}} \end{aligned}$	Commercial		15		10	mA
			Military				10	

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	5	pF
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	6	

Notes:

1. Duration of the short circuit should not exceed 30 seconds.
2. A pull-up resistor to $V_{C C}$ on the $\overline{\mathrm{CE}}$ input is required to keep the device deselected during $V_{\text {CC }}$ power-up, otherwise $I_{S B}$ will exceed values given.
3. T_{A} is the "instant on" case temperature.
4. See the last page of this specification for Group A subgroup testing information.
5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Figure 1a

Figure 1b

Equivalent to:
THÉVENIN EQUIVALENT

ALL INPUT PULSES

0019-6
Figure 2

CYPRESS
SEMICONDUCTOR
Switching Characteristics Over Operating Range ${ }^{[6]}$

Parameters	Description	7C147-25		7C147-35		7C147-45		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	25		35		45		ns
t_{AA}	Address to Data Valid		25		35		45	ns
toha	Data Hold from Address Change	3		5		5		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\text { CS }}$ Low to Data Valid		25		35		45	ns
thzCE	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[8]}$	5		5		5		ns
${ }^{\text {thzCE }}$	$\overline{\text { CEHIGH to High }} \mathbf{}$ [7, 8]		20		30		30	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\text { CE LOW }}$ to Power Up	0		0		0		ns
tPD	$\overline{\overline{C E}}$ HIGH to Power Down		20		20		20	ns
WRITE CYCLE ${ }^{\text {[9] }}$								
twC	Write Cycle Time	25		35		45		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\text { CE }}$ LOW to Write End	25		35		45		ns
taw	Address Set-up to Write End	25		35		45		ns
tha	Address Hold from Write End	0		0		0		ns
tSA	Address Set-up to Write Start	0		0		0		ns
tPWE	$\overline{\text { WE Pulse Width }}$	15		20		25		ns
tSD	Data Set-up to Write End	15		20		25		ns
thD	Data Hold from Write End	0		10		10		ns
tLZWE	$\overline{\text { WE }}$ HIGH to Low Z [8]	0		0		0		ns
thzwe	$\overline{\text { WE }}$ LOW to High Z ${ }^{\text {[7, 8] }}$		15		20		25	ns

Notes:
6. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance.
7. $\mathrm{t}_{\mathrm{HZCE}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in Figure 1 b . Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
8. At any given temperature and voltage condition, $t_{H Z}$ is less than $t_{L Z}$ for all devices.
9. The internal write time of the memory is defined by the overlap of $\overline{C E}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
10. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
11. Device is continuously selected, $\overline{\mathbf{C E}}=\mathrm{V}_{\mathrm{IL}}$.
12. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.

Switching Waveforms

Read Cycle No. 1 (Notes 10, 11)

Switching Waveforms (Continued)

Read Cycle No. 2 (Notes 10, 12)

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) (Note 9)

Write Cycle No. 2 ($\overline{\mathbf{C E}}$ Controlled) (Note 9)

Note: If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\text { WE }}$ HIGH, the output remains in a high impedance state.

Typical DC and AC Characteristics

NORMALIZED ACCESS TIME vs. SUPPLY VOLTAGE

TYPICAL POWER-ON CURRENT vs. SUPPLY VOLTAGE (7C148)

NORMALIZED SUPPLY CURRENT vs. AMBIENT TEMPERATURE

NORMALIZED ACCESS TIME vs. AMBIENT TEMPERATURE

TYPICAL ACCESS TIME CHANGE vs. OUTPUT LOADING

OUTPUT SOURCE CURRENT vs. OUTPUT VOLTAGE

OUTPUT SINK CURRENT vs. OUTPUT VOLTAGE

NORMALIZED ICC
vs. CYCLE TIME

0019-11

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C147-25PC	P3	Commercial
	CY7C147-25DC	D4	Commercial Commercial
35	CY7C147-25LC	L50	CY7C147-35PC
	CY7C147-35DC	P3	Commercial
	CY7C147-35LC	L50	Commercial
	Commercial		
	CY7C147-35DMB	D4	Military
	CY7C147-35LMB	L50	Military
45	CY7C147-45PC	P3	Commercial
	CY7C147-45DC	D4	Commercial
	CY7C147-45LC	L50	Commercial
	CY7C147-45DMB	D4	Military
	CY7C147-45LMB	L50	Military

Address Designators

Address Name	Address Function	Pin Number
A_{0}	X_{0}	1
$\mathrm{~A}_{1}$	X_{1}	2
$\mathrm{~A}_{2}$	X_{2}	3
$\mathrm{~A}_{3}$	X_{3}	4
$\mathrm{~A}_{4}$	Y_{0}	5
$\mathrm{~A}_{5}$	Y_{1}	6
$\mathrm{~A}_{6}$	X_{4}	17
$\mathrm{~A}_{7}$	X_{5}	16
$\mathrm{~A}_{8}$	Y_{2}	15
$\mathrm{~A}_{9}$	Y_{3}	14
$\mathrm{~A}_{10}$	Y_{4}	13
$\mathrm{~A}_{11}$	Y_{5}	12

Bit Map

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	7,8,9,10,11
t_{AA}	7,8,9,10,11
$\mathrm{t}_{\mathrm{OHA}}$	7,8,9,10,11
$\mathrm{t}_{\text {ACE }}$	7,8,9,10,11
WRITE CYCLE	
twC	7,8,9,10,11
$t_{\text {SCE }}$	7,8,9,10,11
$\mathrm{t}_{\text {AW }}$	7,8,9,10,11
t_{HA}	7,8,9,10,11
$\mathrm{t}_{\text {SA }}$	7,8,9,10,11
tPWE	7,8,9,10,11
$\mathrm{t}_{\text {SD }}$	7,8,9,10,11
t_{HD}	7,8,9,10,11

Document \#: 38-00030-B

Features

- Automatic power-down when deselected (7C148)
- CMOS for optimum speed/power
- 25 ns access time
- Low active power
- 440 mW (commercial)
- 605 mW (military)
- Low standby power (7C148)
-82.5 mW (25 ns version)
-55 mW (all others)
- 5 volt power supply $\pm 10 \%$ tolerance both commercial and military
- TTL compatible inputs and outputs

Functional Description

The CY7C148 and CY7C149 are high performance CMOS static RAMs organized as 1024×4 bits. Easy memory expansion is provided by an active LOW chip select ($\overline{\mathrm{CS}}$) input, and threestate outputs. The CY7C148 and CY7C149 are identical except that the CY7C148 includes an automatic (CS) power-down feature. The CY7C148 remains in a low power mode as long as the device remains unselected, i.e. (CS) is HIGH, thus reducing the average power requirements of the device. The chip select (CS) of the CY7C149 does not affect the power dissipation of the device.
An active LOW write enable signal (产E) controls the writing/reading operation of the memory. When the chip
select ($\overline{\mathbf{C S}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW, data on the four data input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{3}$) is written into the memory location addressed by the address present on the address pins (A_{0} through A_{9}).
Reading the device is accomplished by selecting the device, ($\overline{\mathrm{CS}}$) active LOW, while ($\overline{\mathrm{WE}}$) remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins (A_{0} through A_{9}) is present on the four data input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{3}$).
The input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{3}$) remain in a high impedance state unless the chip is selected, and write enable ($\overline{\mathrm{WE}}$) is high.

Logic Block Diagram

Pin Configurations

0001-3

0001-2

0001-1

Selection Guide

		7C148-25	7C148-35	7C148-45	7C149-25	7C149-35	7C149-45							
Maximum Access Time (ns)									25	35	45	25	35	45
Maximum Operating Current (mA)	Commercial	90	80	80	90	80	80							
	Military		110	110		110	110							
	Commercial	15	10	10										
	Military		10	10										

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 18 to Pin 9) -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State.
DC Input Voltage -3.0 V to +7.0 V
Output Current into Outputs (Low)
.20 mA

Static Discharge Voltage
(Per MIL-STD-883 Method 3015) > 2001 V
Latchup Current . >200 mA

Operating Range

Range	Ambient Temperature	VCC
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[11]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range ${ }^{[12]}$

Notes:

1. Test conditions assume signal transition times of 10 ns or less, timing reference levels of 1.5 V , input puise levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance. Output timing reference is 1.5 V .
2. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ low and WE low. Both signals must be low to initiate a write and either signal can terminate a write by going high. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
3. A pull up resistor to V_{CC} on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected during $V_{\text {cc }}$ power up. Otherwise current will exceed values given (CY7C148 only).
4. Chip deselected greater than 25 ns prior to selection.
5. Chip deselected less than 25 ns prior to selection.

AC Test Loads and Waveforms

Figure 1b

Figure 1a

Equivalent To:

THÉVENIN EQUIVALENT

6. At any given temperature and voltage condition, $t_{H Z}$ is less than tLZ for all devices. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage with specified loading in Figure $1 b$.
7. $\overline{\mathrm{WE}}$ is high for read cycle.
8. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.
9. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.
10. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
11. T_{A} is the "instant on" case temperature.
12. See the last page of this specification for Group A subgroup testing information.
13. Tested initially and after any design or process changes that may affect these parameters.

SEMICONDUCTOR

Switching Characteristics Over Operating Range ${ }^{[12]}$

Parameters	Description		7C148/9-25		7C148/9-35		7C148/9-45		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE									
t_{RC}	Address Valid to Address Do Not Care Time (Read Cycle Time)		25		35		45		ns
${ }^{\text {taA }}$	Address Valid to Data Out Valid Delay (Address Access Time)			25		35		45	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{ACS} 1} \\ & \mathrm{t}_{\mathrm{ACS} 2} \end{aligned}$	Chip Select Low to Data Out Valid (CY7C148 only)			25[4]		35		45	ns
				30[5]		35		45	
${ }^{\text {taCS }}$	Chip Select Low to Data Out Valid (CY7C149 only)			15		15		20	ns
$\mathrm{t}_{\text {L }}{ }^{[6]}$	Chip Select Low to Data Out On	7C148	8		10		10		ns
		7C149	5		5		5		
$\mathrm{t}_{\mathrm{HZ}}{ }^{[6]}$	Chip Select High to Data Out Off		0	15	0	20	0	20	ns
tor	Address Unknown to Data Out Unknown Time		0		0		5		ns
${ }^{\text {tPD }}$	Chip Select High to Power-Down Delay	7C148		20		30		30	ns
$t^{\text {PU }}$	Chip Select Low to Power-Up Delay	7C148	0		0		0		ns
WRITE CYCLE									
twc	Address Valid to Address Do Not Care (Write Cycle Time)		25		35		45		ns
$\mathrm{twp}^{[2]}$	Write Enable Low to Write Enable High		20		30		35		ns
twR	Address Hold from Write End		5		5		5		ns
$\mathrm{twZ}^{\text {[6] }}$	Write Enable to Output in High Z		0	8	0	10	0	15	ns
tDW	Data in Valid to Write Enable High		12		20		20		ns
${ }^{\text {t }}$ DH	Data Hold Time		0		0		0		ns
${ }^{\text {tas }}$	Address Valid to Write Enable Low		0		0		0		ns
$\mathrm{t}_{\mathrm{CW}}{ }^{[2]}$	Chip Select Low to Write Enable High		20		30		40		ns
tow ${ }^{[6]}$	Write Enable High to Output in Low Z		0		0		0		ns
${ }_{\text {taw }}$	Address Valid to End of Write		20		30		35		ns

Switching Waveforms

Read Cycle No. 1 (Notes 7, 8)

Switching Waveforms (Continued)

Read Cycle No. 2 (Notes 7, 9)

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled)

Write Cycle No. 2 ($\overline{\mathbf{C S}}$ Controlled)

Typical DC and AC Characteristics

TYPICAL POWER-ON CURRENT vs. SUPPLY VOLTAGE (7C148)

NORMALIZED SUPPLY CURRENT vs. AMBIENT TEMPERATURE

TYPICAL ACCESS TIME CHANGE vs. OUTPUT LOADING

OUTPUT SOURCE CURRENT vs. OUTPUT VOLTAGE

OUTPUT SINK CURRENT vs. OUTPUT VOLTAGE

NORMALIZED ICC vs. ACCESS TIME

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
25	$\begin{aligned} & \text { CY7C148-25PC } \\ & \text { CY7C149-25PC } \end{aligned}$	P3	Commercial
	CY7C148-25DC CY7C149-25DC	D4	
	CY7C148-25LC CY7C149-25LC	L50	
35	CY7C148-35PC CY7C149-35PC	P3	Commercial
	CY7C148-35DC CY7C149-35DC	D4	
	CY7C148-35LC CY7C149-35LC	L50	
	$\begin{aligned} & \text { CY7C148-35DMB } \\ & \text { CY7C149-35DMB } \end{aligned}$	D4	Military
	CY7C148-35LMB CY7C149-35LMB	L50	
45	CY7C148-45PC CY7C149-45PC	P3	Commercial
	CY7C148-45DC CY7C149-45DC	D4	
	CY7C148-45LC CY7C149-45LC	L50	
	CY7C148-45DMB CY7C149-45DMB	D4	Military
	CY7C148-45LMB CY7C149-45LMB	L50	

Address Designators

Address Name	Address Function	Pin Number
A_{0}	Y_{0}	5
$\mathrm{~A}_{1}$	Y_{1}	6
$\mathrm{~A}_{2}$	Y_{2}	7
$\mathrm{~A}_{3}$	Y_{3}	4
$\mathrm{~A}_{4}$	X_{0}	3
$\mathrm{~A}_{5}$	X_{3}	2
$\mathrm{~A}_{6}$	X_{2}	1
$\mathrm{~A}_{7}$	X_{5}	17
$\mathrm{~A}_{8}$	X_{4}	16
$\mathrm{~A}_{9}$	X_{1}	15

Bit Map

0001-11

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
\mathbf{I}_{OH}	$1,2,3$
I_{OL}	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathbf{S B}}{ }^{[1]}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	7,8,9,10,11
t_{AA}	7,8,9,10,11
$\mathrm{taCS}^{\text {[}}{ }^{[1]}$	7,8,9,10,11
$\mathrm{taCS}^{\text {a }}$ [1]	7,8,9,10,11
$\mathrm{taCS}^{\text {[2] }}$	7,8,9,10,11
tor	7,8,9,10,11
WRITE CYCLE	
twC	7,8,9,10,11
twP	7,8,9,10,11
$t_{\text {WR }}$	7,8,9,10,11
tDw	7,8,9,10,11
$\mathrm{t}_{\text {DH }}$	7,8,9,10,11
$\mathrm{t}_{\text {AS }}$	7,8,9,10,11
taw	7,8,9,10,11

Notes:

1. 7C148 only.
2. 7C149 only.

Document \# : 38-00031-B

Features

- Memory reset function
- 1024×4 static RAM for control store in high speed computers
- CMOS for optimum speed/power
- High speed
- 12 ns (commercial)
- 15 ns (military)
- Low power
- 495 mW (commercial)
- $\mathbf{5 5 0} \mathrm{mW}$ (military)
- Separate inputs and outputs
- 5 volt power supply $\pm 10 \%$ tolerance both commercial and military
- Capable of withstanding greater than 2001V static discharge
- TTL compatible inputs and outputs

Functional Description

The CY7C150 is a high performance CMOS static RAM designed for use in cache memory, high speed graphics, and data aquisition applications. Organized as 1024 words $x 4$ bits, the entire memory can be reset to zero in two memory cycles.
Separate I/O paths eliminate the need to multiplex data in and data out, providing for simpler board layout and faster system performance. Outputs are tri-stated during write, reset, deselect, or when output enable $(\overline{\mathrm{OE}})$ is held HIGH, allowing for easy memory expansion.
Reset is initiated by selecting the device ($\overline{\mathrm{CS}}=\mathrm{LOW}$) and pulsing the reset ($\overline{\mathrm{RS}}$) input LOW. Within two memory cycles all bits are internally cleared to zero. Since chip select must be LOW for the device to be reset, a global reset signal can be employed, with only selected devices being cleared at any given time.

An active LOW write enable input ($\overline{\mathrm{WE}}$) controls the writing/reading op-
eration of the memory. When the chip select ($\overline{\mathrm{CS}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are LOW, the information on the four data inputs D_{0} to D_{3} is written into the addressed memory location and the output circuitry is preconditioned so that the write data is present at the outputs when the write cycle is completed.
Reading is performed with the chip select ($\overline{\mathrm{CS}}$) input LOW, and the write enable (WE) input HIGH, and the output enable input (OE) LOW. The information stored in the addressed word is read out on the four non-inverting outputs O_{0} to O_{3}.

The outputs of the memory go to an active high impedance state whenever chip select ($\overline{\mathrm{CS}}$) is HIGH, Reset ($\overline{\mathrm{RS}}$) is LOW, output enable ($\overline{\mathrm{OE} \text {) is HIGH, or }}$ during the writing operation when Write Enable ($\overline{\mathrm{WE}}$) is LOW.
A die coat is used to ensure alpha immunity.

Logic Block Diagram

Pin Configurations

0028-2

Selection Guide

		$\mathbf{7 C 1 5 0 - 1 2}$	$\mathbf{7 C 1 5 0 - 1 5}$	$\mathbf{7 C 1 5 0 - 2 5}$	7C150-35
Maximum Access Time (ns)	Commercial	12	15	25	35
	Military		15	25	35
Maximum Operating Current (mA)	Commercial	90	90	90	90
	Military		100	100	100

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Ambient Temperature with	Static Discharge Voltage . > 2001 V (Per MIL-STD-883 Method 3015)		
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Latch-up Cur		$>200 \mathrm{~mA}$
Supply Voltage to Ground Potential (Pin 24 to Pin 12) -0.5 V to +7.0 V	Operating Range		
DC Voltage Applied to Outputs in High Z State . -0.5 V to +7.0 V	Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
DC Input Voltage -3.0 V to +7.0 V	Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Output Current into Outputs (Low) 20 mA	Military ${ }^{\text {[3] }}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range ${ }^{[4]}$

Parameters	Description	Test Conditions		7 C 15	5, 35	Units
				Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{IOH}=-4.0 \mathrm{~mA}$		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=12.0 \mathrm{~mA}$			0.4	V
$\mathrm{V}_{\text {IH }}$	Input High Voltage			2.0	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage			-3.0	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	$\mu \mathrm{A}$
IOZ	Output Leakage Current	$\begin{aligned} & \mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}} \\ & \text { Output Disabled } \end{aligned}$		-50	+ 50	$\mu \mathrm{A}$
Ios	Output Short ${ }^{[1]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-300	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Commercial		90	mA
			Military*		100	

*-15, -25 and -35 only

Capacitance ${ }^{[2]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	5	pF
COUT	Output Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	7	pF

Notes:

1. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
2. Tested initially and after any design or process changes that may affect these parameters.
3. T_{A} is the "instant on" case temperature.
4. See the last page of this specification for Group A subgroup testing information.

AC Test Loads and Waveforms

Figure 1a

0028-5
Figure 2. All Input Pulses

Equivalent To:
THÉVENIN EQUIVALENT

CY7C150
SEMICONDUCTOR
Switching Characteristics Over Operating Range ${ }^{[4, ~ 5]}$

Parameters	Description	7-150-12		7C150-15		7C150-25		7C150-35		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE										
trc	Read Cycle Time	12		15		25		35		ns
t_{AA}	Address to Data Valid		12		15		25		35	ns
toha	Output Hold from Address Change	2		2		2		2		ns
$\mathrm{t}_{\mathrm{ACS}}$	$\overline{\text { CS }}$ LOW to Data Valid		10		12		15		20	ns
$\mathrm{t}_{\text {LZCS }}$	$\overline{\mathrm{CS}}$ LOW to Low ${ }^{[7]}$	0		0		0		0		ns
$\mathrm{t}_{\mathrm{HZCS}}$	$\overline{\text { CS }}$ HIGH to High Z[6, 7]		8	0	11	0	20	0	25	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		8		10		15		20	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\text { OE }}$ LOW to Low ${ }^{[7]}$	0		0		0		0		ns
$\mathrm{t}_{\mathrm{HZOE}}$	$\overline{\text { OE }}$ HIGH to High $\mathrm{Z}^{[6,7]}$	0	8	0	9	0	20	0	25	ns

WRITE CYCLE[8]

twC	Write Cycle Time	12		15		25		35		ns
$\mathrm{t}_{\text {SCS }}$	$\overline{\mathrm{CS}}$ LOW to Write End	8		11		15		20		ns
$\mathrm{t}_{\text {AW }}$	Address Set-up to Write End	10		13		20		30		ns
t_{HA}	Address Hold from Write End	2		2		5		5		ns
$\mathrm{t}_{\text {SA }}$	Address Set-up to Write Start	2		2		5		5		ns
tPWE	$\overline{\text { WE Pulse Width }}$	8		11		15		20		ns
$\mathrm{t}_{\text {SD }}$	Data Set-up to Write End	8		11		15		20		ns
t_{HD}	Data Hold from Write End	2		2		5		5		ns
t LZWE	$\overline{\text { WE }}$ HIGH to Low ${ }^{[7]}$	0		0		0		0		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High Z[6, 7]	0	8	0	12	0	20	0	25	ns

RESET CYCLE

trRC	Reset Cycle Time	24		30		50		70		ns
tsAR	Address Valid to Beginning of Reset	0		0		0		0		ns
tSWER	Write Enable HIGH to Beginning of Reset	0		0		0		0		ns
$\mathrm{t}_{\text {SCSR }}$	Chip Select LOW to Beginning of Reset	0		0		0		0		ns
tPRS	Reset Pulse Width	12		15		20		30		ns
$\mathrm{t}_{\mathrm{HCSR}}$	Chip Select Hold after End of Reset	0		0		0		0		ns
$\mathrm{t}_{\text {HWER }}$	Write Enable Hold after End of Reset	12		15		30		40		ns
$\mathrm{t}_{\text {HAR }}$	Address Hold after End of Reset	12		15		30		40		ns
$\mathrm{t}_{\text {LZRS }}$	Reset HIGH to Output in Low Z ${ }^{[7]}$	0		0		0		0		ns
thzRS	Reset LOW to Output in High Z ${ }^{[6,7]}$	0	8	0	12	0	20	0	25	ns

Notes:

5. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance.
6. $\mathrm{t}_{\mathrm{HZCS}}, \mathrm{t}_{\mathrm{HZOE}}, \mathrm{t}_{\mathrm{HZR}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in Figure 1 b . Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, t_{HZ} is less than t_{LZ} for any given device.
8. The internal write time of the memory is defined by the overlap of CS LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
9. WE is HIGH for read cycle.
10. Device is continuously selected, $\overline{\mathrm{CS}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
11. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW.

Switching Waveforms

Read Cycle No. 1 (Notes 9, 10)

Read Cycle No. 2 (Notes 9, 11)

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) (Note 8)

Switching Waveforms (Continued)

Write Cycle No. 2 (CS Controlled) (Note 8)

Note: If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high impedance state.
Reset Cycle

Note: Reset cycle is defined by the overlap of $\overline{\mathrm{RS}}$ and $\overline{\mathrm{CS}}$ for the minimum reset pulse width.

Typical DC and AC Characteristics

NORMALIZED ACCESS TIME vs. SUPPLY VOLTAGE

TYPICAL POWER-ON CURRENT
vs. SUPPLY VOLTAGE

NORMALIZED SUPPLY CURRENT vs. AMBIENT TEMPERATURE

NORMALIZED ACCESS TIME vs. AMBIENT TEMPERATURE

TYPICAL ACCESS TIME CHANGE

OUTPUT SOURCE CURRENT vs. OUTPUT VOLTAGE

OUTPUT SINK CURRENT
vs. OUTPUT VOLTAGE

NORMALIZED ICC vs. CYCLE TIME

0028-14

R
Ordering Information

Inputs				Outputs	Mode
$\overline{\text { CS }}$	WE	$\overline{\mathbf{O E}}$	RS		
H	X	X	X	High Z	Not Selected
L	H	X	L	High Z	Reset
L	L	X	H	High Z	Write
L	H	L	H	$\mathrm{O}_{0}-\mathrm{O}_{3}$	Read
L	X	H	H	High Z	Output Disable

Speed (ns)	Ordering Code	Package Type	Operating Range
12	CY7C150-12PC CY7C150-12DC CY7C150-12LC CY7C150-12SC	P13A D14 L54 S13	Commercial
15	CY7C150-15PC CY7C150-15DC CY7C150-15LC CY7C150-15SC	$\begin{gathered} \text { P13A } \\ \text { D14 } \\ \text { L54 } \\ \text { S13 } \end{gathered}$	Commercial
	CY7C150-15DMB CY7C150-15LMB	$\begin{aligned} & \text { D14 } \\ & \text { L54 } \end{aligned}$	Military
25	CY7C150-25PC CY7C150-25DC CY7C150-25LC CY7C150-25SC	$\begin{gathered} \text { P13A } \\ \text { D14 } \\ \text { L54 } \\ \text { S13 } \end{gathered}$	Commercial
	CY7C150-25DMB CY7C150-25LMB	$\begin{aligned} & \text { D14 } \\ & \text { L54 } \end{aligned}$	Military
35	CY7C150-35PC CY7C150-35DC CY7C150-35LC CY7C150-35SC	$\begin{gathered} \text { P13A } \\ \text { D14 } \\ \text { L54 } \\ \text { S13 } \end{gathered}$	Commercial
	CY7C150-35DMB CY7C150-35LMB	$\begin{aligned} & \text { D14 } \\ & \text { L54 } \end{aligned}$	Military

Bit Map

Address Designators

Address Name	Address Function	Pin Number
A_{0}	X_{0}	21
$\mathrm{~A}_{1}$	X_{1}	22
$\mathrm{~A}_{2}$	X_{2}	23
$\mathrm{~A}_{3}$	X_{3}	1
$\mathrm{~A}_{4}$	X_{4}	2
$\mathrm{~A}_{5}$	X_{5}	3
$\mathrm{~A}_{6}$	Y_{0}	4
$\mathrm{~A}_{7}$	Y_{1}	5
$\mathrm{~A}_{8}$	Y_{2}	6
$\mathrm{~A}_{9}$	Y_{3}	7

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	7,8,9,10,11
$\mathrm{t}_{\text {AA }}$	7,8,9,10,11
toha	7,8,9,10,11
$\mathrm{t}_{\text {ACS }}$	7,8,9,10,11
WRITE CYCLE	
twC	7,8,9,10,11
tscs	7,8,9,10,11
$\mathrm{t}_{\text {AW }}$	7,8,9,10,11
t_{HA}	7,8,9,10,11
tsA	7,8,9,10,11
tPWE	7,8,9,10,11
tSD	7,8,9,10,11
t_{HD}	7,8,9,10,11
RESET CYCLE	
trRC	7,8,9,10,11
tSAR	7,8,9,10,11
tSWER	7,8,9,10,11
tSCSR	7,8,9,10,11
tPRS	7,8,9,10,11
$\mathrm{t}_{\mathrm{HCSR}}$	7,8,9,10,11
thwer	7,8,9,10,11
thar	7,8,9,10,11

Document \# : 38-00028-B

Self-Timed Cache Static RAM

Features

- 16K by 4
- Common I/O
- Asynchronous output enable
- Registered address
- Latched data inputs
- Registered chip enable
- Latched and pipelined chip enable
- Self-timed write
- Latched data outputs
- 5 ns address setup time
- 15 ns address access time
- 28 pin package
- 300 mil DIP
- LCC, PLCC
- Single 5V power supply
- Low power
- 100 mA (commercial)
-120 mA (military)
- TTL Compatible inputs and outputs

Product Characteristics

The CY7C152 is a registered address, latched Data In, latched Data Out high performance CMOS static RAM for cache memory applications.
The CY7C152 is organized 16,384 words of 4 bits each. The device has a single clock that controls loading the address register, data input and output latches, pipeline control latch and chip enable register. The chip enable ($\overline{\mathrm{CE}})$ is clocked into a register and pipelined through a control register to condition the output enable. The write enable ($\overline{\mathrm{WE}}$) is self-timed with data setup and held to the falling edge of WE. A separate asynchronous output enable $\overline{\mathrm{OE}}$ is provided to disable the outputs during a write operation or whenever other devices require access to the bus.
The data input has an asynchronous data latch enable DLE which may be used to capture data during a write operation. The CY7C152 is designed to be used with the CY7C181 CACHE TAG to implement high speed instruction or data caches.

Functional Description

The $\overline{\mathrm{CE}}$ and address inputs $\left(\mathrm{A}_{0}-\mathrm{A}_{13}\right)$ are sampled on each LOW to HIGH transition of the clock and stored in registers. The data input latch on ($\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{3}$) is enabled with the logical AND of the DLE and registered $\overline{\mathrm{CE}}$ signals. When enabled, the latch is transparent. When disabled, the latch retains the data present when it was disabled.

Read/Write Operation

The $\overline{\mathrm{CE}}$ signal must be LOW during the LOW to HIGH transition of the clock to initiate a memory cycle. The $\overline{\text { WE }}$ signal should remain HIGH for a complete read cycle to occur. The LOW to HIGH transition of the clock loads the address and $\overline{\mathrm{CE}}$ registers. Data propagates through the data output latch to the output if the $\overline{\mathrm{OE}}$ is enabled LOW. The LOW to HIGH transition of the clock closes the pipeline latch and the data output latch holding previous data and state until new data and state become available. As this new

Logic Block Diagram

0128-1

'eatures

16K by 4
Separate I/O
Fully registered

- Address
- Data in
- Data out
- $\overline{\text { CE, }} \overline{\text { WE }}$
- Self-timed write
- Transparent write
- CY7C159 only

143 MHz operation

- 5 ns setup time
-7 ns cycle time
- 7 ns clock to output

28 pin package

- 300 mil DIP
- LCC, PLCC
- Single 5V power supply
- 100 mA (commercial)
-120 mA (military)
- TTL compatible inputs and outputs

Product Characteristics

The CY7C158 and CY7C159 are fully registered (pipelined) high performance Static RAMs. They are organized 16,384 words by 4 bits each. Memory expansion is easily accomplished using the active LOW chip enable ($\overline{\mathrm{CE}}$) input. An asynchronous output enable signal ($\overline{\mathrm{OE}})$ is provided to control the three-state data outputs. The CY7C158 is a normal non-transparent write device and the CY7C159 provides a transparent write capability for write through operation. Pipelined RAMs are used in writeable control store, DSP and logic analyzer/tester applications where throughput is the critical parameter.

Read/Write Operation

The operation of these devices is completely synchronous with the exception of the $\overline{O E}$ signal. All data, address and control signals are sampled on each low to high transition of the clock. When the $\overline{\mathrm{CE}}$ is LOW during this transition, the device is selected for operation. The type of operation is deter-
mined by the state of the $\overline{\mathrm{WE}}$ signal during this same transition. WE LOW causes a write operation while $\overline{\mathrm{WE}}$ HIGH causes a read operation. The data input and data output as well as the address register are also loaded on each low to high transition of the clock. The outputs however are not enabled for the address loaded on the current cycle. The state of the outputs are controlled by the pipelined $\overline{\mathrm{CE}}$ and $\overline{\mathrm{WE}}$ data from the previous cycle and the state of the $\overline{\mathrm{OE}}$ signal. The data loaded into the output register is also from the previous cycle and in phase with the output control information. This feature causes a single cycle latency for the first read or write cycle, but allows a word of data to be read or written each 7 ns cycle. When the data from a write cycle reaches the output register, the non-transparent CY7C158 disables the outputs under all conditions. The transparent write CY7C159 will produce the data on the outputs if the $\overline{\mathrm{OE}}$ signal is LOW.

Logic Block Diagram

0127-1

Features

- Automatic power-down when deselected
- Transparent Write (7C161)
- CMOS for optimum speed/ power
- High Speed
- $25 \mathrm{~ns} \mathrm{t}_{\mathrm{AA}}$
- Low active power
- 385 mW
- Low standby power
- 110 mW
- TTL compatible inputs and outputs
- 2 V data retention (L version)
- Capable of withstanding greater than 2001V electrostatic discharge

Functional Description

The CY7C161 and CY7C162 are high performance CMOS static RAMs organized as $16,384 \times 4$ bits with separate I/O. Easy memory expansion is provided by active LOW chip enables ($\mathrm{CE}_{1}, \mathrm{CE}_{2}$) and three-state drivers.
They have an automatic power-down feature, reducing the power consumption by 85% when deselected.
Writing to the device is accomplished when the chip enable ($\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$) and write enable (WE) inputs are both

LOW. Data on the four input pins (I_{0} through I_{3}) is written into the memory location specified on the address pins (A_{0} through A_{13}).
Reading the device is accomplished by taking the chip enables $\left(\overline{\mathrm{CE}}_{1}, \mathrm{CE}_{2}\right)$ LOW, while write enable (WE) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the four data output pins.
The output pins stay in high impedance state when write enable (WE) is LOW (7 C 162 only), or one of the chip enables ($\overline{\mathrm{CE}}_{1}, \mathrm{CE}_{2}$) are HIGH.
A die coat is used to insure alpha immunity.

Selection Guide

		$\begin{aligned} & \text { 7C161-25 } \\ & \text { 7C162-25 } \end{aligned}$	$\begin{aligned} & \text { 7C161-35 } \\ & \text { 7C162-35 } \end{aligned}$	$\begin{aligned} & \hline \text { 7C161-45 } \\ & \text { 7C162-45 } \end{aligned}$
Maximum Access Time (ns)		25	35	45
Maximum Operating Current (mA)	Commercial	70	70	50
	Military		70	70
Maximum Standby Current (mA)	Commercial	20/20	20/20	20/20
	Military		20/20	20/20

Maximum Ratings

Above which the useful life may be impaired. For user guidelines, not tested.)
torage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C} \quad$ Static Discharge Voltage . $>2001 \mathrm{~V}$
Imbient Temperature with
'ower Applied . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
upply Voltage to Ground Potential
Pin 24 to Pin 12). -0.5 V to +7.0 V
)C Voltage Applied to Outputs
n High Z State. -0.5 V to +7.0 V
)C Input Voltage -3.0 V to +7.0 V
Jutput Current into Outputs (Low)
.20 mA
(Per MIL-STD-883 Method 3015)
Latch-up Current . $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	VCC
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[3]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range ${ }^{[4]}$

Capacitance ${ }^{[2]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	5	pF
COUT $^{\text {Output Capacitance }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	7	pF	

Notes:
. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
.. Tested initially and after any design or process changes that may affect these parameters.
3. T_{A} is the "instant on" case temperature.
4. See the last page of this specification for Group A subgroup testing information.

IC Test Loads and Waveforms

Figure 1a

Figure 1b
quivalent to: THÉVENIN EQUIVALENT

Figure 2

Switching Characteristics Over Operating Range ${ }^{[4,5,12]}$

Parameters	Description	$\begin{aligned} & \text { 7C161-25 } \\ & \text { 7C162-25 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 7C161-35 } \\ & \text { 7C162-35 } \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \text { 7C161-45 } \\ & \text { 7C162-45 } \\ & \hline \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	25		35		45		ns
t_{AA}	Address to Data Valid		25		35		45	ns
toha	Output Hold from Address Change	3		3		3		ns
$\mathrm{t}_{\mathrm{ACE}}$	$\overline{\mathrm{CE}}$ LOW to Data Valid		25		35		45	ns
t LZCE	$\overline{\text { CE }}$ LOW to Low ${ }^{[7]}$	5		5		5		ns
$\mathrm{t}_{\mathrm{HZCE}}$	$\overline{\text { CE }}$ HIGH to High Z ${ }^{[6,7]}$		10		15		15	ns
$t_{\text {DOE }}$	$\overline{\text { OE LOW to Data Valid }}$		15		25		30	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\mathrm{OE}}$ LOW to LOW Z	3		3		3		ns
$\mathrm{t}_{\mathrm{HZOE}}$	$\overline{\text { OE HIGH to HIGH Z }}$		15		15		15	ns
tPU	$\overline{\text { CE }}$ LOW to Power Up	0		0		0		ns
tpD	$\overline{\mathrm{CE}}$ HIGH to Power Down		25		35		45	ns
WRITE CYCLE ${ }^{\text {[8] }}$								
twC	Write Cycle Time	20		30		40		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CE}}$ LOW to Write End	20		30		35		ns
$\mathrm{t}_{\text {AW }}$	Address Set-up to Write End	20		25		35		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-up to Write Start	0		0		0		ns
tPWE	$\overline{\text { WE Pulse Width }}$	20		25		35		ns
$\mathrm{t}_{\text {SD }}$	Data Set-up to Write End	13		15		20		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE HIGH to Low }{ }^{\text {[7] }} \text { (7C162) }}$	3		3		3		ns
thzwe	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[6,7]}$ (7C162)		7		10		15	ns
tawe	WE LOW to Data Valid (7C161)		25		30		35	ns
$\mathrm{t}_{\text {ADV }}$	Data Valid to Output Valid (7C161)		20		30		35	ns

Notes:

5. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance.
6. $\mathrm{t}_{\mathrm{HZCE}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in Figure $1 b$. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, $t_{H Z}$ is less than $t_{L Z}$ for any given device.
8. The internal write time of the memory is defined by the overlap of $\overline{C E}_{1}, \overline{\mathrm{CE}}_{2}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
9. $\overline{\text { WE }}$ is HIGH for read cycle.
10. Device is continuously selected, $\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}=\mathrm{V}_{\mathrm{IL}}$.
11. Address valid prior to or coincident with $\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$ transition LOW.
12. Both $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ are represented by $\overline{\mathrm{CE}}$ in the Switching Characteristics and Waveforms.
)ata Retention Characteristics (L Version only) ${ }^{[4]}$

Parameters	Description	Test Conditions	CY7C161/CY7C162		Units
			Min.	Max.	
$V_{\text {DR }}$	V_{CC} for Retention of Data	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}, \\ & \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V} \end{aligned}$	2.0		V
ICCDR	Data Retention Current			1000	$\mu \mathrm{A}$
t CDR	Chip Deselect to Data Retention Time		0		ns
t_{R}	Operation Recovery Time		$\mathrm{t}_{\mathrm{RC}}{ }^{[13]}$		ns
$\mathrm{I}_{\text {LI }}$	Input Leakage Current			2	$\mu \mathrm{A}$

गote:
3. $\mathrm{t}_{\mathrm{RC}}=$ Read Cycle Time.

Jata Retention Waveform

Switching Waveforms ${ }^{[12]}$

Read Cycle No. 1 (Notes 9, 10)

Switching Waveforms ${ }^{[12]}$ (Continued)
Read Cycle (Notes 9, 11)

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) (Note 8)

0062-9
Write Cycle No. 2 ($\overline{\text { CE }}$ Controlled) (Note 8)

0062-10
Note: If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}}$ HIGH, the output remains in a high impedance state (7 C 162 only).

Typical DC and AC Characteristics

NORMALIZED ACCESS TIME
vs. SUPPLY VOLTAGE

SUPPLY VOLTAGE (V)

TYPICAL POWER-ON CURRENT vs. SUPPLY VOLTAGE

NORMALIZED SUPPLY CURRENT vs. AMBIENT TEMPERATURE

NORMALIZED ACCESS TIME vs. AMBIENT TEMPERATURE

TYPICAL ACCESS TIME CHANGE vs. OUTPUT LOADING

OUTPUT SOURCE CURRENT vs. OUTPUT VOLTAGE

OUTPUT SINK CURRENT
vs. OUTPUT VOLTAGE

NORMALIZED ICC

 vs. CYCLE TIME

0062-12

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C161-25PC	P21	Commercial
	CY7C161L-25PC	P21	
	CY7C161-25DC	D22	
	CY7C161L-25DC	D22	
35	CY7C161-35PC	P21	Commercial
	CY7C161L-35PC	P21	
	CY7C161-35DC	D22	
	CY7C161L-35DC	D22	
	CY7C161-35LC	L54	
	CY7C161L-35LC	L54	
	CY7C161-35DMB	D22	Military
	CY7C161L-35DMB	D22	
	CY7C161-35LMB	L54	
	CY7C161L-35LMB	L54	
45	CY7C161-45PC	P21	Commercial
	CY7C161L-45PC	P21	
	CY7C161-45DC	D22	
	CY7C161L-45DC	D22	
	CY7C161-45LC	L54	
	CY7C161L-45LC	L54	
	CY7C161-45DMB	D22	Military
	CY7C161L-45DMB	D22	
	CY7C161-45LMB	L54	
	CY7C161L-45LMB	L54	

Bit Map

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C162-25PC	P21	Commercial
	CY7C162L-25PC	P21	
	CY7C162-25DC	D22	
	CY7C162L-25DC	D22	
35	CY7C162-35PC	P21	Commercial
	CY7C162L-35PC	P21	
	CY7C162-35DC	D22	
	CY7C162L-35DC	D22	
	CY7C162-35LC	L54	
	CY7C162L-35LC	L54	
	CY7C162-35DMB	D22	Military
	CY7C162L-35DMB	D22	
	CY7C162-35LMB	L54	
	CY7C162L-35LMB	L54	
45	CY7C162-45PC	P21	Commercial
	CY7C162L-45PC	P21	
	CY7C162-45DC	D22	
	CY7C162L-45DC	D22	
	CY7C162-45LC	L54	
	CY7C162L-45LC	L54	
	CY7C162-45DMB	D22	Military
	CY7C162L-45DMB	D22	
	CY7C162-45LMB	L54	
	CY7C162L-45LMB	L54	

Address Designators

Address Name	Address Function	Pin Number
A5	X3	1
A6	X4	2
A7	X5	3
A8	X6	4
A9	X7	5
A10	Y0	6
A11	Y1	7
A12	Y5	8
A13	Y4	9
A0	Y3	23
A1	Y2	24
A2	X0	25
A3	X1	26
A4	X2	27

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{OS}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}$	$7,8,9,10,11$

WRITE CYCLE

t_{WC}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{AWE}}[1]$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ADV}}[1]$	$7,8,9,10,11$

Note:

1. 7C161 only.

Document \#: 38-00029-B

Data Retention Characteristics
(L Version only)

Parameters	Subgroups
V_{DR}	$1,2,3$
$\mathrm{I}_{\mathrm{CCDR}}$	$1,2,3$

Features

- Automatic power-down when deselected
- Output Enable ($\overline{\mathbf{O E}}$) Feature (7C166)
- CMOS for optimum speed/ power
- High speed
-25 ns taA $_{\text {A }}$
- Low active power
- 275 mW
- Low standby power
$-110 \mathrm{~mW}$
- TTL compatible inputs and outputs
- 2 V data retention (L version)
- Capable of withstanding greater than 2001V electrostatic discharge

Functional Description

The CY7C164 and CY7C166 are high performance CMOS static RAMs organized as $16,384 \times 4$ bits. Easy memory expansion is provided by an active LOW chip enable ($\overline{\mathrm{CE}}$) and three-state drivers. The CY7C166 has an active low output enable ($\overline{\mathrm{OE}}$) feature. Both devices have an automatic power-down feature, reducing the power consumption by 60% when deselected.
Writing to the device is accomplished when the chip enable ($\overline{\mathrm{CE}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW (and the output enable $(\overline{\mathrm{OE}})$ is LOW
for the 7C166). Data on the four input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{3}$) is written into the memory location specified on the address pins (A_{0} through A_{13}).
Reading the device is accomplished by taking chip enable ($\overline{\mathrm{CE}}$) LOW (and OE LOW for 7C166), while write enable (WE) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the four data I/O pins.
The I/O pins stay in high impedance state when chip enable ($\overline{\mathrm{CE}})$ is HIGH, or write enable ($\overline{\mathrm{WE}}$) is LOW (or output enable ($\overline{\mathrm{OE}}$) is HIGH for 7C166). A die coat is used to insure alpha immunity.

Logic Block Diagram

Pin Configurations

Selection Guide

		$\begin{aligned} & \text { 7C164-25 } \\ & \text { 7C166-25 } \end{aligned}$	$\begin{aligned} & \text { 7C164-35 } \\ & \text { 7C166-35 } \end{aligned}$	$\begin{aligned} & \text { 7C164-45 } \\ & \text { 7C166-45 } \end{aligned}$
Maximum Access Time (ns)		25	35	45
Maximum Operating Current (mA)	Commercial	70	70	50
	Military		70	70
Maximum Standby Current (mA)	Commercial	20/20	20/20	20/20
	Military		20/20	20/20

CY7C164
CY7C166
SEMICONDUCTOR

Maximum Ratings

Above which the useful life may be impaired. For user guidelines, not tested.)

	Static Discharge Voltage . $>2001 \mathrm{~V}$ (Per MIL-STD-883 Method 3015)		
'ower Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Latch-up Cur		$>200 \mathrm{~mA}$
iupply Voltage to Ground Potential -0.5 V to +7.0 V	Operating Range		
)C Voltage Applied to Outputs n High Z State. -0.5 V to +7.0 V	Range	Ambient Temperature	V_{CC}
)C Input Voltage -3.0 V to +7.0 V	Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
	Military ${ }^{\text {[3] }}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range[4]

Parameters	Description	Test Conditions		$\begin{aligned} & \text { 7C164-25 } \\ & \text { 7C166-25 } \end{aligned}$		$\begin{aligned} & 7 \mathrm{C} 164-35 \\ & \text { 7C166-35 } \end{aligned}$		$\begin{aligned} & \text { 7C164-45 } \\ & \text { 7C166-45 } \end{aligned}$		Units
				Min.	Max.	Min.	Max.	Min.	Max.	
$\underline{\mathrm{V}_{\mathrm{OH}}}$	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		2.4		2.4		V
$\mathrm{VOL}^{\text {OH}}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.2	V_{CC}	2.2	V_{CC}	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	-3.0	0.8	-3.0	0.8	V
$\underline{\text { IIX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+ 10	-10	+10	$\mu \mathrm{A}$
$\underline{\mathrm{I}} \mathrm{OZ}$	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled		-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
Ios	Output Short Circuit Current ${ }^{[1]}$	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-350		-350		-350	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Commercial		70		70		50	mA
			Military				70		70	
ISB_{1}	Automatic $\overline{\mathrm{CE}}{ }^{[2]}$ Power Down Current	Max. $\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}$ Min. Duty Cycle $=100 \%$	Commercial		20		20		20	mA
			Military				20		20	
$\mathrm{I}_{\mathrm{SB}_{2}}$	Automatic $\overline{\mathrm{CE}}^{[2]}$ Power Down Current	$\begin{aligned} & \mathrm{Max} . \mathrm{V}_{\mathrm{CC}}, \\ & \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\text {IN }} \leq 0.3 \mathrm{~V} \end{aligned}$	Commercial		20		20		20	mA
			Military				20		20	

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	5	pF
COUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	7	

Notes:

1. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
2. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CE}}$ input is required to keep the device deselected during $V_{C C}$ power-up, otherwise ISB will exceed values given.
3. T_{A} is the "instant on" case temperature.
4. See the last page of this specification for Group A subgroup testing information.
5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Figure 1a

Figure 1b

Switching Characteristics Over Operating Range ${ }^{[4, ~ 6]}$

Parameters	Description		$\begin{array}{r} \text { 7C164-25 } \\ \text { 7C166-25 } \\ \hline \end{array}$		$\begin{aligned} & \text { 7C164-35 } \\ & \text { 7C166-35 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 7C164-45 } \\ & \text { 7C166-45 } \\ & \hline \end{aligned}$		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE									
$\mathrm{t}_{\mathrm{R}} \mathrm{C}$	Read Cycle Time		25		35		45		ns
t_{AA}	Address to Data Valid			25		35		45	ns
toha	Output Hold from Address Ch	nge	3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathbf{C E}}$ LOW to Data Valid			25		35		45	ns
t ${ }_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid	7C166		15		25		30	ns
tlzoe	$\overline{\mathrm{OE}}$ LOW to LOW Z	7 C 166	3		3		3		ns
$\mathrm{t}_{\text {HzOE }}$	$\overline{\mathrm{OE}}$ HIGH to HIGH Z	7C166		15		15		15	ns
tlzCE	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[8]}$		5		5		5		ns
$\mathrm{t}_{\mathrm{HZCE}}$	$\overline{\text { CE HIGH }}$ to High Z [7, 8]			10		15		15	ns
tPU	$\overline{\mathrm{CE}}$ LOW to Power Up		0		0		0		ns
tPD	$\overline{\text { CE }}$ HIGH to Power Down			25		35		45	ns
WRITE CYCLE ${ }^{[9]}$									
twe	Write Cycle Time		20		30		40		ns
tSCE	$\overline{\mathbf{C E}}$ LOW to Write End		20		25		35		ns
${ }^{\text {taw }}$	Address Set-up to Write End		20		25		35		ns
t_{HA}	Address Hold from Write End		0		0		0		ns
tSA	Address Set-up to Write Start		0		0		0		ns
tPWE	$\overline{\text { WE Pulse Width }}$		20		25		35		ns
tSD	Data Set-up to Write End		13		15		20		ns
thD	Data Hold from Write End		0		0		5		ns
tLZWE	WE HIGH to Low ${ }^{\text {[}}$ []		3		3		3		ns
thZWE	$\overline{\text { WE L L }}$ LOW to High Z[7, 8]		0	7	0	10	0	15	ns

Notes:

6. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance.
7. $\mathrm{t}_{\mathrm{HZCE}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in Figure 1 b. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
8. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $t_{\text {tZCE }}$ for any given device. These parameters are guaranteed and not 100% tested.
9. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
10. $\bar{W} E$ is HIGH for read cycle.
11. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}} \cdot\left(7 \mathrm{C} 166: \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}\right.$ also.)
12. Address valid prior to or coincident with $\overline{\mathbf{C E}}$ transition low.
13. 7 C 166 only: Data I / O will be high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.
```
                O
```

 R

Data Retention Characteristics (L Version Only)

Parameter	Description	Test Conditions	CY7C164/CY7C166		Units
			Min.	Max.	
V DR	$\mathbf{V}_{\text {CC }}$ For Retention of Data	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}, \\ & \mathrm{CE} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V} \end{aligned}$	2.0		V
ICCDR	Data Retention Current			1000	$\mu \mathrm{A}$
$t^{\text {t }}$ (${ }^{\text {d }}$	Chip Deselect to Data Retention Time		0		ns
t_{R}	Operation Recovery Time		$\mathrm{tRC}^{[14]}$		ns
$\mathrm{I}_{\text {LI }}$	Input Leakage Current			2	$\mu \mathrm{A}$

Note:

14. $\mathrm{t}_{\mathrm{RC}}=$ read cycle time.

Data Retention Waveform

Switching Waveforms

Read Cycle No. 1 (Notes 10, 11)

Switching Waveforms (Continued)

Read Cycle No. 2 (Notes 10, 12)

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) (Notes 9, 13)

Write Cycle No. 2 ($\overline{\text { CE }}$ Controlled) (Notes 9, 13)

Note: If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\text { WE HIGH, the output remains in a high impedance state. }}$

Typical DC and AC Characteristics

NORMALIZED ACCESS TIME

TYPICAL POWER-ON CURRENT

NORMALIZED SUPPLY CURRENT vs. AMBIENT TEMPERATURE

NORMALIZED ACCESS TIME
vs. AMBIENT TEMPERATURE

TYPICAL ACCESS TIME CHANGE vs. OUTPUT LOADING

OUTPUT SOURCE CURRENT
vs. OUTPUT VOLTAGE

OUTPUT SINK CURRENT
vs. OUTPUT VOLTAGE

NORMALIZED ICC vs. CYCLE TIME

0056-14

7C164 Truth Table

$\overline{\text { CE }}$	$\overline{\text { WE }}$	Input/Outputs	Mode
H	X	High Z	Deselect Power Down
L	H	Data Out	Read
L	L	Data In	Write

7C166 Truth Table

$\overline{\text { CE }}$	$\overline{\text { WE }}$	$\overline{\text { OE }}$	Inputs/Outputs	Mode
H	X	X	High Z	Deselect Power Down
L	H	L	Data Out	Read
L	L	X	Data In	Write
L	H	H	High Z	Deselect

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C166-25PC	P13	Commercial
	CY7C166L-25PC	P13	
	CY7C166-25VC	V13	
	CY7C166L-25VC	V13	
	CY7C166-25DC	D14	
	CY7C166L-25DC	D14	
	CY7C166-25LC	L54	
	CY7C166L-25LC	L54	
35	CY7C166-35PC	P13	Commercial
	CY7C166L-35PC	P13	
	CY7C166-35VC	V13	
	CY7C166L-35VC	V13	
	CY7C166-35DC	D14	
	CY7C166L-35DC	D14	
	CY7C166-35LC	L54	
	CY7C166L-35LC	L54	
	CY7C166-35DMB	D14	Military
	CY7C166L-35DMB	D14	
	CY7C166-35LMB	L54	
	CY7C166L-35LMB	L54	
45	CY7C166-45PC	P13	Commercial
	CY7C166L-45PC	P13	
	CY7C166-45VC	V13	
	CY7C166L-45VC	V13	
	CY7C166-45DC	D14	
	CY7C166L-45DC	D14	
	CY7C166-45LC	L54	
	CY7C166L-45LC	L54	
	CY7C166-45DMB	D14	Military
	CY7C166L-45DMB	D14	
	CY7C166-45LMB	L54	
	CY7C166L-45LMB	L54	

Bit Map

Address Designators

Address Name	Address Function	Pin Number
A5	X 3	1
A6	X 4	2
A7	X 5	3
A8	X 6	4
A9	X 7	5
A10	Y 5	6
A11	Y 4	7
A12	Y 0	8
A13	Y 1	9
A0	Y 2	17
A1	Y 3	18
A2	X 0	19
A3	X 1	20
A4	X 2	21

MILITARY SPECIFICATIONS
Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{S}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
$t_{\text {RC }}$	7,8,9,10,11
$\mathrm{t}_{\text {AA }}$	7,8,9,10,11
toha	7,8,9,10,11
$t_{\text {ACE }}$	7,8,9,10,11
$\mathrm{t}_{\text {DOE }}{ }^{[1]}$	7,8,9,10,11
WRITE CYCLE	
twC	7,8,9,10,11
tsce	7,8,9,10,11
$t_{\text {AW }}$	7,8,9,10,11
t_{HA}	7,8,9,10,11
tsA	7,8,9,10,11
tPWE	7,8,9,10,11
$\mathrm{t}_{\text {SD }}$	7,8,9,10,11
t_{HD}	7,8,9,10,11

Data Retention Characteristics

(L Version Only)

Parameters	Subgroups
V_{DR}	$1,2,3$
$\mathrm{I}_{\mathrm{CCDR}}$	$1,2,3$

Note:

1. 7C166 only.

Document \# : 38-00032-B

Features

- Automatic power-down when deselected
- CMOS for optimum speed/power
- High speed- 25 ns
- Low active power
- 248 mW (commercial)
- 275 mW (military)
- Low standby power - 83 mW
- TTL compatible inputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge

Functional Description

The CY7C167 is a high performance CMOS static RAM organized as 16,384 words $\times 1$ bit. Easy memory expansion is provided by an active LOW chip enable (CE) and three-state drivers. The CY7C167 has an automatic power-down feature, reducing the power consumption by 70% when deselected.

Writing to the device is accomplished when the chip enable ($\overline{\mathrm{CE}}$) and write enable (WE) inputs are both LOW. Data on the input pin (DI) is written into the memory location specified on the address pins (A_{0} through A_{13}).

Reading the device is accomplished by taking the chip enable (CE) LOW, while write enable ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the data output (DO) pin.
The output pin stays in high impedance state when chip enable (CE) is HIGH or write enable (WE) is LOW.
A die coat is used to insure alpha immunity.

Logic Block Diagram

Pin Configurations

0017-1

Selection Guide

			7C167-25	7C167-35	7C167-45
Maximum Access Time (ns)		25	35	45	
Maximum Operating Current (mA)	L	Commercial	45	45	
	STD	Commercial	60	60	50
		Military		60	50

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 20 to Pin 10) -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage -3.0 V to +7.0 V
Output Current into Outputs (Low)
.20 mA

Static Discharge Voltage . >2001 V
(Per MIL-STD-883 Method 3015)
Latch-up Current
$>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	$\mathbf{V C C}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[3]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range ${ }^{[4]}$

Parameters	Description	Test Conditions		7C167L-25, 35		7C167-25, 35		7C167-45		Units
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., I		2.4		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I} \\ & 8.0 \mathrm{~mA} \text { Mil } \end{aligned}$			0.4		0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.0	V_{CC}	2.0	V_{CC}	2.0	$\mathrm{V}_{\text {CC }}$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	-3.0	0.8	-3.0	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq$		-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
I OZ	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq$ Output Disable		-50	+50	-50	+ 50	-50	$+50$	$\mu \mathrm{A}$
Ios	Output Short[1] Circuit Current	$\begin{aligned} & \mathbf{v}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{v}_{\mathrm{OUT}}=\mathrm{GND} \end{aligned}$			-350		-350		-350	mA
I_{CC}	$V_{C C}$ Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA} \end{aligned}$	Commercial		45		60		50	mA
			Military*				60		50	
ISB	Automatic CE $^{[2]}$ Power Down Current	$\begin{aligned} & \text { Max. } V_{C C}, \\ & \mathrm{CE} \geq \mathrm{V}_{\mathrm{IH}} \end{aligned}$	Commercial		15		20		15	mA
			Military*				20		20	

* -35 and -45 only

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathbf{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	4	pF
Cout	Output Capacitance		6	
$\mathrm{C}_{\text {CE }}$	Chip Enable Capacitance		5	

Notes:

1. Duration of the short circuit should not exceed 30 seconds.
2. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CE}}$ input is required to keep the device deselected during $\mathbf{V}_{\text {CC }}$ power-up, otherwise $\mathrm{I}_{\text {SB }}$ will exceed values given.
3. T_{A} is the "instant on" case temperature.
4. See the last page of this specification for Group A subgroup testing information.
5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Figure 1a

Equivalent to: THÉVENIN EQUIVALENT

CY7C167

Parameters	Description	7C167-25		7C167-35		7C167-45		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
$\mathrm{t}_{\mathrm{R}} \mathrm{C}$	Read Cycle Time (Commercial)	25		30		40		ns
t_{RC}	Read Cycle Time (Military)			35		40		ns
t_{AA}	Address to Data Valid (Commercial)		25		30		40	ns
t_{AA}	Address to Data Valid (Military)				35		40	ns
toha	Data Hold from Address Change	3		3		3		ns
$\mathrm{t}_{\mathrm{ACE}}$	$\overline{\text { CE }}$ LOW to Data Valid		25		35		45	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\text { CE }}$ LOW to Low Z ${ }^{\text {[8] }}$	5		5		5		ns
thZCE	$\overline{\text { CE }}$ HIGH to High Z ${ }^{\text {[7, 8] }}$		15		20		25	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\mathrm{CE}}$ LOW to Power Up	0		0		0		ns
$t_{\text {PD }}$	$\overline{\mathrm{CE}}$ HIGH to Power Down		20		25		30	ns

WRITE CYCLE ${ }^{[9]}$

${ }^{\text {W WC }}$	Write Cycle Time	25		30		40		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\text { CE }}$ LOW to Write End	25		30		40		ns
$\mathrm{t}_{\text {AW }}$	Address Set-up to Write End	25		30		40		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
tsA	Address Set-up to Write Start	0		0		0		ns
tPWE	WE Pulse Width	15		20		20		ns
${ }^{\text {tSD }}$	Data Set-up to Write End	15		15		15		ns
thD	Data Hold from Write End	0		0		0		ns
thzWE	$\overline{\text { WE }}$ LOW to High Z ${ }^{\text {[7, }} 8$]	0	15	0	20	0	20	ns
tlZWE	$\overline{\text { WE }}$ HIGH to Low ${ }^{[8]}$	0	15	0	20	0	25	ns

Notes:

6. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V and output loading of the specified $\mathrm{IOI}_{\mathrm{O}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance.
7. $\mathrm{t}_{\mathrm{HZCE}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in Figure 1 b. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
8. At any given temperature and voltage condition, t_{HZ} is less than t_{LZ} for any given device.

Switching Waveforms

Read Cycle No. 1 (Notes 10, 11)
9. The internal write time of the memory is defined by the overlap of $\overline{C E}$ LOW and $\bar{W} E$ LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going high. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
10. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
11. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
12. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.

Switching Waveforms (Continued)

Read Cycle No. 2 (Notes 10, 12)

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) (Note 9)

Write Cycle No. 2 ($\overline{\text { CE C Controlled) (Note 9) }}$

Note: If $\overline{C E}$ goes high simultaneously with $\overline{W E}$ high, the output remains in a high impedance state.

Typical DC and AC Characteristics

NORMALIZED ACCESS TIME vs. SUPPLY VOLTAGE

TYPICAL POWER-ON CURRENT vs. SUPPLY VOLTAGE

NORMALIZED SUPPLY CURRENT vs. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE (${ }^{\circ} \mathrm{C}$)

NORMALIZED ACCESS TIME vs. AMBIENT TEMPERATURE

TYPICAL ACCESS TIME CHANGE vs. OUTPUT LOADING

OUTPUT SOURCE CURRENT
vs. OUTPUT VOLTAGE

OUTPUT SINK CURRENT vs. OUTPUT VOLTAGE

NORMALIZED ICC vs. CYCLE TIME

Ordering Information

Speed (ns)	$\begin{aligned} & \mathbf{I}_{\mathbf{C C}} \\ & \mathbf{m A} \\ & \hline \end{aligned}$	Ordering Code	Package Type	Operating Range
25	45	CY7C167L-25PC	P5	Commercial
		CY7C167L-25DC	D6	
		CY7C167L-25LC	L51	
	60	CY7C167-25PC	P5	
		CY7C167-25DC	D6	
		CY7C167-25LC	L51	
35	45	CY7C167L-35PC	P5	Commercial
		CY7C167L-35DC	D6	
		CY7C167L-35LC	L51	
	60	CY7C167-35PC	P5	
		CY7C167-35DC	D6	
		CY7C167-35LC	L51	
		CY7C167-35DMB	D6	Military
		CY7C167-35LMB	L51	
45	50	CY7C167-45PC	P5	Commercial
		CY7C167-45DC	D6	
		CY7C167-45LC	L51	
		CY7C167-45DMB	D6	Military
		CY7C167-45LMB	L51	

Bit Map

0017-12

Address Designators

Address Name	Address Function	Pin Number
A_{0}	X_{2}	1
A_{1}	X_{5}	2
A_{2}	X_{6}	3
A_{3}	Y ${ }^{1}$	4
A_{4}	Y_{4}	5
A_{5}	Y_{0}	6
A_{6}	Y_{1}	7
A_{7}	Y_{2}	13
A_{8}	Y_{5}	14
A9	Y_{6}	15
A_{10}	X_{0}	16
A_{11}	X_{3}	17
A_{12}	X4	18
A_{13}	X_{1}	19

CIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
I_{SB}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
$\mathrm{t}_{\mathrm{R}} \mathrm{C}$	7,8,9,10,11
t_{AA}	7,8,9,10,11
toha	7,8,9,10,11
$\mathrm{t}_{\text {ACE }}$	7,8,9,10,11
WRITE CYCLE	
twC	7,8,9,10,11
$t_{\text {SCE }}$	7,8,9,10,11
taw	7,8,9,10,11
t_{HA}	7,8,9,10,11
$\mathrm{tSA}_{\text {S }}$	7,8,9,10,11
tPWE	7,8,9,10,11
$\mathrm{t}_{\text {SD }}$	7,8,9,10,11
t_{HD}	7,8,9,10,11

Document \# : 38-00033-B

Features

- Automatic power-down when deselected (7C168)
- CMOS for optimum speed/ power
- High Speed
-25 ns $_{\text {AA }}$
$-15 \mathrm{~ns} \mathrm{t}_{\mathrm{ACE}}$ (7C169)
- Low active power
- 330 mW (commercial)
- 385 mW (military)
- Low standby power (7C168)
$-83 \mathrm{~mW}$
- TTL compatible inputs and outputs
- Capable of withstanding greater than 2000 V electrostatic discharge

Functional Description

The CY7C168 and CY7C169 are high performance CMOS static RAMs organized as 4096×4 bits. Easy memory expansion is provided by an active LOW chip enable ($\overline{\mathrm{CE}}$) and three-state drivers. The CY7C168 has an automatic power-down feature, reducing the power consumption by 77% when deselected.
Writing to the device is accomplished when the chip enable ($\overline{\mathrm{CE}}$) and write enable (WE) inputs are both LOW.

Data on the four input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{3}$) is written into the memory location specified on the address pins (A_{0} through A_{11}).
Reading the device is accomplished by taking chip enable (CE) LOW, while write enable ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the four data I/O pins.
The I/O pins stay in high impedance state when chip enable $(\overline{\mathrm{CE}})$ is HIGH, or write enable ($\overline{\mathrm{WE}}$) is LOW.
A die coat is used to insure alpha immunity.

Logic Block Diagram

Pin Configurations

0021-2

Selection Guide

			7C168-25 7C169-25	7C168-35 7C169-35	7C169-40	7C168-45
Maximum Access Time (ns)		25	35	40	45	
Maximum Operating Current (mA)	L	Commercial	70	70		
	STD	Commercial	90	90	70	70
		Military		90	70	70

Maximum Ratings
(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied
.$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 20 to Pin 10).

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

DC Voltage Applied to Outputs
in High Z State.
-0.5 V to +7.0 V
DC Input Voltage
-3.0 V to +7.0 V
Output Current into Outputs (Low)
.20 mA

Static Discharge Voltage . > 2001 V
(Per MIL-STD-883 Method 3015)
Latch-up Current . $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	VCC
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[2]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range ${ }^{[3]}$

*-35 and -45 only

Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	\circ°	4
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	7	pF

Notes:

1. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Figure 1a

Figure 1b

Equivalent to: THÉVENIN EQUIVALENT

$$
\text { OUTPUT } \mathrm{O}-\underbrace{16752} \longrightarrow 1.73 \mathrm{~V}
$$

0021-5

Switching Characteristics Over Operating Range ${ }^{[3,5]}$

Parameters	Description		$\begin{aligned} & \text { 7C168-25 } \\ & \text { 7C169-25 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C168-35 } \\ & \text { 7C169-35 } \end{aligned}$		7C169-40		7C168-45		Units
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE											
$\mathrm{t}_{\mathrm{R} C}$	Read Cycle Time		25		35		40		45		ns
t_{AA}	Address to Data Valid			25		35		40		45	ns
toha	Output Hold from Address Change		3		3		3		3		ns
$\mathrm{t}_{\mathrm{ACE}}$	$\overline{\mathrm{CE}}$ LOW to Data Valid	7C168		25		35				45	ns
		7C169		15		25		25			ns
thzCE	$\overline{\text { CE }}$ LOW to Low Z ${ }^{\text {[7] }}$		5		5		5		5		ns
$\mathrm{t}_{\mathrm{HZCE}}$	$\overline{\text { CE HIGH }}$ to High Z[6, 7]			15		20		20		25	ns
t_{PU}	$\overline{\mathrm{CE}}$ LOW to Power Up (7C168)		0		0				0		ns
tpD	CE HIGH to Power Down (7C168)			25		25				30	ns
$\mathrm{t}_{\text {RCS }}$	Read Command Set-up		0		0		0		0		ns
$\mathrm{t}_{\mathrm{RCH}}$	Read Command Hold		0		0		0		0		ns
WRITE CYCLE ${ }^{\text {[8] }}$											
t_{W} C	Write Cycle Time		25		35		40		40		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\text { CE }}$ LOW to Write End		25		30		30		35		ns
$\mathrm{t}_{\text {AW }}$	Address Set-up to Write End		20		30		40		35		ns
t_{HA}	Address Hold from Write End		0		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-up to Write Start		0		0		0		0		ns
tpwe	$\overline{\text { WE Pulse Width }}$		20		30		35		35		ns
$\mathrm{t}_{\text {SD }}$	Data Set-up to Write End		10		15		15		15		ns
t_{HD}	Data Hold from Write End		0		0		3		3		ns
t LZWE	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[7]}$		6		6		6		6		ns
thZWE	$\overline{\text { WE }}$ LOW to High $Z^{[6,7]}$			10		15		20		20	ns

Notes:
5. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance.
6. $\mathrm{t}_{\mathrm{HZCE}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in Figure 1 b. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, t_{HZ} is less than t_{LZ} for all devices.
8. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
9. $\bar{W} E$ is HIGH for read cycle.
10. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
11. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.

Switching Waveforms

Read Cycle No. 1 (Notes 9, 10)

Jwitching Waveforms (Continued)

2ead Cycle (Notes 9, 11)

Write Cycle No. 1 (WE Controlled) (Note 8)

Write Cycle No. 2 (드 Controlled) (Note 8)

Typical DC and AC Characteristics

NORMALIZED SUPPLY CURRENT vs, AMBIENT TEMPERATURE

NORMALIZED ACCESS TIME

TYPICAL ACCESS TIME CHANGE vs. OUTPUT LOADING

OUTPUT SOURCE CURRENT vs. OUTPUT VOLTAGE

OUTPUT SINK CURRENT vs. OUTPUT VOLTAGE

NORMALIZED ICC vs. CYCLE TIME

0021-11

Ordering Information

Speed (ns)	$\underset{\mathbf{m A}}{\mathbf{I C C}^{2}}$	Ordering Code	Package Type	Operating Range
25	70	CY7C168L-25PC	P5	Commercial
		CY7C168L-25DC	D6	
		CY7C168L-25LC	L51	
		CY7C168L-25SC	S5	
	90	CY7C168-25PC	P5	
		CY7C168-25DC	D6	
		CY7C168-25LC	L51	
		CY7C168-25SC	S5	
35	70	CY7C168L-35PC	P5	Commercial
		CY7C168L-35DC	D6	
		CY7C168L-35LC	L51	
		CY7C168L-35SC	S5	
	90	CY7C168-35PC	P5	
		CY7C168-35DC	D6	
		CY7C168-35LC	L51	
		CY7C168-35SC	S5	
		CY7C168-35DMB	D6	Military
		CY7C168-35LMB	L51	
45	70	CY7C168-45PC	P5	Commercial
		CY7C168-45DC	D6	
		CY7C168-45LC	L51	
		CY7C168-45SC	S5	
		CY7C168-45DMB	D6	Military
		CY7C168-45LMB	L51	

Address Designators

Address Name	Address Function	Pin Number
\mathbf{A}_{0}	\mathbf{X}_{0}	16
$\mathrm{~A}_{1}$	X_{3}	17
$\mathrm{~A}_{2}$	X_{4}	18
$\mathrm{~A}_{3}$	X_{1}	19
$\mathrm{~A}_{4}$	X_{2}	1
$\mathrm{~A}_{5}$	X_{5}	2
$\mathrm{~A}_{6}$	X_{6}	3
$\mathrm{~A}_{7}$	Y_{3}	4
\mathbf{A}_{8}	Y_{4}	5
$\mathrm{~A}_{9}$	Y_{0}	6
$\mathrm{~A}_{10}$	Y_{1}	7
$\mathrm{~A}_{11}$	Y_{2}	8

Speed (ns)	$\begin{aligned} & \mathbf{I}_{\mathbf{C C}} \\ & \mathbf{m A} \\ & \hline \end{aligned}$	Ordering Code	Package Type	Operating Range
25	60	CY7C169L-25PC	P5	Commercial
		CY7C169L-25DC	D6	
		CY7C169L-25LC	L51	
	90	CY7C169-25PC	P5	
		CY7C169-25DC	D6	
		CY7C169-25LC	L51	
35	60	CY7C169L-35PC	P5	Commercial
		CY7C169L-35DC	D6	
		CY7C169L-35LC	L51	
	90	CY7C169-35PC	P5	
		CY7C169-35DC	D6	
		CY7C169-35LC	L51	
		CY7C169-35DMB	D6	Military
		CY7C169-35LMB	L51	
40	70	CY7C169-40PC	P5	Commercial
		CY7C169-40DC	D6	
		CY7C169-40LC	L51	
		CY7C169-40DMB	D6	Military
		CY7C169-40LMB	L51	

Bit Map

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}[12]$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}[12]$	$1,2,3$

Note:
12. 7 C 168 only.

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
$t_{\text {RC }}$	7,8,9,10,11
t_{AA}	7,8,9,10,11
toha	7,8,9,10,11
$\mathrm{t}_{\mathrm{ACE}}$	7,8,9,10,11
tres	7,8,9,10,11
trch	7,8,9,10,11
WRITE CYCLE	
twC	7,8,9,10,11
$\mathrm{tsCE}^{\text {S }}$	7,8,9,10,11
$\mathrm{t}_{\text {AW }}$	7,8,9,10,11
$\mathrm{tha}^{\text {a }}$	7,8,9,10,11
$t_{\text {SA }}$	7,8,9,10,11
tPWE	7,8,9,10,11
$\mathrm{t}_{\text {SD }}$	7,8,9,10,11
thD	7,8,9,10,11

Document \#: 38-00034-B

4096 x 4 Static R/W RAM

Features

- CMOS for optimum speed/power
- High speed
$-25 \mathrm{~ns} \mathrm{t}_{\mathrm{AA}}$
- 15 ns taCE
- Low active power
- 495 mW (commercial)
- 660 mW (military)
- TTL compatible inputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge

Functional Description

The CY7C170 is a high performance CMOS static RAM organized as 4096 words x 4 bits. Easy memory expansion is provided by an active LOW chip select ($\overline{\mathrm{CS}}$), an active LOW output enable $(\overline{\mathrm{OE}})$, and three-state drivers.
Writing to the device is accomplished when the chip select ($\overline{\mathrm{CS}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the four input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{3}$) is written into the memory location specified on the address pins (\mathbf{A}_{0} through \mathbf{A}_{11}).

Reading the device is accomplished by taking chip select ($\overline{\mathrm{CS}}$) and output enable (OE) LOW, while write enable (WE) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the four data I/O pins.
The I/O pins stay in high impedance state when chip select ($\overline{\mathrm{CS}}$) or output enable ($\overline{\mathrm{OE}})$ is HIGH, or write enable ($\overline{\mathrm{WE}}$) is LOW.
A die coat is used to insure alpha immunity.

- Output enable

Logic Block Diagram

0037-1

Selection Guide

		7C170-25	7C170-35	7C170-45
Maximum Access Time (ns)			25	35
Maximum Operating Current (mA)	Commercial	90	90	45
	Military		120	90

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Static Discharge Voltage . $>2001 \mathrm{~V}$
(Per MIL-STD-883 Method 3015)
Latch-up Current . $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	V CC
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[4]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 22 to Pin 11). -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State.
-0.5 V to +7.0 V
DC Input Voltage -3.0 V to +7.0 V
Output Current into Outputs (Low) \qquad

Electrical Characteristics Over Operating Range ${ }^{[3]}$

Parameters	Description	Test Conditions		$7 \mathrm{C170}$		Units
				Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{IOL}=8.0 \mathrm{~mA}$			0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.0	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	V
IIX	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{0} \leq \mathrm{V}_{\mathrm{CC}}$ Output Disabled		-50	$+50$	$\mu \mathrm{A}$
Ios	Output Short[1] Circuit Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-350	mA
I_{CC}	$V_{C C}$ Operating Supply Current	$\mathrm{V}_{\text {CC }}=$ Max.	Commercial		90	mA
		IOUT $=0 \mathrm{~mA}$	Military		120	

Capacitance ${ }^{[2]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	4	pF
CoUT	Output Capacitance	$\mathbf{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	7	

Notes:

1. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
2. Tested initially and after any design or process changes that may affect these parameters.
3. See the last page of this specification for Group A subgroup testing information.
4. T_{A} is the "instant on" case temperature.

AC Test Loads and Waveforms

Figure 1a

Figure 1b

Equivalent to:

THÉVENIN EQUIVALENT

CYPRESS
CY7C170
SEMICONDUCTOR
;witching Characteristics Over Operating Range ${ }^{[3,5]}$

Parameters	Description	7C170-25		7C170-35		7C170-45		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
$t_{\text {RC }}$	Read Cycle Time	25		35		45		ns
t_{AA}	Address to Data Valid		25		35		45	ns
toha	Data Hold from Address Change	3		3		3		ns
$\mathrm{t}_{\mathrm{ACS}}$	$\overline{\text { CS }}$ Low to Data Valid		15		25		30	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		15		15		20	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\text { OE }}$ LOW to Low Z	0		0		0		ns
$\mathrm{t}_{\mathrm{HZOE}}$	$\overline{\text { OE HIGH to High } \mathrm{Z}}{ }^{[6]}$		15		15		15	ns
$\mathrm{t}_{\text {LZCS }}$	$\overline{\mathrm{CS}}$ LOW to Low $\mathrm{Z}^{[7]}$	3		5		5		ns
$\mathrm{t}_{\mathrm{HzCS}}$	$\overline{\text { CE }}$ HIGH to High Z ${ }^{\text {[6, 7] }}$		15		20		25	ns

WRITE CYCLE[8]

twC	Write Cycle Time	25		35		40		ns
tscs	$\overline{\mathrm{CS}}$ LOW to Write End	25		35		35		ns
taw	Address Set-up to Write End	20		30		35		ns
$\mathbf{t H A}^{\text {H }}$	Address Hold from Write End	0		0		0		ns
tsA	Address Set-up to Write Start	0		0		0		ns
tPWE	WE Pulse Width	20		30		35		ns
$\mathrm{t}_{\text {SD }}$	Data Set-up to Write End	10		15		15		ns
t_{HD}	Data Hold from Write End	0		0		3		ns
thzwe	$\overline{\text { WE }}$ LOW to High Z		10		15		20	ns
tLZWE	$\overline{\text { WE }}$ HIGH to Low Z	6		6		6		ns

Jotes:

5. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance.
6. $\mathrm{t}_{\mathrm{HZOE}} \mathrm{t}_{\mathrm{HZCS}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in Figure $1 b$. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, ${ }_{\mathrm{H}}^{\mathrm{HZCS}}$ is less than $t_{\text {LZCS }}$ for all devices. These parameters are sampled and not 100% tested.
8. The internal write time of the memory is defined by the overlap of CS LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
9. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
10. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
11. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW.
12. Data I/O will be high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.

Jwitching Waveforms

Read Cycle No. 1 (Notes 9, 10)

Switching Waveforms (Continued)

Read Cycle No. 2 (Notes 9, 11)

Write Cycle No. 1 ($\overline{\text { WE }}$ Controlled) (Notes 8, 12)

Write Cycle No. 2 (CS Controlled) (Notes 8, 12)

Note: If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\text { WE HIGH, the output remains in a high impedance state. }}$

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C170-25PC	P9	Commercial
	CY7C170-25DC	D10	
35	CY7C170-35PC	P9	Commercial
	CY7C170-35DC	D10	
	CY7C170-35DMB	D10	Military
45	CY7C170-45PC	P9	Commercial
	CY7C170-45DC	D10	
	CY7C170-45DMB	D10	Military

Bit Map

0037-10

Address Designators

Address Name	Address Function	Pin Number
A_{0}	X_{0}	18
A_{1}	X_{3}	19
A_{2}	X_{4}	20
A_{3}	X_{1}	21
A_{4}	X_{2}	1
A5	X ${ }_{5}$	2
A_{6}	X_{6}	3
A_{7}	Y_{3}	4
A_{8}	Y_{4}	5
A9	Y_{0}	6
A_{10}	Y_{1}	7
A_{11}	Y_{2}	8

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
$\mathrm{t}_{\text {RC }}$	$7,8,9,10,11$
$\mathrm{t}_{\text {AA }}$	$7,8,9,10,11$
$\mathrm{t}_{\text {OHA }}$	$7,8,9,10,11$
$\mathrm{t}_{\text {ACS }}$	$7,8,9,10,11$
$\mathrm{t}_{\text {DOE }}$	$7,8,9,10,11$
WRITE CYCLE	
$\mathrm{t}_{\text {WC }}$	
$\mathrm{t}_{\text {SCS }}$	$7,8,9,10,11$
$\mathrm{t}_{\text {AW }}$	$7,8,9,10,11$
$\mathrm{t}_{\text {HA }}$	$7,8,9,10,11$
$\mathrm{t}_{\text {SA }}$	$7,8,9,10,11$
$\mathrm{t}_{\text {PWE }}$	$7,8,9,10,11$
$\mathrm{t}_{\text {SD }}$	$7,8,9,10,11$
$\mathrm{t}_{\text {HD }}$	$7,8,9,10,11$

Document \#: 38-00035-C

4096×4 Static R/W RAM Separate I/O

Features

- Automatic power-down when deselected
- CMOS for optimum speed/ power
- High Speed
- $25 \mathrm{~ns} \mathrm{t}_{\mathrm{AA}}$
- Transparent Write (7C171)
- Low active power
- 385 mW (commercial)
- 385 mW (military)
- Low standby power
$-83 \mathrm{~mW}$
- TTL compatible inputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge

Functional Description

The CY7C171 and CY7C172 are high performance CMOS static RAMs organized as 4096×4 bits with separate I/O. Easy memory expansion is provided by an active LOW chip enable $(\overline{\mathrm{CE}})$ and three-state drivers. They have an automatic power-down feature, reducing the power consumption by 77% when deselected.
Writing to the device is accomplished when the chip enable (CE) and write enable (研) inputs are both LOW.

Data on the four input pins (I_{0} through I_{3}) is written into the memory location specified on the address pins (A_{0} through A_{11}).
Reading the device is accomplished by taking chip enable ($\overline{C E}$) LOW, while write enable ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the four data output pins.
The output pins stay in high impedance state when write enable ($\overline{\mathrm{WE}}$) is LOW (7C172 only), or chip enable ($\overline{\mathrm{CE}}$) is HIGH. A die coat is used to insure alpha immunity.

Logic Block Diagram

0051-1

Pin Configurations

0051-2

Selection Guide

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C} \quad$ Static Discharge Voltage . $>2001 \mathrm{~V}$
Ambient Temperature with
Power Applied . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
(Per MIL-STD-883 Method 3015)
Latch-up Current . $>200 \mathrm{~mA}$
Supply Voltage to Ground Potential
(Pin 24 to Pin 12) -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State.
-0.5 V to +7.0 V
DC Input Voltage -3.0 V to +7.0 V
Output Current into Outputs (Low)
.20 mA

Operating Range

Range	Ambient Temperature	VCC
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[2]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range ${ }^{[3]}$

Parameters	Description	Test Conditions		$\begin{array}{\|l\|} \hline \text { 7C171L-25, }-35 \\ \text { 7C172L-25, -35 } \\ \hline \end{array}$		$\begin{aligned} & \text { 7C171-25, -35 } \\ & \text { 7C172-25, -35 } \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \text { 7C171-45 } \\ & \text { 7C172-45 } \\ & \hline \end{aligned}$		Units
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{IOL}=8.0 \mathrm{~mA}$			0.4		0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.2	V_{CC}	2.2	V_{CC}	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	-3.0	0.8	-3.0	0.8	V
IIX	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+ 10	-10	+ 10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\begin{aligned} & \mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}, \\ & \text { Output Disabled } \end{aligned}$		-50	$+50$	-50	+ 50	-50	$+50$	$\mu \mathrm{A}$
Ios	Output Short Circuit Current ${ }^{[1]}$	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-350		-350		-350	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Commercial		70		90		70	mA
			Military*				90		70	
ISB_{1}	Automatic CEPower Down Current	$\begin{aligned} & \text { Max. } V_{C C}, \\ & \overline{C E} \geq V_{I H} \end{aligned}$	Commercial		15		20		15	mA
			Military*				20		20	
ISB_{2}	Automatic $\overline{\mathrm{CE}}$ Power Down Current	$\begin{aligned} & \text { Max. } V_{C C} \\ & \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \end{aligned}$	Commercial		10		15		15	mA
			Military*				20		20	

*-35 and -45 only
Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	4	pF
COUT $^{\text {Output Capacitance }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	7	pF	

Notes:

1. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Equivalent to: THEVENIN EQUIVALENT

Switching Characteristics Over Operating Range ${ }^{[3,5]}$

Parameters	Description	$\begin{aligned} & \text { 7C171-25 } \\ & \text { 7C172-25 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 7C171-35 } \\ & \text { 7C172-35 } \end{aligned}$		$\begin{aligned} & \text { 7C171-45 } \\ & \text { 7C172-45 } \\ & \hline \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
$\mathrm{t}_{\mathrm{R}} \mathrm{C}$	Read Cycle Time	25		35		45		ns
t_{AA}	Address to Data Valid		25		35		45	ns
toha	Output Hold from Address Change	3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	CE LOW to Data Valid		25		35		45	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[7]}$	5		5		5		ns
$\mathrm{t}_{\mathrm{HZCE}}$	$\overline{\text { CE }}$ HIGH to High $\mathrm{Z}^{[6,7]}$		15		20		20	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\mathrm{CE}}$ LOW to Power Up	0		0		0		ns
tPD	$\overline{\mathrm{CE}}$ HIGH to Power Down		25		25		30	ns
$\mathrm{t}_{\mathrm{RCS}}$	Read Command Set-up	0		0		0		ns
$\mathrm{t}_{\text {RCH }}$	Read Command Hold	0		0		0		ns
WRITE CYCLE ${ }^{[8]}$								
twC	Write Cycle Time	25		35		40		ns
tsce	$\overline{\text { CE LOW to Write End }}$	25		30		35		ns
$\mathrm{t}_{\text {AW }}$	Address Set-up to Write End	20		30		35		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
tsA	Address Set-up to Write Start	0		0		0		ns
tpWE	$\overline{\text { WE Pulse Width }}$	20		25		30		ns
$\mathrm{t}_{\text {SD }}$	Data Set-up to Write End	10		15		15		ns
thD	Data Hold from Write End	0		0		3		ns
t LZWE	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[7]}$ (7C172)	0		0		0		ns
thzWE	$\overline{\text { WE L L }}$ L to High $\mathrm{Z}^{[6,7]}$ (7C172)		10		15		20	ns
$\mathrm{t}_{\text {AWE }}$	$\overline{\text { WE L L }}$ LOW to Data Valid (7C171)		25		30		35	ns
tadV	Data Valid to Output Valid (7C171)		25		30		35	ns

Notes:

5. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance.
6. $\mathrm{t}_{\mathrm{HzCE}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in Figure 1b. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, t_{HZ} is less than t_{LZ} for any given device.
8. The internal write time of the memory is defined by the overlap of $\overline{C E}$ low and $\overline{W E}$ low. Both signals must be low to initiate a write and either signal can terminate a write by going high. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
9. WE is high for read cycle.
10. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
11. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition low.

Switching Waveforms

Read Cycle No. 1 (Notes 9, 10)

Switching Waveforms (Continued)

Read Cycle (Notes 9, 11)

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) (Note 8)

Write Cycle No. 2 ($\overline{\text { CE }}$ Controlled) (Note 8)

Note: If $\overline{\mathbf{C E}}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the output remains in a high impedance state (7C172).

Typical DC and AC Characteristics

TYPICAL POWER-ON CURRENT vs. SUPPLY VOLTAGE

NORMALIZED SUPPLY CURRENT
vs. AMBIENT TEMPERATURE

NORMALIZED ACCESS TIME vs. AMBIENT TEMPERATURE

TYPICAL ACCESS TIME CHANGE vs. OUTPUT LOADING

OUTPUT SOURCE CURRENT vs. OUTPUT VOLTAGE

OUTPUT SINK CURRENT
vs. OUTPUT VOLTAGE

NORMALIZED ICC vs. CYCLE TIME

Ordering Information

$\begin{array}{\|c} \hline \text { Speed } \\ \text { (ns) } \end{array}$	$\begin{aligned} & \text { ICC } \\ & \mathbf{m A} \\ & \hline \end{aligned}$	Ordering Code	Package Type	Operating Range
25	70	CY7C171L-25PC	P13	Commercial
		CY7C171L-25DC	D14	
		CY7C171L-25LC	L64	
	90	CY7C171-25PC	P13	
		CY7C171-25DC	D14	
		CY7C171-25LC	L64	
35	70	CY7C171L-35PC	P13	Commercial
		CY7C171L-35DC	D14	
		CY7C171L-35LC	L64	
	90	CY7C171-35PC	P13	
		CY7C171-35DC	D14	
		CY7C171-35LC	L64	
		CY7C171-35DMB	D14	Military
		CY7C171-35LMB	L64	
45	70	CY7C171-45PC	P13	Commercial
		CY7C171-45DC	D14	
		CY7C171-45LC	L64	
		CY7C171-45DMB	D14	Military
		CY7C171-45LMB	L64	

Speed (ns)	$\begin{aligned} & \mathbf{I}_{\mathbf{C C}} \\ & \mathrm{mA} \\ & \hline \end{aligned}$	Ordering Code	Package Type	Operating Range
25	70	CY7C172L-25PC	P13	Commercial
		CY7C172L-25DC	D14	
		CY7C172L-25LC	L64	
	90	CY7C172-25PC	P13	
		CY7C172-25DC	D14	
		CY7C172-25LC	L64	
35	70	CY7C172L-35PC	P13	Commercial
		CY7C172L-35DC	D14	
		CY7C172L-35LC	L64	
	90	CY7C172-35PC	P13	
		CY7C172-35DC	D14	
		CY7C172-35LC	L64	
		CY7C172-35DMB	D14	Military
		CY7C172-35LMB	L64	
45	70	CY7C172-45PC	P13	Commercial
		CY7C172-45DC	D14	
		CY7C172-45LC	L64	
		CY7C172-45DMB	D14	Military
		CY7C172-45LMB	L64	

Address Designators

Address Name	Address Function	Pin Number
\mathbf{A}_{0}	X_{0}	20
$\mathrm{~A}_{1}$	X_{3}	21
$\mathrm{~A}_{2}$	X_{4}	22
$\mathrm{~A}_{3}$	X_{1}	23
$\mathrm{~A}_{4}$	X_{2}	1
$\mathrm{~A}_{5}$	X_{5}	2
$\mathrm{~A}_{6}$	X_{6}	3
$\mathrm{~A}_{7}$	Y_{3}	4
$\mathrm{~A}_{8}$	Y_{4}	5
$\mathrm{~A}_{9}$	Y_{0}	6
$\mathrm{~A}_{10}$	Y_{1}	7
$\mathrm{~A}_{11}$	Y_{2}	8

R

IFICATIONS
Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{IC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
$t_{\text {RC }}$	$7,8,9,10,11$
$t_{\text {AA }}$	$7,8,9,10,11$
$t_{\text {OHA }}$	$7,8,9,10,11$
$t_{\text {ACE }}$	$7,8,9,10,11$
$t_{\text {RCS }}$	$7,8,9,10,11$
$t_{\text {RCH }}$	$7,8,9,10,11$
WRITE CYCLE	
$t_{\text {WC }}$	$7,8,9,10,11$
$t_{\text {SCE }}$	$7,8,9,10,11$
$t_{\text {AW }}$	$7,8,9,10,11$
$t_{\text {HA }}$	$7,8,9,10,11$
$t_{\text {SA }}$	$7,8,9,10,11$
$t_{\text {PWE }}$	$7,8,9,10,11$
$t_{\text {SD }}$	$7,8,9,10,11$
$t_{\text {HD }}$	$7,8,9,10,11$
$t_{\text {AWE }}{ }^{[12]}$	$7,8,9,10,11$
$t_{\text {ADV }}{ }^{[12]}$	$7,8,9,10,11$

Note:
12. 7C171 only.

Document \# : 38-00036-C

Features

- Automatic power-down when deselected
- CMOS for optimum speed/ power
- High speed-25 ns
- Low active power
$-550 \mathrm{~mW}$
- Low standby power
- $\mathbf{1 1 0} \mathrm{mW}$
- TTL compatible inputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge
- 2V data retention (L version)

Functional Description

The CY7C185 and CY7C186 are high performance CMOS static RAMs organized as 8192 words by 8 bits. Easy memory expansion is provided by an active LOW chip enable (CE_{1}), an active HIGH chip enable (CE_{2}), and active LOW output enable ($\overline{\mathrm{OE})}$ and three-state drivers. Both devices have an automatic power-down feature, reducing the power consumption by 73% when deselected. The CY7C185 is in the space saving 300 mil wide DIP package and leadless chip carrier. The CY7C186 is in the standard 600 mil wide package.
An active LOW write enable signal (WE) controls the writing/reading operation of the memory. When $\overline{C E}_{1}$ and $\overline{W E}$ inputs are both LOW and CE_{2} is

HIGH, data on the eight data input/ output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$) is written into the memory location addressed by the address present on the address pins (A_{0} through A_{12}). Reading the device is accomplished by selecting the device and enabling the outputs, CE_{1} and $\overline{\mathrm{OE}}$ active LOW, CE_{2} active HIGH, while (WE) remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins is present on the eight data input/ output pins.

The input/output pins remain in a high impedance state unless the chip is selected, outputs are enabled, and write enable ($\overline{\mathrm{W} E}$) is HIGH. A die coat is used to ensure alpha immunity.

Logic Block Diagram

Pin Configurations

0055-2

0055-3

Selection Guide

		$\begin{aligned} & \text { 7C185-25 } \\ & \text { 7C186-25 } \end{aligned}$	$\begin{aligned} & \text { 7C185-35 } \\ & \text { 7C186-35 } \end{aligned}$	$\begin{aligned} & \text { 7C185-45 } \\ & \text { 7C186-45 } \end{aligned}$	$\begin{aligned} & \text { 7C185-55 } \\ & 7 \mathrm{C} 186-55 \end{aligned}$
Maximum Access Time (ns)		25	35	45	55
Maximum Operating Current (mA)	Commercial	100	100	100	80
	Military		100	100	100
Maximum Standby Current (mA)	Commercial	20/20	20/20	20/20	20/20
	Military		20/20	20/20	20/20

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Ambient Temperature with	Static Discharge Voltage . $>2001 \mathrm{~V}$ (Per MIL-STD-883 Method 3015)		
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Latch-up Curre		$>200 \mathrm{~mA}$
Supply Voltage to Ground Potential (Pin 28 to Pin 14) . -0.5 V to +7.0 V	Operating Range		
DC Voltage Applied to Outputs in High Z State . -0.5 V to +7.0 V	Range	Ambient Temperature	VCC
DC Input Voltage -3.0 V to +7.0 V	Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Output Current into Outputs (Low) 20 mA	Military ${ }^{[3]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range ${ }^{[4]}$

Capacitance ${ }^{[2]}$

Parameters	Description	Test Conditions	Max.	Units
C IN $^{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	5	pF
	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	7		

Notes:

1. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
2. Tested initially and after any design or process changes that may affect these parameters.
3. T_{A} is the "instant on" case temperature.
4. See the last page of this specification for Group A subgroup testing information.

AC Test Loads and Waveforms

Figure 1a

Equivalent to: THÉVENIN EQUIVALENT

0055-7

Switching Characteristics Over Operating Range ${ }^{[4,5]}$

Parameters	Description	$\begin{array}{r} \text { 7C185-25 } \\ \text { 7C186-25 } \\ \hline \end{array}$		$\begin{aligned} & \text { 7C185-35 } \\ & \text { 7C186-35 } \end{aligned}$		$\begin{array}{r} 7 \mathrm{C} 185-45 \\ \text { 7C186-45 } \\ \hline \end{array}$		$\begin{aligned} & \text { 7C185-55 } \\ & \text { 7C186-55 } \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE										
$\mathrm{t}_{\mathrm{R}} \mathrm{C}$	Read Cycle Time	25		35		45		55		ns
t_{AA}	Address to Data Valid		25		35		45		55	ns
tOHA	Data Hold from Address Change	3		3		3		3		ns
taCE_{1}	$\overline{\mathrm{CE}} \mathrm{L}_{1}$ LOW to Data Valid		25		35		45		55	ns
$\mathrm{t}_{\mathrm{ACE}_{2}}$	$\mathrm{CE}_{2} \mathrm{HIGH}$ to Data Valid		25		25		30		40	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{O E}$ LOW to Data Valid		15		20		20		25	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\text { OE L L }}$ LOW to Low Z	3		3		3		3		ns
$\mathrm{t}_{\mathrm{HzO}}$	$\overline{\mathrm{OE}}$ HIGH to High Z[6]		15		15		20		25	ns
$\mathrm{t}_{\underline{\text { LZCE }}}^{1}$	$\overline{\mathrm{CE}}{ }_{1}$ LOW to Low $\mathrm{Z}^{[7]}$	5		5		5		5		ns
$\mathrm{t}_{\mathrm{LZCE}_{2}}$	CE 2 HIGH to Low Z	3		3		3		3		ns
$\mathrm{t}_{\mathrm{HZCE}}$	$\overline{C E}_{1}$ HIGH to High $Z[6,7]$ CE 2 LOW to High Z		15		15		20		20	ns
tPU	$\overline{\mathrm{CE}_{1}}$ LOW to Power Up		0	0		0		0		ns
tPD	$\overline{\mathrm{CE}}{ }_{1} \mathrm{HIGH}$ to Power Down		20		20		25		25	ns
WRITE CYCLE ${ }^{\text {[8] }}$										
twc	Write Cycle Time	25		35		45		50		ns
${ }^{\text {tSCE }}$	$\overline{\mathrm{CE}} \mathrm{I}_{1}$ LOW to Write End	25		30		40		50		ns
tsCE_{2}	CE 2 HIGH to Write End	20		20		25		30		ns
$\mathrm{t}_{\text {AW }}$	Address Set-up to Write End	20		30		40		50		ns
t_{HA}	Address Hold from Write End	0		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-up to Write Start	0		0		0		0		ns
tPWE	WE Pulse Width	20		20		25		30		ns
$\mathrm{t}_{\text {SD }}$	Data Set-up to Write End	10		15		20		25		ns
t_{HD}	Data Hold from Write End	0		0		0		0		ns
$\mathrm{t}_{\text {HZWE }}$	WE LOW to High Z ${ }^{\text {[6] }}$		15		15		20		25	ns
t LZWE	WE HIGH to Low Z	3		3		3		3		ns

Notes:

5. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance.
6. $\mathrm{t}_{\mathrm{HZOE}}, \mathrm{t}_{\mathrm{HZCE}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in Figure $1 b$. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than ${ }^{\text {t }}$ LZCE for any given device.
8. The internal write time of the memory is defined by the overlap of CE_{1} LOW, CE 2 HIGH and WE LOW. Both signals must be LOW
to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
9. WE is HIGH for read cycle.
10. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}} \cdot \mathrm{CE}_{2}=\mathrm{V}_{\mathrm{IH}}$.
11. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
12. Data I / O is HIGH impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.

Data Retention Characteristics (L Version only) ${ }^{[4]}$

Parameters	Description	Test Conditions	Min.	Max.	Units
$V_{\text {DR }}$	V_{CC} for Retention of Data	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}, \\ & \mathrm{CE} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$	2.0	-	V
$\mathrm{I}_{\text {CCDR }}$	Data Retention Current		-	1000	$\mu \mathrm{A}$
$\mathrm{t}_{\text {CDR }}$	Chip Deselect to Data Retention Time		0	-	ns
t_{R}	Operation Recovery Time		$\mathrm{t}_{\mathrm{RC}}{ }^{[13]}$	-	ns
I_{LI}	Input Leakage Current		-	2	$\mu \mathrm{A}$

Note:
13. $\mathrm{t}_{\mathrm{RC}}=$ Read Cycle Time.

Data Retention Waveform

Switching Waveforms

Read Cycle No. 1 (Notes 10, 11)

Switching Waveforms (Continued)
Read Cycle No. 2 (Notes 9, 11)

Write Cycle No. 1 (WE Controlled) (Notes 8, 12)

0055-10
Write Cycle No. 2 ($\overline{\mathrm{CE}}$ Controlled) (Notes 8, 12)

0055-11
Note: If $\overline{C E}$ goes HIGH simultaneously with $\overline{\text { WE }}$ HIGH, the output remains in a high impedance state.

Typical DC and AC Characteristics

NORMALIZED ACCESS TIME vs. SUPPLY VOLTAGE

TYPICAL POWER-ON CURRENT vs. SUPPLY VOLTAGE

NORMALIZED SUPPLY CURRENT vs. AMBIENT TEMPERATURE

NORMALIZED ACCESS TIME

TYPICAL ACCESS TIME CHANGE vs. OUTPUT LOADING

OUTPUT SOURCE CURRENT vs. OUTPUT VOLTAGE

NORMALIZED ICC vs. CYCLE TIME

0055-13

Truth Table

$\overline{\mathbf{C E}}_{\mathbf{1}}$	$\mathbf{C E}_{\mathbf{2}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Input/Outputs	Mode
\mathbf{H}	\mathbf{X}	\mathbf{X}	\mathbf{X}	High Z	Deselect Power Down
\mathbf{X}	\mathbf{L}	\mathbf{X}	\mathbf{X}	High Z	Deselect
L	H	H	L	Data Out	Read
L	H	L	\mathbf{X}	Data In	Write
L	H	H	H	High Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C185-25PC	P21	Commercial
	CY7C185L-25PC	P21	
	CY7C185-25VC	V21	
	CY7C185L-25VC	V21	
	CY7C185-25DC	D22	
	CY7C185L-25DC	D22	
	CY7C185-25LC	L54	
	CY7C185L-25LC	L54	
35	CY7C185-35PC	P21	Commercial
	CY7C185L-35PC	P21	
	CY7C185-35VC	V21	
	CY7C185L-35VC	V21	
	CY7C185-35DC	D22	
	CY7C185L-35DC	D22	
	CY7C185-35LC	L54	
	CY7C185L-35LC	L54	
	CY7C185-35DMB	D22	Military
	CY7C185L-35DMB	D22	
	CY7C185-35LMB	L54	
	CY7C185L-35LMB	L54	
45	CY7C185-45PC	P21	Commercial
	CY7C185L-45PC	P21	
	CY7C185-45VC	V21	
	CY7C185L-45VC	V21	
	CY7C185-45DC	D22	
	CY7C185L-45DC	D22	
	CY7C185-45LC	L54	
	CY7C185L-45LC	L54	
	CY7C185-45DMB	D22	Military
	CY7C185L-45DMB	D22	
	CY7C185-45LMB	L54	
	CY7C185L-45LMB	L54	
55	CY7C185-55PC	P21	Commercial
	CY7C185L-55PC	P21	

Speed (ns)	Ordering Code	Package Type	Operating Range
55	CY7C185-55VC	V21	Commercial
	CY7C185L-55VC	V21	
	CY7C185-55DC	D22	
	CY7C185L-55DC	D22	
	CY7C185-55LC	L54	Military
	CY7C185L-55LC	L54	
	CY7C185-55DMB	D22	
	CY7C185L-55DMB	D22	
	CY7C185-55LMB	L54	L54

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C186-25PC	P15	Commercial
	CY7C186L-25PC	P15	
	CY7C186-25DC	D16	
	CY7C186L-25DC	D16	
35	CY7C186-35PC	P15	Commercial
	CY7C186L-35PC	P15	
	CY7C186-35DC	D16	
	CY7C186L-35DC	D16	
	CY7C186-35DMB	D16	Military
	CY7C186L-35DMB	D16	
45	CY7C186-45PC	P15	Commercial
	CY7C186L-45PC	P15	
	CY7C186-45DC	D16	
	CY7C186L-45DC	D16	
	CY7C186-45DMB	D16	Military
	CY7C186L-45DMB	D16	
55	CY7C186-55PC	P15	Commercial
	CY7C186L-55PC	P15	
	CY7C186-55DC	D16	
	CY7C186L-55DC	D16	
	CY7C186-55DMB	D16	Military
	CY7C186L-55DMB	D16	

Bit Map

0055-14

Address Designators

Address Name	Address Function	Pin Number
A4	X3	2
A5	X4	3
A6	X5	4
A7	X6	5
A8	X7	6
A9	Y1	7
A10	Y4	8
A11	Y3	9
A12	Y0	10
A0	Y2	21
A1	X0	23
A2	X1	24
A3	X2	25

2

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{OS}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	7,8,9,10,11
$\mathrm{t}_{\text {AA }}$	7,8,9,10,11
toha	7,8,9,10,11
$\mathrm{t}_{\mathrm{ACE}}$	7,8,9,10,11
$\mathrm{t}_{\mathrm{ACE} 2}$	7,8,9,10,11
$\mathrm{t}_{\text {DOE }}$	7,8,9,10,11
WRITE CYCLE	
twC	7,8,9,10,11
$\mathrm{t}_{\text {SCE } 1}$	7,8,9,10,11
$\mathrm{t}_{\text {SCE }}$	7,8,9,10,11
$\mathrm{t}_{\text {AW }}$	7,8,9,10,11
t_{HA}	7,8,9,10,11
tsA	7,8,9,10,11
tPWE	7,8,9,10,11
tSD	7,8,9,10,11
t_{HD}	7,8,9,10,11

Data Retention Characteristics

(L Version only)

Parameters	Subgroups
V_{DR}	$1,2,3$
$\mathrm{I}_{\mathrm{CCDR}}$	$1,2,3$

Document \#: 38-00037-B

Features

- Automatic power-down when deselected
- CMOS for optimum speed/ power
- High speed-25 ns
- Low active power $-385 \mathrm{~mW}$
- Low standby power $-110 \mathrm{~mW}$
- TTL compatible inputs and outputs
- Capable of withstanding greater than 2000 V electrostatic discharge
- $2 \mathbf{V}$ data retention (\mathbf{L} version)

Functional Description

The CY7C187 is a high performance CMOS static RAM organized as 65,536 words x 1 bit. Easy memory expansion is provided by an active LOW chip enable ($\overline{\mathrm{CE}}$) and three-state drivers. The CY7C187 has an automatic power-down feature, reducing the power consumption by 80% when deselected.
Writing to the device is accomplished when the chip enable ($\overline{\mathrm{CE}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW.
Data on the input pin (DI) is written into the memory location specified on the address pins (A0 through A_{15}).

Reading the device is accomplished by taking the chip enable (CE) LOW, while write enable ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the data output (DO) pin.
The output pin stays in high impedance state when chip enable (CE) is HIGH or write enable (WE) is LOW.
The 7C187 utilizes a Die Coat to ensure alpha immunity.

Logic Block Diagram

Pin Configurations

0029-2

0029-3

Selection Guide

		7C187-25	7C187-35	7C187-45
Maximum Access Time (ns)	Commercial	25	35	$\mathbf{4 5}$
		70	50	

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Ambient Temperature with	Static Discharge Voltage . $>2001 \mathrm{~V}$ (Per MIL-STD-883 Method 3015)		
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Latch-up Cur		$>200 \mathrm{~mA}$
Supply Voltage to Ground Potential (Pin 22 to Pin 11) . -0.5 V to +7.0 V	Operating Range		
DC Voltage Applied to Outputs in High Z State. -0.5 V to +7.0 V	Range	Ambient Temperature	$\mathbf{V C C}_{\text {c }}$
DC Input Voltage -3.0 V to +7.0 V	Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Output Current into Outputs (Low) 20 mA	Military ${ }^{\text {[4] }}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range ${ }^{[5]}$

Parameters	Description	Test Conditions			7C187-25		7C187-35		7C187-45		Units
					Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$			2.4		2.4		2.4		V
VOL	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathbf{M i n}$.	$\mathrm{IOL}^{\text {O }}=8.0 \mathrm{~mA}$	Military		0.4		0.4		0.4	V
			$\mathrm{IOL}=12.0 \mathrm{~mA}$	Commercial							
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage				2.2	V_{CC}	2.2	V_{CC}	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				-3.0	0.8	-3.0	0.8	-3.0	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	GND $\leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\text {CC }}$			-10	+ 10	-10	+10	-10	+ 10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled			-10	+10	-10	+10	-10	+ 10	$\mu \mathrm{A}$
Ios	Output Short Circuit Current ${ }^{[1]}$	$\mathbf{V}_{\text {CC }}=\mathbf{M a x} ., \mathrm{V}_{\text {OUT }}=\mathbf{G N D}$				-350		-350		-350	mA
ICC	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA} \end{aligned}$		Commercial		70		70		50	mA
				Military				70		70	
ISB_{1}	Automatic $\overline{\mathrm{CE}}{ }^{[2]}$ Power Down Current	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}}, \\ & \mathrm{CE} \geq \mathrm{V}_{\mathrm{IH}} \end{aligned}$		Commercial		20		20		20	mA
				Military				20		20	
ISB_{2}	Automatic $\overline{\mathrm{CE}}{ }^{[2]}$ Power Down Current	$\begin{aligned} & \text { Max. } V_{C C}, \overline{C E} \geq V_{C C}-0.3 V \\ & V_{\text {IN }} \geq V_{C C}-0.3 V \text { or } \\ & V_{\text {IN }} \leq 0.3 V \end{aligned}$		Commercial		20		20		20	mA
				Military				20		20	

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	5	pF
COUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	7	

Notes:

1. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
2. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CE}}$ input is required to keep the device deselected during $V_{\text {CC }}$ power-up, otherwise $I_{\text {SB }}$ will exceed values given.
3. Tested initially and after any design or process changes that may affect these parameters.
4. T_{A} is the "instant on" case temperature.
5. See the last page of this specification for Group A subgroup testing information.

AC Test Loads and Waveforms

OUTPUT O- $\underbrace{167 \Omega}_{\text {Military }} 1.73 \mathrm{~V}$
0029-6

0029-5
Figure 2

CY7C187

Switching Characteristics Over Operating Range ${ }^{[5,6]}$

Parameters	Description	7C187-25		7C187-35		7C187-45		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
$t_{\text {RC }}$	Read Cycle Time	25		35		45		ns.
t_{AA}	Address to Data Valid		25		35		45	ns
toha	Output Hold from Address Change	5		5		5		ns
$\mathrm{t}_{\mathrm{ACE}}$	$\overline{\mathrm{CE}}$ LOW to Data Valid		25		35		45	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low ${ }^{\text {[8] }}$	5		5		5		ns
$\mathrm{t}_{\mathrm{HZCE}}$	$\overline{\text { CE HIGH }}$ to High Z 77,8]	0	15	0	20	0	20	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\text { CE }}$ LOW to Power Up	0		0		0		ns
tPD	$\overline{\text { CE }}$ HIGH to Power Down		20		25		30	ns

WRITE CYCLE[9]

twC	Write Cycle Time	25		35		45		ns
tsCE	$\overline{\mathrm{CE}}$ LOW to Write End	20		30		40		ns
$\mathrm{t}_{\text {AW }}$	Address Set-up to Write End	20		30		40		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-up to Write Start	0		0		0		ns
tPWE	$\overline{\text { WE Pulse Width }}$	20		25		25		ns
$\mathrm{t}_{\text {SD }}$	Data Set-up to Write End	15		20		25		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE HIGH to Low }}{ }^{\text {[8] }}$	0		0		0		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High Z[7, 8]	0	15	0	20	0	20	ns

Notes:

6. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance.
7. $\mathrm{t}_{\mathrm{HZCE}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in Figure $1 b$. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
8. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $\mathrm{t}_{\text {LZCE }}$ for any given device.
9. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
10. WE is HIGH for read cycle.
11. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}$.
12. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.

Data Retention Characteristics (L Version only) ${ }^{[5]}$

Parameters	Description	Test Conditions	CY7C187		Units
			Min.	Max.	
V ${ }_{\text {DR }}$	V_{CC} for Retention of Data	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} \\ & \overline{C E} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V} \end{aligned}$	2.0	-	V
$\mathrm{I}_{\text {CCDR }}$	Data Retention Current		-	1000	$\mu \mathrm{A}$
$\mathrm{t}^{\text {CDR }}$	Chip Deselect to Data Retention Time		0	-	ns
t_{R}	Operation Recovery Time		$\mathrm{t}_{\mathrm{RC}}{ }^{[13]}$	-	ns
I_{LI}	Input Leakage Current		-	2	$\mu \mathrm{A}$

Note:

13. $\mathrm{t}_{\mathrm{RC}}=$ read cycle time.

Data Retention Waveform

Switching Waveforms

Read Cycle No. 1[10, 11]

Jwitching Waveforms (Continued)

2ead Cycle No. 2[10, 12]

Write Cycle No. 1 (WE Controlled) ${ }^{[9]}$

Write Cycle No. 2 ($\overline{\mathrm{CE}}$ Controlled) ${ }^{[9]}$

Note: If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\text { WE }}$ HIGH, the output remains in a high impedance state.

Typical DC and AC Characteristics

NORMALIZED
SUPPLY CURRENT
VS. AMBIENT TEMPERATURE

TYPICAL ACCESS TIME CHANGE vs. OUTPUT LOADING

OUTPUT SOURCE CURRENT
vs. OUTPUT VOLTAGE

OUTPUT SINK CURRENT vs. OUTPUT VOLTAGE

NORMALIZED ICC vs. CYCLE TIME

0029-14

Truth Table

$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	Input/Outputs	Mode
H	X	High Z	Deselect Power Down
L	H	Data Out	Read
L	L	Data In	Write

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C187-25PC	P9	Commercial
	CY7C187L-25PC	P9	
	CY7C187-25DC	D10	
	CY7C187L-25DC	D10	
35	CY7C187-35PC	P9	Commercial
	CY7C187L-35PC	P9	
	CY7C187-35DC	D10	
	CY7C187L-35DC	D10	
	CY7C187-35LC	L52	
	CY7C187L-35LC	L52	
	CY7C187-35DMB	D10	Military
	CY7C187L-35DMB	D10	
	CY7C187-35LMB	L52	
	CY7C187L-35LMB	L52	
45	CY7C187-45PC	P9	Commercial
	CY7C187L-45PC	P9	
	CY7C187-45DC	D10	
	CY7C187L-45DC	D10	
	CY7C187-45LC	L52	
	CY7C187L-45LC	L52	
	CY7C187-45DMB	D10	Military
	CY7C187L-45DMB	D10	
	CY7C187-45LMB	L52	
	CY7C187L-45LMB	L52	

Address Designators

Address Name	Address Function	Pin Number
A0	X3	1
A1	X4	2
A2	X5	3
A3	X6	4
A4	X7	5
A5	Y7	6
A6	Y6	7
A7	Y2	8
A8	Y3	14
A9	Y1	15
A10	Y0	16
A11	Y4	17
A12	Y5	18
A13	X0	19
A14	X1	20
A15	X2	21

Bit Map

0029-15
\qquad
MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{OS}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	7,8,9,10,11
t_{AA}	7,8,9,10,11
toha	7,8,9,10,11
$\mathrm{t}_{\text {ACE }}$	7,8,9,10,11
WRITE CYCLE	
twC	7,8,9,10,11
tsce	7,8,9,10,11
$\mathrm{t}_{\text {AW }}$	7,8,9,10,11
t_{HA}	7,8,9,10,11
tsA	7,8,9,10,11
tpwe	7,8,9,10,11
tSD	7,8,9,10,11
$\mathrm{thD}^{\text {d }}$	7,8,9,10,11

Document \# : 38-00038-C

Data Retention Characteristics
(L Version only)

Parameters	Subgroups
V_{DR}	$1,2,3$
$\mathrm{I}_{\mathrm{CCDR}}$	$1,2,3$

Features

- Fully decoded, 16 word x 4-bit high speed CMOS RAMs
- Inverting outputs CY7C189
- Non-inverting outputs CY7C190
- High speed
- 15 ns and 25 ns commercial
- 25 ns military
- Low power
-303 mW at 25 ns
- 495 mW at 15 ns
- Power supply 5V $\pm 10 \%$
- Advanced high speed CMOS processing for optimum speed/power product
- Capable of withstanding greater than 2000 V static discharge
- Three-state outputs
- TTL compatible interface levels

Functional Description

The CY7C189 and CY7C190 are extremely high peformance 64-bit static RAMs organized as 16 words $\times 4$-bits. Easy memory expansion is provided by an active LOW chip select ($\overline{\mathrm{CS}}$) input and three-state outputs. The devices are provided with inverting (CY7C189) and non-inverting (CY7C190) outputs.
An active LOW write enable ($\overline{\mathrm{WE}}$) signal controls the writing and reading of the memory. When the write enable ($\overline{\mathrm{WE}}$) and chip select ($\overline{\mathrm{CS}}$) are both LOW the information on the four data inputs $\left(D_{0}-D_{3}\right)$ is written into the location addressed by the information on the address lines $\left(\mathrm{A}_{0}-\mathrm{A}_{3}\right)$. The outputs are preconditioned such that the cor-
rect data is present at the data outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$ when the write cycle is complete. This precondition operation insures minimum write recovery times by eliminating the "write recovery glitch".
Reading is accomplished with an active LOW on the chip select line ($\overline{\mathrm{CS}}$) and a HIGH on the write enable ($\overline{\mathrm{WE}}$) line. The information stored is read out from the addressed location and presented at the outputs in inverted (CY7C189) or non-inverted (CY7C190) format.
During the write operation or when the chip select line is HIGH the four outputs of the memory go to an inactive high impedance state.

Selection Guide

		7C189-15 7C190-15	7C189-25 7C190-25
Maximum Access Time (ns)	Commercial	15	25
	Military		25
	Commercial	90	55
	Military		70

Maximum Ratings

Above which the useful life may be impaired. For user guidelines, not tested.)
itorage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
?ower Applied \qquad
Jupply Voltage to Ground Potenial
Pin 16 to Pin 8) . -0.5 V to +7.0 V
)C Voltage Applied to Outputs
n High Z State
-0.5 V to +7.0 V
JC Input Voltage -3.0 V to +7.0 V
Jutput Current, into Outputs (Low)
20 mA

Static Discharge Voltage . $>2001 \mathrm{~V}$
(per MIL-STD-883 Method 3015)
Latchup Current
. $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[4]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[5]}$

Parameters	Description	Test Conditions		$\begin{aligned} & \text { 7C189-15 } \\ & \text { 7C190-15 } \\ & \hline \end{aligned}$		$\begin{array}{r} \text { 7C189-25 } \\ \text { 7C190-25 } \\ \hline \end{array}$		Units
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min.,	5.2 mA	2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., I	. 0 mA		0.45		0.45	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.0	V_{CC}	2.0	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	-3.0	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	GND $\leq \mathrm{V}_{\text {I }} \leq$		-10	+10	-10	+10	$\mu \mathrm{A}$
V_{CD}	Input Diode Clamp Voltage ${ }^{[1]}$							
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq$		-40	+40	-40	+40	$\mu \mathrm{A}$
Ios	Output Short Circuit Current ${ }^{[2]}$	$\mathbf{V}_{\text {CC }}=$ Max.,	GND		-90		-90	mA
I_{CC}	Power Supply Current	$\begin{aligned} & \mathbf{v}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Commercial		90		55	mA
			Military				70	mA

Capacitance ${ }^{[6]}$

Parameters	Description	Test Conditions	Max.	Units
CIN	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	4	pF
Cout	Output Capacitance	$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}$	7	

Jotes:

The CMOS process does not provide a clamp diode. However the CY7C189 and CY7C190 are insensitive to -3V dc input levels and -5 V undershoot pulses of less than 5 ns (measured at 50% points).
!. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
Output is preconditioned to data in (inverted or non-inverted) during write to insure correct data is present on all outputs when write is terminated. (No write recovery glitch).
4. T_{A} is the "instant on" case temperature.
5. See the last page of this specification for Group A subgroup testing information.
6. Tested initially and after any design or process changes that may affect these parameters.

CYPRESS
SEMICONDUCTOR
Switching Characteristics Over the Operating Range ${ }^{[5,7]}$

Parameter	Description	Test Conditions	$\begin{aligned} & \hline \text { 7C189-15 } \\ & \text { 7C190-15 } \end{aligned}$		$\begin{aligned} & \text { 7C189-25 } \\ & \text { 7C190-25 } \end{aligned}$		Units
			Min.	Max.	Min.	Max.	
READ CYCLE							
$t_{\text {RC }}$	Read Cycle Time		15		25		ns
$\mathrm{t}_{\mathrm{ACS}}$	Chip Select to Output Valid	Note 10		12		15	ns
$\mathrm{t}_{\mathrm{HzCS}}$	Chip Select Inactive to High Z	Notes 9, 11		12		15	ns
$\mathrm{t}_{\text {LZCS }}$	Chip Select Active to Low Z			12		15	ns
toha	Output Hold from Address Change		5		5		ns
t_{AA}	Address Access Time	Note 10		15		25	ns
WRITE CYCLE ${ }^{[3,8]}$							
twc	Write Cycle Time		15		20		ns
thzWE	Write Enable Active to High Z	Notes 9, 11		12		20	ns
t LZWE	Write Enable Inactive to Low Z			12		20	
tawe	Write Enable Inactive to Output Valid	Note 10		12		20	ns
tPWE	Write Enable Pulse Width		15		20		ns
$\mathrm{t}_{\text {SD }}$	Data Setup to Write End		15		20		ns
t_{HD}	Data Hold from Write End		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Setup to Write Start		0		0		ns
t_{HA}	Address Hold from Write End		0		0		ns

Notes:
7. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance.
8. The internal write time of the memory is defined by the overlap of $\overline{C S}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
9. Transition is measured at steady state HIGH level -500 mV or steady state LOW level +500 mV on the output from 1.5 V level on the input.
10. $t_{A A}, t_{A C S}$ and $t_{A W E}$ are tested with $C_{L}=30 \mathrm{pF}$ as in Figure Ia. Timing is referenced to 1.5 V on the inputs and outputs.
11. $\mathrm{t}_{\mathrm{HZCS}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in Figure 1 b.

Bit Map

Address Designators

Address Name	Address Function	Pin Number
\mathbf{A}_{0}	AX0	1
\mathbf{A}_{1}	AX1	15
\mathbf{A}_{2}	AY0	14
\mathbf{A}_{3}	AY1	13

AC Test Loads and Waveforms

Figure 1a

Figure 1b

Equivalent to:
THÉVENIN EQUIVALENT

0011-7

Read Mode

Write Mode

Note:

Timing diagram represents one solution which results in an optimum cycle time. Timing may be changed in various applications as long as the worst case limits are not violated.

Typical DC and AC Characteristics

NORMALIZED ICC
vs. SUPPLY VOLTAGE

NORMALIZED ICC

AMBIENT TEMPERATURE (${ }^{\circ} \mathrm{C}$)

OUTPUT SOURCE CURRENT vs. OUTPUT VOLTAGE

NORMALIZED ACCESS TIME vs. SUPPLY VOLTAGE

NORMALIZED ACCESS TIME

OUTPUT SINK CURRENT
vs. OUTPUT VOLTAGE

NORMALIZED ICC
vs. FREQUENCY

0011-11

Irdering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
15	CY7C189-15PC CY7C190-15PC	P1	Commercial
	CY7C189-15DC CY7C190-15DC	D2	
	CY7C189-15LC CY7C190-15LC	L61	
25	CY7C189-25PC CY7C190-25PC	P1	
	CY7C189-25DC CY7C190-25DC	D2	
	CY7C189-25LC CY7C190-25LC	L61	
	$\begin{aligned} & \hline \text { CY7C189-25DMB } \\ & \text { CY7C190-25DMB } \end{aligned}$	D2	Military
	CY7C189-25LMB	L61	

Pin Configuration

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	7,8,9,10,11
$\mathrm{t}_{\text {ACS }}$	7,8,9,10,11
toha	7,8,9,10,11
$\mathrm{t}_{\text {AA }}$	7,8,9,10,11
WRITE CYCLE	
twC	7,8,9,10,11
$\mathrm{t}_{\text {AWE }}$	7,8,9,10,11
tPWE	7,8,9,10,11
$\mathrm{t}_{\text {SD }}$	7,8,9,10,11
t_{HD}	7,8,9,10,11
$\mathrm{t}_{\text {SA }}$	7,8,9,10,11
$\mathrm{th}_{\mathrm{HA}}$	7,8,9,10,11

Document \#: 38-00039-B

65,536 x 4 Static R/W RAM Separate I/O

Features

- Automatic power-down when deselected
- Transparent write (7C191)
- CMOS for optimum speed/ power
- High speed
- $25 \mathrm{~ns} \mathrm{t}_{\mathrm{AA}}$
- Low active power
- 385 mW
- Low standby power
- $\mathbf{1 1 0} \mathrm{mW}$
- TTL compatible inputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge

Functional Description

The CY7C191 and CY7C192 are high performance CMOS static RAMs organized as $65,536 \times 4$ bits with separate I/O. Easy memory expansion is provided by active LOW chip enable ($\overline{\mathrm{CE}}$) and three-state drivers. They have an automatic power-down feature, reducing the power consumption by 71% when deselected.

Writing to the device is accomplished when the chip enable ($\overline{\mathrm{CE}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Static Discharge Voltage . $>2001 \mathrm{~V}$ (Per MIL-STD-883, Method 3015)		
Power Applied . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Latch-up Curre		$\ldots>200 \mathrm{~mA}$
Supply Voltage to Ground Potential (Pin 28 to Pin 14) -0.5 V to +7.0 V	Operating Range		
DC Voltage Applied to Outputs in High Z State. -0.5 V to +7.0 V	Range	Ambient Temperature	VCC
DC Input Voltage -3.0 V to +7.0 V	Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Output Current into Outputs (LOW) 20 mA	Military ${ }^{[2]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	5V $\pm 10 \%$

Electrical Characteristics Over Operating Range ${ }^{[3]}$

Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	5	pF
COUT	Output Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	7	pF

Notes:

1. Not more than one output should shorted at one time. Duration of the short circuit should not exceed 30 seconds.
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Figure 1a

Figure 1b

Figure 2

Equivalent to:

THÉVENIN EQUIVALENT

SEMICONDUCTOR

Switching Characteristics Over Operating Range ${ }^{[3,5]}$

Parameters	Description	$\begin{aligned} & \text { 7C191-25 } \\ & \text { 7C192-25 } \end{aligned}$		$\begin{aligned} & \text { 7C191-35 } \\ & \text { 7C192-35 } \end{aligned}$		$\begin{aligned} & \text { 7C191-45 } \\ & \text { 7C192-45 } \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
tre	Read Cycle Time	25		35		45		ns
t_{AA}	Address to Data Valid		25		35		45	ns
toha	Output Hold from Address Change	3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\text { CE LOW }}$ to Data Valid		25		35		45	ns
t ${ }_{\text {LZCE }}$	$\overline{\text { CE }}$ LOW to LOW Z ${ }^{[7]}$	3		3		3		ns
$\mathrm{t}_{\mathrm{HZCE}}$	$\overline{\text { CE }}$ HIGH to High Z ${ }^{[6,7]}$		10		15		15	ns
t_{PU}	$\overline{\text { CE }}$ LOW to Power Up	0		0		0		ns
tPD	$\overline{\mathrm{CE}}$ HIGH to Power Down		25		35		45	ns

WRITE CYCLE ${ }^{[8]}$

twc	Write Cycle Time	20		30		40		ns
tSCE	$\overline{\text { CE }}$ LOW to Write End	20		30		35		ns
$\mathrm{t}_{\text {AW }}$	Address Set-up to Write End	20		25		35		ns
t_{HA}	Address Hold from Write End	2		2		2		ns
$\mathrm{t}_{\text {SA }}$	Address Set-up to Write Start	0		0		0		ns
tpwe	WE Pulse Width	20		25		35		ns
tsp	Data Set-up to Write End	10		15		20		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
tLZWE	$\overline{\text { WE HIGH to Low }}$ [7] (7C192)	3		3		3		ns
thZWE	WE LOW to High $\mathrm{Z}^{[6,7]}$ (7C192)		10		10		15	ns
$t_{\text {AWE }}$	$\overline{\text { WE L L }}$ L ${ }^{\text {do Data Valid (7C191) }}$		25		30		35	ns
$\mathrm{t}_{\text {ADV }}$	Data Valid to Output Valid (7C191)		20		30		35	ns

Notes:

5. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 V to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance.
6. $\mathrm{t}_{\mathrm{HZCE}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in Figure $1 b$. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, t_{HZ} is less than t_{LZ} for any given device.
8. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
9. WE is HIGH for read cycle.
10. Device is continuously selected. $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
11. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.

Switching Waveforms

Read Cycle No. 1 (Notes 9, 10)

Switching Waveforms (Continued)

Read Cycle (Notes 9, 11)

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) (Note 8)

Write Cycle No. 2 (CE Controlled) (Note 8)

Note: If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}}$ HIGH, the output remains in a high impedance state (7 C 192 only).

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C191-25PC	P21	Commercial
	CY7C191-25VC	V21	
	CY7C191-25DC	D22	
	CY7C191-25LC	L54	
35	CY7C191-35PC	P21	Commercial
	CY7C191-35VC	V21	
	CY7C191-35DC	D22	
	CY7C191-35LC	L54	
	CY7C191-35DMB	D22	Military
	CY7C191-35LMB	L54	
45	CY7C191-45PC	P21	Commercial
	CY7C191-45VC	V21	
	CY7C191-45DC	D22	
	CY7C191-45LC	L54	
	CY7C191-45DMB	D22	Military
	CY7C191-45LMB	L54	

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C192-25PC	P21	Commercial
	CY7C192-25VC	V21	
	CY7C192-25DC	D22	
	CY7C192-25LC	L54	
35	CY7C192-35PC	P21	Commercial
	CY7C192-35VC	V21	
	CY7C192-35DC	D22	
	CY7C192-35LC	L54	
	CY7C192-35DMB	D22	Military
	CY7C192-35LMB	L.54	
45	CY7C192-45PC	P21	Commercial
	CY7C192-45VC	V21	
	CY7C192-45DC	D22	
	CY7C192-45LC	L54	
	CY7C192-45DMB	D22	Military
	CY7C192-45LMB	L54	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{OS}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	7,8,9,10,11
$\mathrm{t}_{\text {AA }}$	7,8,9,10,11
$\mathrm{tOHA}^{\text {I }}$	7,8,9,10,11
$\mathrm{t}_{\mathrm{ACE}}$	7,8,9,10,11
WRITE CYCLE	
twc	7,8,9,10,11
$\mathrm{tsCE}^{\text {S }}$	7,8,9,10,11
$\mathrm{t}_{\text {AW }}$	7,8,9,10,11
t_{HA}	7,8,9,10,11
t_{SA}	7,8,9,10,11
tPWE	7,8,9,10,11
$\mathrm{t}_{\text {SD }}$	7,8,9,10,11
thD	7,8,9,10,11
$\mathrm{t}_{\text {AWE }}{ }^{[1]}$	7,8,9,10,11
$\mathrm{taDV}^{\text {[1] }}$	7,8,9,10,11

Note:

1. 7C191 only.

Document \#: 38-00076-A

Features

- Automatic power-down when deselected
- Output Enable ($\overline{\mathbf{O E}}$) feature (7C196)
- CMOS for optimum speed/ power
- High speed
- $25 \mathrm{~ns} \mathrm{t}_{\mathrm{AA}}$
- Low active power
- 385 mW
- Low standby power
- 110 mW
- TTL compatible inputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge

Functional Description

The CY7C194 and CY7C196 are high performance CMOS static RAMs organized as $65,536 \times 4$ bits. Easy memory expansion is provided by active LOW chip enable(s) ($\overline{\mathrm{CE}}$ on the CY7C194, $\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$ on the CY7C196) and threestate drivers. They have an automatic power-down feature, reducing the power consumption by 71% when deselected.
Writing to the device is accomplished when the chip enable(s) ($\overline{\mathrm{CE}}$ on the

CY7C194, $\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$ on the CY7C196) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the four input pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{3}$) is written into the memory location, specified on the address pins (\mathbf{A}_{0} through \mathbf{A}_{15}).
Reading the device is accomplished by taking the chip enable(s) ($\overline{\mathrm{CE}}$ on the CY7C194, $\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$ on the CY7C196) LOW, while write enable ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the four data output pins. A die coat is used to insure alpha immunity.

Logic Block Diagram

0109-1

Pin Configurations

0109-2

0109-3

Selection Guide

		$\begin{aligned} & \text { 7C194-25 } \\ & \text { 7C196-25 } \end{aligned}$	$\begin{aligned} & \text { 7C194-35 } \\ & \text { 7C196-35 } \end{aligned}$	$\begin{aligned} & \text { 7C194-45 } \\ & \text { 7C196-45 } \end{aligned}$
Maximum Access Time (ns)		25	35	45
Maximum Operating Current (mA)	Commercial	80	80	70
	Military		90	90
Maximum Standby Current (mA)	Commercial	20	20	20
	Military		20	20

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature
$\ldots \ldots \ldots \ldots . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad

$$
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

Supply Voltage to Ground Potential $\ldots .-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State. $\ldots \ldots \ldots \ldots{ }^{-}-0.5 \mathrm{~V}$ to +7.0 V
DC Input Voltage $\ldots \ldots-3.0 \mathrm{~V}$ to +7.0 V
Output Current into Outputs (Low) v) .-3.0 V to +7.0 V
.20 mA

Static Discharge Voltage $>2001 \mathrm{~V}$
(Per MIL-STD-883 Method 3015)
Latch-up Current. $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[3]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range ${ }^{[4]}$

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	5	pF
COUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	7	

Notes:

1. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
2. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CE}}$ input is required to keep the device deselected during $\mathbf{V}_{\text {CC }}$ power-up, otherwise $I_{\text {SB }}$ will exceed values given.
3. T_{A} is the "instant on" case temperature.
4. See the last page of this specification for Group A subgroup testing information.
5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Figure 1a

Figure 1b

Equivalent to: THEVENIN EQUIVALENT

$$
\text { OUTPUT } 0 \underbrace{16752}_{\text {- }} \text { 0109-6 }
$$

Switching Characteristics Over Operating Range ${ }^{[4,6]}$

Parameters	Description		$\begin{array}{r} \text { 7C194-25 } \\ \text { 7C196-25 } \\ \hline \end{array}$		$\begin{array}{r} \text { 7C194-35 } \\ \text { 7C196-35 } \\ \hline \end{array}$		$\begin{aligned} & \text { 7C194-45 } \\ & \text { 7C196-45 } \end{aligned}$		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE									
$\mathrm{t}_{\text {RC }}$	Read Cycle Time		25		35		45		ns
t_{AA}	Address to Data Valid			25		35		45	ns
toha	Output Hold from Address Ch	ange	3		3		3		ns
$\mathrm{t}_{\mathrm{ACE}_{1}, \mathrm{ACE}_{2}}$	$\overline{\mathrm{CE}}$ LOW to Data Valid			25		35		45	ns
$t_{\text {doe }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid	7C196		15		25		30	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\text { OE LOW to LOW Z }}$	7C196	3		3		3		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}} \mathrm{HIGH}$ to HIGH Z	7 C 196		15		15		15	ns
$\mathrm{t}_{\mathrm{LZCE}_{1}, \mathrm{CE}_{2}}$	$\overline{\mathrm{CE}}$ LOW to LOW $\mathrm{Z}^{[8]}$		3		3		3		ns
${ }^{\text {t }}{ }^{\text {HZCE }}, \mathrm{CE}_{2}$	$\overline{\mathrm{CE}}$ HIGH to High Z ${ }^{\text {[}}$, 8]			10		15		15	ns
tpu	$\overline{\mathrm{CE}}$ LOW to Power Up		0		0		0		ns
tPD	$\overline{\text { CE }}$ HIGH to Power Down			25		35		45	ns
WRITE CYCLE [9]									
twc	Write Cycle Time		20		30		40		ns
tSCE	$\overline{\text { CE }}$ LOW to Write End		20		30		35		ns
$\mathrm{t}_{\text {AW }}$	Address Set-up to Write End		20		25		35		ns
t_{HA}	Address Hold from Write End		2		2		2		ns
tSA	Address Set-up to Write Start		0		0		0		ns
tPWE	$\overline{\text { WE Pulse Width }}$		20		25		35		ns
$\mathrm{t}_{\text {SD }}$	Data Set-up to Write End		10		15		20		ns
t_{HD}	Data Hold from Write End		0		0		5		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to LOW Z ${ }^{[8]}$		3		3		3		ns
thZWE	$\overline{\text { WE }}$ LOW to HIGH Z ${ }^{[7,8]}$		0	10	0	10	0	15	ns

Notes:

6. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance.
7. $\mathrm{t}_{\mathrm{HZCE}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in Figure $1 b$. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
8. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than ${ }^{\text {t }}$ LZCE for any given device.
9. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}_{1}$ LOW, $\overline{\mathrm{CE}}_{2}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
10. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
11. Device is continuously selected, $\overline{\mathrm{CE}}_{1}=\mathrm{V}_{\mathrm{IL}} / \overline{\mathrm{CE}}_{2}=\mathrm{V}_{\mathrm{IL}}$. (7C196: $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{CE}_{2}=\mathrm{V}_{\mathrm{IL}}$ also.)
12. Address valid prior to or coincident with $\overline{\mathbf{C E}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ transition LOW.
13. 7 C 196 only: Data I / O will be high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.

Switching Waveforms

Read Cycle No. 1 (Notes 10, 11)

R
(Continued)
Read Cycle No. 2 (Notes 10, 12)

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) (Notes 9, 13)

Write Cycle No. 2 ($\overline{\mathrm{CE}}$ Controlled) (Notes 9, 13)

Note: If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}}$ HIGH, the output remains in a high impedance state.
0109-10

7C194 Truth Table

$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	Input/Outputs	Mode
H	X	High Z	Deselect/Power Down
L	H	Data Out	Read
L	L	Data In	Write

7C196 Truth Table

$\overline{\mathbf{C E}}_{1}$	$\overline{\mathbf{C E}}_{2}$	$\overline{\mathrm{WE}}$	$\overline{\mathrm{OE}}$	Inputs/Outputs	Mode
H	X	X	X	High Z	Deselect/Power Down
X	H	X	X		
L	L	H	L	Data Out	Read
L	L	L	X	Data In	Write
L	L	H	H	High Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C194-25PC	P13	Commercial
	CY7C194-25VC	V13	
	CY7C194-25DC	D14	
	CY7C194-25LC	L54	
35	CY7C194-35PC	P13	
	CY7C194-35VC	V13	
	CY7C194-35DC	D14	Military
	CY7C194-35LC	L54	
	CY7C194-35DMB	D14	
	CY7C194-35LMB	L54	
45	CY7C194-45PC	P13	
	CY7C194-45VC	V13	Military
	CY7C194-45DC	D14	
	CY7C194-45LC	L54	
	CY7C194-45DMB	D14	
	CY7C194-45LMB	L54	

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C196-25PC	P21	Commercial
	CY7C196-25VC	V21	
	CY7C196-25DC	D22	
	CY7C196-25LC	L54	
35	CY7C196-35PC	P21	Commercial
	CY7C196-35VC	V21	
	CY7C196-35DC	D22	
	CY7C196-35LC	L54	
	CY7C196-35DMB	D22	Military
	CY7C196-35LMB	L54	
45	CY7C196-45PC	P21	Commercial
	CY7C196-45VC	V21	
	CY7C196-45DC	D22	
	CY7C196-45LC	L54	
	CY7C196-45DMB	D22	Military
	CY7C196-45LMB	L54	

MILITARY SPECIFICATIONS

Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{OS}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
tre	7,8,9,10,11
$\mathrm{t}_{\text {AA }}$	7,8,9,10,11
toha	7,8,9,10,11
$\mathrm{t}_{\text {ACEI, }}$ ACE2	7,8,9,10,11
$\mathrm{t}_{\text {DOE }}{ }^{[1]}$	7,8,9,10,11
WRITE CYCLE	
twC	7,8,9,10,11
tsce	7,8,9,10,11
$\mathrm{t}_{\text {AW }}$	7,8,9,10,11
t_{HA}	7,8,9,10,11
$\mathrm{t}_{\text {SA }}$	7,8,9,10,11
tPWE	7,8,9,10,11
$\mathrm{t}_{\text {SD }}$	7,8,9,10,11
t_{HD}	7,8,9,10,11
$t_{\text {AWE }}$	7,8,9,10,11
$t_{\text {ADV }}$	7,8,9,10,11

Note:

1. 7 C 196 only.

Document \#: 38-00081

Features

- Automatic power-down when deselected
- CMOS for optimum speed/ power
- High speed-25 ns
- Low active power- $\mathbf{3 3 0} \mathbf{~ m W}$
- Low standby power- $\mathbf{1 1 0} \mathbf{~ m W}$
- TTL compatible inputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge

Functional Description

The CY7C197 is a high performance CMOS static RAM organized as 262,144 words x 1 bit. Easy memory expansion is provided by an active LOW chip enable ($\overline{\mathrm{CE}}$) and three-state drivers. The CY7C197 has an automatic power-down feature, reducing the power consumption by 67% when deselected.
Writing to the device is accomplished when the chip enable ($\overline{\mathrm{CE}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the input pin (D_{IN}) is written into the memory location specified on the address pins (A_{0} through A_{17}).

Reading the device is accomplished by taking the chip enable ($\overline{\mathrm{CE}}$) LOW, while write enable ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the data output (DOUT) pin.
The output pin stays in high impedance state when chip enable (CE) is HIGH or write enable ($\overline{\mathrm{WE}}$) is LOW.
The 7C197 utilizes a Die Coat to ensure alpha immunity.

Logic Block Diagram

0110-1

Pin Configurations

 0110-2

0110-11

Selection Guide

		7C197-25	7C197-35	7C197-45
Maximum Access Time (ns)	Commercial	25	35	45
	Military		35	45
Maximum Operating Current (mA)	Commercial	70	70	60
	Military		80	80
Maximum Standby Current (mA)	Commercial	20/20	20/20	20/20
	Military		20/20	20/20

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 24 to Pin 12) -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State.
-0.5 V to +7.0 V
DC Input Voltage -3.0 V to +7.0 V
Output Current into Outputs (Low) 20 mA

Static Discharge Voltage . > 2001 V
(Per MIL-STD-883 Method 3015)
Latch-up Current
$>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[4]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range ${ }^{[5]}$

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	5	pF
COUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	7	

Notes:

1. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
2. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CE}}$ input is required to keep the device deselected during $V_{C C}$ power-up, otherwise $I_{S B}$ will exceed values given.
3. Tested initially and after any design or process changes that may affect these parameters.
4. T_{A} is the "instant on" case temperature.
5. See the last page of this specification for Group A subgroup testing information.

AC Test Loads and Waveforms

Switching Characteristics Over Operating Range $[5,6]$

Parameters	Description	7C197-25		7C197-35		7C197-45		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	25		35		45		ns
t_{AA}	Address to Data Valid		25		35		45	ns
toha	Output Hold from Address Change	3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\text { CE }}$ LOW to Data Valid		25		35		45	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[8]}$	3		3		3		ns
$\mathrm{t}_{\mathrm{HZCE}}$	$\overline{\text { CE }}$ HIGH to High Z ${ }^{\text {[7, 8] }}$	0	15	0	20	0	20	ns
t_{PU}	$\overline{\mathrm{CE}}$ LOW to Power Up	0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}$ HIGH to Power Down		20		25		30	ns

twc	Write Cycle Time	25		35		45		ns
tsCE	$\overline{\text { CE LOW to Write End }}$	20		30		40		ns
$\mathrm{t}_{\text {AW }}$	Address Set-up to Write End	20		30		40		ns
t_{HA}	Address Hold from Write End	2		2		2		ns
$\mathrm{t}_{\text {SA }}$	Address Set-up to Write Start	0		0		0		ns
tpWE	WE Pulse Width	20		25		25		ns
$\mathrm{t}_{\text {SD }}$	Data Set-up to Write End	15		20		25		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
t LZWE	$\overline{\text { WE }}$ HIGH to Low ${ }^{\text {[}}$ [8]	0		0		0		ns
thzwe	$\overline{\mathrm{WE}}$ LOW to High Z [7, 8]	0	15	0	20	0	20	ns

Notes:
6. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V and output loading of the specified $I_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance.
7. $\mathrm{t}_{\mathrm{HZCE}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in Figure 1 b . Transition is increased $\pm 500 \mathrm{mV}$ from steady state voltage.
8. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $t_{\text {LZCE }}$ for any given device.
9. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
10. $\overline{W E}$ is HIGH for read cycle.
11. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
12. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.

Switching Waveforms

Read Cycle No. 1[10, 11]

Switching Waveforms (Continued)

Read Cycle No. 2[11]

Write Cycle No. 1 (WE Controlled) ${ }^{(10]}$

Write Cycle No. 2 ($\overline{\mathbf{C E}}$ Controlled) [10]

Truth Table

$\overline{\mathbf{C E}}$	$\overline{\text { WE }}$	Input/Outputs	Mode
H	X	High Z	Deselect/Power Down
L	H	Data Out	Read
L	L	Data In	Write

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C197-25PC	P13	Commercial
	CY7C197-25VC	V13	
	CY7C197-25DC	D14	
	CY7C197-25LC	L54	
	CY7C197-35PC	P13	Commercial
	CY7C197-35VC	V13	
	CY7C197-35DC	D14	Commercial
	CY7C197-35LC	L54	
	CY7C197-35DMB	D14	L54
	CY7C197-35LMB	P13	Military
	CY7C197-45PC	V13	

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{OS}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
$t_{\text {RC }}$	7,8,9,10,11
$\mathrm{t}_{\text {AA }}$	7,8,9,10,11
toha	7,8,9,10,11
$\mathrm{t}_{\text {ACE }}$	7,8,9,10,11
WRITE CYCLE	
twC	7,8,9,10,11
$\mathrm{t}_{\text {SCE }}$	7,8,9,10,11
$\mathrm{t}_{\text {AW }}$	7,8,9,10,11
$\mathrm{tha}^{\text {H }}$	7,8,9,10,11
$\mathrm{t}_{\text {SA }}$	7,8,9,10,11
tPWE	7,8,9,10,11
$\mathrm{t}_{\text {SD }}$	7,8,9,10,11
t_{HD}	7,8,9,10,11

[^8]
Features

- Automatic power-down when deselected
- CMOS for optimum speed/ power
- High speed- $\mathbf{3 5}$ ns
- Low active power- $\mathbf{5 5 0} \mathbf{~ m W}$
- Low standby power- $\mathbf{1 1 0} \mathbf{~ m W}$
- TTL compatible inputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge

Functional Description

The CY7C198 and CY7C199 are high performance CMOS static RAMs organized as 32,768 words by 8 bits. Easy memory expansion is provided by an active LOW chip enable ($\overline{\mathrm{CE}}$) and active LOW output enable ($\overline{\mathrm{OE}}$) and three-state drivers. Both devices have an automatic power-down feature, reducing the power consumption by 80% when deselected. The CY7C199 is in the space saving 300 mil wide DIP package and leadless chip carrier. The CY7C198 is in the standard 600 mil wide package.
An active LOW write enable signal ($\overline{\mathrm{WE}}$) controls the writing/reading operation of the memory. When CE and $\overline{\text { WE inputs are both LOW, data on }}$
the eight data input/output pins $\left(\mathrm{I} / \mathrm{O}_{0}\right.$ through $\mathrm{I} / \mathrm{O}_{7}$) is written into the memory location addressed by the address present on the address pins (A_{0} through A_{14}). Reading the device is accomplished by selecting the device and enabling the outputs, $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ active LOW, while ($\overline{\mathrm{WE}}$) remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins is present on the eight data input/output pins.
The input/output pins remain in a high impedance state unless the chip is selected, outputs are enabled, and write enable ($\overline{\mathrm{WE}}$) is HIGH. A die coat is used to ensure alpha immunity.

Logic Block Diagram

Pin Configurations

0111-2

0111-11

Selection Guide

		7C198-35 7C199-35	7C198-45 7C199-45	7C198-55 7C199-55
	35	45	55	
Maximum Operating Current (mA)	Commercial	110	110	100
Maximum Standby Current (mA) Military 120\quad Commercial	$20 / 20$	$20 / 20$	120	

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Static Discharge Voltage
$>2001 \mathrm{~V}$
Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 28 to Pin 14) -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage -3.0 V to +7.0 V
Output Current into Outputs (Low)
.20 mA
(Per MIL-STD-883 Method 3015)
Latch-up Current
.$>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	VCC
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[3]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range ${ }^{[4]}$

Capacitance ${ }^{[2]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	5	pF
CoUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	7	

Notes:

1. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
2. Tested initially and after any design or process changes that may affect these parameters.
3. T_{A} is the "instant on" case temperature.
4. See the last page of this specification for Group A subgroup testing information.

AC Test Loads and Waveforms

Figure 1a

Figure 1b

Equivalent to: THÉVENIN EQUIVALENT
OUtPut

Switching Characteristics Over Operating Rangel ${ }^{[4,5]}$

Parameters	Description	$\begin{aligned} & \text { 7C198-35 } \\ & \text { 7C199-35 } \end{aligned}$		$\begin{array}{r} 7 \mathrm{C} 198-45 \\ \text { 7C199-45 } \\ \hline \end{array}$		$\begin{aligned} & \text { 7C198-55 } \\ & \text { 7C199-55 } \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	

READ CYCLE

$\mathrm{t}_{\text {RC }}$	Read Cycle Time	35		45		55		ns
t_{AA}	Address to Data Valid		35		45		55	ns
toha	Data Hold from Address Change	3		3		3		ns
$\mathrm{t}_{\mathrm{ACE}}$	$\overline{\mathrm{CE}}$ LOW to Data Valid		35		45		55	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		20		20		25	ns
t LZOE	$\overline{\mathrm{OE}}$ LOW to Low Z	3		3		3		ns
thzoe	$\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}^{[6]}$		20		25		30	ns
tLZCE	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[7]}$	3		3		3		ns
$\mathrm{t}_{\mathrm{HZCE}}$	$\overline{\text { CE }}$ HIGH to High Z ${ }^{\text {6 }}$, 7]		15		20		20	ns
tPU	$\overline{\mathrm{CE}}$ LOW to Power Up	0		0		0		ns
$t_{P D}$	$\overline{\overline{C E}}$ HIGH to Power Down		20		25		25	ns

WRITE CYCLE ${ }^{\text {8] }}$								
twc	Write Cycle Time	35		45		50		ns
tsce	$\overline{\mathrm{CE}}$ LOW to Write End	30		40		50		ns
$\mathrm{t}_{\text {AW }}$	Address Set-up to Write End	30		40		50		ns
t_{HA}	Address Hold from Write End	2		2		2		ns
tsA	Address Set-up to Write Start	0		0		0		ns
tPWE	WE Pulse Width	20		25		30		ns
tSD	Data Set-up to Write End	15		20		25		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
tHZWE	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[6]}$		15		20		25	ns
tLZWE	$\overline{\text { WE HIGH to Low } \mathrm{Z}}$	3		3		3		ns

Notes:

5. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance.
6. $\mathrm{t}_{\mathrm{HZOE}}, \mathrm{t}_{\mathrm{HZCE}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in Figure $1 b$. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $t_{\text {LZCE }}$ for any given device.
8. The internal write time of the memory is defined by the overlap of $\overline{C E}$ LOW and $\bar{W} \bar{E}$ LOW. Both signals must be LOW to initiate a
write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
9. $\bar{W} E$ is HIGH for read cycle.
10. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
11. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
12. Data I / O is high impedance if $\overline{O E}=V_{I H}$.

Switching Waveforms

Read Cycle No. 1 (Notes 10, 11)

SEMICONDUCTOR

Switching Waveforms (Continued)

Read Cycle No. 2 (Notes 9, 11)

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) (Notes 8, 12)

Write Cycle No. 2 ($\overline{\mathbf{C E}}$ Controlled) (Notes 8, 12)

Note: If $\overline{C E}$ goes HIGH simultaneously with $\bar{W} \bar{E} H I G H$, the output remains in a high impedance state.

Truth Table

$\overline{\mathbf{C E}}$	$\overline{\text { WE }}$	$\overline{\mathbf{O E}}$	Input/Outputs	Mode
H	X	X	High Z	Deselect Power Down
L	H	L	Data Out	Read
L	L	X	Data In	Write
L	H	H	High Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
35	CY7C198-35PC	P15	Commercial
	CY7C198-35DC	D16	
45	CY7C198-45PC	P15	Commercial
	CY7C198-45DC	D16	
	CY7C198-45DMB	D16	Military
55	CY7C198-55PC	P15	
	CY7C198-55DC	D16	
	CY7C198-55DMB	D16	Military

Speed (ns)	Ordering Code	Package Type	Operating Range
35	CY7C199-35PC	P21	Commercial
	CY7C199-35VC	V21	
	CY7C199-35DC	D22	
	CY7C199-35LC	L54	
45	CY7C199-45PC	P21	Commercial
	CY7C199-45VC	V21	
	CY7C199-45DC	D22	
	CY7C199-45LC	L54	
	CY7C199-45DMB	D22	Military
	CY7C199-45LMB	L54	
55	CY7C199-55PC	P21	Commercial
	CY7C199-55VC	V21	
	CY7C199-55DC	D22	
	CY7C199-55LC	L54	
	CY7C199-55DMB	D22	Military
	CY7C199-55LMB	L54	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{OS}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	7,8,9,10,11
t_{AA}	7,8,9,10,11
$\mathrm{t}_{\mathrm{OHA}}$	7,8,9,10,11
$\mathrm{t}_{\text {ACE }}$	7,8,9,10,11
$\mathrm{t}_{\text {DOE }}$	7,8,9,10,11
WRITE CYCLE	
twC	7,8,9,10,11
$\mathrm{t}_{\text {SCE }}$	7,8,9,10,11
$\mathrm{t}_{\text {AW }}$	7,8,9,10,11
t_{HA}	7,8,9,10,11
$t_{\text {SA }}$	7,8,9,10,11
tPWE	7,8,9,10,11
$\mathrm{t}_{\text {SD }}$	7,8,9,10,11
t_{HD}	7,8,9,10,11

Document \#: 38-00077-A

Features

- Fully decoded, 16 word x 4-bit high speed CMOS RAMs
- Inverting outputs 27S03, 27LS03, 74S189
- Non-inverting outputs 27S07
- High speed - 25 ns
- Low power

$$
\text { - } 210 \mathrm{~mW} \text { (27LS03) }
$$

- Power supply 5V $\pm \mathbf{1 0 \%}$
- Advanced high speed CMOS processing for optimum speed/ power product
- Capable of withstanding greater than 2001V static discharge
- Three-state outputs
- TTL compatible interface levels

Functional Description

These devices are high performance 64-bit static RAMs organized as 16 words x 4-bits. Easy memory expansion is provided by an active LOW chip select ($\overline{\mathbf{C S}}$) input and three-state outputs. The devices are provided with inverting and non-inverting outputs.
An active LOW write enable ($\overline{\mathrm{WE}}$) signal controls the writing and reading of the memory. When the write enable ($\overline{\mathrm{WE}}$) and chip select ($\overline{\mathrm{CS}}$) are both LOW the information on the four data inputs $\left(D_{0}-D_{3}\right)$ is written into the location addressed by the information on the address lines $\left(\mathbf{A}_{0}-\mathbf{A}_{3}\right)$. The outputs are preconditioned such that the correct data is present at the data outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$ when the write cycle is complete. This preconditioning operation
insures minimum write recovery times by eliminating the "write recovery glitch".
Reading is accomplished with an active LOW on the chip select line ($\overline{\mathrm{CS}}$) and a HIGH on the write enable (WE) line. The information stored is read out from the addressed location and presented at the outputs in inverted or non-inverted format.
During the write operation or when the chip select line is HIGH the four outputs of the memory go to an inactive high impedance state.

Logic Block Diagrams

Pin Configurations

27S07
(27S03, 27LS03, 74S189)

Top View	
$\overline{\mathrm{CS}} \mathrm{A}_{0} \mathrm{Nc} \mathrm{V}_{\mathrm{cc}} \mathrm{A}_{1}$	
[10	
WEE4 18C ${ }^{\text {a }}$	
- ${ }_{0}$	
70,0,0	
0, 2	
${ }^{1}{ }^{101011213}{ }^{13}$	
NC GND NC $\mathrm{O}_{2} \mathrm{D}_{2}$	0006-10
LCC	
Top View	

Selection Guide (For higher performance and lower power refer to CY7C189/90 data sheet.)

	27S03A 27S07A	27S03, 27S07 $\mathbf{7 4 S} 189$	27LS03	
	Commercial	25	35	
	Military	25	35	65
Maximum Operating Current (mA)	Commercial	90	90	
	Military	100	100	$\mathbf{3 8}$

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature \qquad .$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power applied .$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 16 to 8) .-0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State. .-0.5 V to +7.0 V
DC Input Voltage $\ldots \ldots \ldots \ldots \ldots$.
Output Current, into Outputs (Low) .20 mA

Static Discharge Voltage. > 2001 V (per MIL-STD-883 Method 3015)
Latchup Current .$>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	VCC
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[5]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range[6]

Parameters	Description	Test Conditions		$\begin{gathered} \hline 74 \mathrm{~S} 189, \\ \text { 27S03, 27S07 } \\ \hline \end{gathered}$		27LS03		Units
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., I_{O}	$-5.2 \mathrm{~mA}$	2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., I_{OL}	6.0 mA		0.45			V
		$\mathrm{V}_{\mathrm{CC}}=$ Min.,	. 0 mA				0.45	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.0	V_{CC}	2.0	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	-3.0	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}$		-10	+10	-10	+10	$\mu \mathrm{A}$
V_{CD}	Input Diode Clamp Voltage ${ }^{\text {[1] }}$							
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{0} \leq$		-40	$+40$	-40	+ 40	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OS }}$	Output Short Circuit Current [2]	$\mathrm{V}_{\mathrm{CC}}=$ Max., V	GND		-90		-90	mA
I_{CC}	Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Commercial		90			mA
			Military		100		38	mA

Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max.	Units
CIN	Input Capacitance	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	4	pF
COUT	Output Capacitance		7	

Notes:

1. The CMOS process does not provide a clamp diode. However these devices are insensitive to -3 V dc input levels and -5 V undershoot pulses of less than 5 ns (measured at 50% points).
2. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
3. Output is precoditioned to data in (inverted or non-inverted) during write to insure correct data is present on all outputs when write is terminated. (No write recovery glitch.)
4. Tested initially and after any design or process changes that may affect these parameters.
5. T_{A} is the "instant on" case temperature.
6. See the last page of this specification for Group A subgroup testing information.

Switching Characteristics Over the Operating Range ${ }^{[6,7]}$

Parameters	Description	$\begin{aligned} & \hline \text { 27S03A } \\ & \text { 27S07A } \\ & \hline \end{aligned}$		$\begin{aligned} & \mathbf{2 7 S 0 3} \\ & \text { 27S07 } \\ & \hline \end{aligned}$		74S189		27LS03		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE										
$t_{\text {RC }}$	Read Cycle Time	25		35		35		65		ns
$t_{\text {AA }}$	Address to Data Valid [10]		25		35		35		65	ns
$\mathrm{t}_{\text {A }}$	$\overline{\mathrm{CS}}$ Low to Data Valid [10]		15		17		22		35	ns
$\mathrm{t}_{\mathrm{HzCS}}$	$\overline{\text { CS }}$ HIGH to High Z ${ }^{\text {[9, 11, 12] }}$		15		20		17		35	ns
WRITE CYCLE ${ }^{[3,7,8]}$										
twC	Write Cycle Time	25		35		35		65		ns
$\mathrm{t}_{\text {SA }}$	Address Set-up to Write Start	0		0		0		0		ns
t_{HA}	Address Hold from Write End	0		0		0		0		ns
tscs	$\overline{\mathrm{CS}}$ Set-up to Write Start					0				ns
$\mathrm{t}_{\mathrm{HCS}}$	$\overline{\mathrm{CS}}$ Hold from Write End					0				ns
$\mathrm{t}_{\text {SD }}$	Data Set-up to Write End	20		25		20		55		ns
thD	Data Hold from Write End	0		0		0		0		ns
tPWE	WE Pulse Width	20		25		20		55		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High Z ${ }^{\text {[9, 11, 12] }}$		20		25		20		35	ns
tawe	$\overline{\text { WE }}$ HIGH to Output Valid [10]		20		35		30		35	ns

Notes:

7. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance.
8. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WE LOW. Both signals must be LOW to intiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
9. Transition is measured at steady state HIGH level -500 mV or steady state LOW level +500 mV on the output from 1.5 V level on the input.
10. $\mathrm{t}_{\mathrm{AA}}, \mathrm{t}_{\mathrm{ACS}}$ and $\mathrm{t}_{\mathrm{AWE}}$ are tested with $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ as in Figure Ia. Timing is referenced to 1.5 V on the inputs and outputs.
11. $\mathrm{t}_{\mathrm{HZCS}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in Figure $1 b$.
12. At any given temperature and voltage condition, thZCS is less than $t_{\text {LZCS }}$ for any given device.

Bit Map

Address Designators

Address Name	Address Function	Pin Number
A_{0}	AX0	1
$\mathrm{~A}_{1}$	AX1	15
$\mathrm{~A}_{2}$	AY0	14
$\mathrm{~A}_{3}$	AY1	13

AC Test Loads and Waveforms

Figure 1a

Figure 1b

ALL INPUT PULSES

0006-6

Equivalent to:
THÉVENIN EQUIVALENT
OUTPUT $O \longrightarrow \underbrace{}_{92 s ?} 1.92 \mathrm{~V}$

Read Mode

0006-7
Write Mode

Note: Timing diagram represents one solution which results in optimum cycle time. Timing may be changed in various applications as long as the worst case limits are not violated.

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
25	$\begin{aligned} & \text { CY27S03APC } \\ & \text { CY27S07APC } \end{aligned}$	P1	Commercial
	CY27S03ADC CY27S07ADC	D2	
	CY27S03ALMB CY27S07ALMB	L61	Military
	CY27S03ADMB CY27S07ADMB	D2	
35	CY27S03PC CY27S07PC CY74S189PC	P1	Commercial
	CY27S03DC CY27S07DC CY74S189DC	D2	
	$\begin{aligned} & \text { CY27S03LC } \\ & \text { CY27S07LC } \end{aligned}$	L61	
	CY27S03LMB CY27S07LMB	L61	Military
	CY27S03DMB CY27S07DMB	D2	
65	CY27LS03LMB	L61	Military
	CY27LS03DMB	D2	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	7,8,9,10,11
$\mathrm{t}_{\text {AA }}$	7,8,9,10,11
$\mathrm{t}_{\text {ACS }}$	7,8,9,10,11
WRITE CYCLE	
twC	7,8,9,10,11
$\mathrm{t}_{\text {SA }}$	7,8,9,10,11
$\mathrm{tha}^{\text {H }}$	7,8,9,10,11
$\mathrm{t}_{\text {SCS }}$	7,8,9,10,11
$\mathrm{t}_{\mathrm{HCS}}$	7,8,9,10,11
$\mathrm{t}_{\text {SD }}$	7,8,9,10,11
t_{HD}	7,8,9,10,11
tpwe	7,8,9,10,11
$\mathrm{t}_{\text {AWE }}$	7,8,9,10,11

Document \# : 38-00041-C

Features

- 256×4 static RAM for control stores in high speed computer
- Processed with high speed CMOS for optimum speed/power
- Separate inputs and outputs
- Low power
- Standard power: 660 mW (commercial) 715 mW (military)
- Low power: 440 mW (commercial) 495 mW (military)
- 5 volt power supply $\pm 10 \%$ tolerance both commercial and military
- Capable of withstanding greater than 2001V static discharge

Functional Description

The CY93422 is a high performance CMOS static RAM organized as 256×4 bits. Easy memory expansion is provided by an active LOW chip select one ($\overline{\mathrm{CS}}_{1}$) input, an active HIGH chip select two $\left(\mathrm{CS}_{2}\right)$ input, and three-state outputs.
An active LOW write enable input ($\overline{\mathrm{WE}}$) controls the writing/reading operation of the memory. When the chip select one ($\overline{\mathbf{C S}}_{1}$) and write enable ($\overline{\mathrm{WE}}$) inputs are LOW and the chip select two $\left(\mathrm{CS}_{2}\right)$ input is HIGH, the information on the four data inputs D_{0} to D_{3} is written into the addressed memory word and the output circuitry is preconditioned so that the correct data is present at the outputs when the write cycle is complete. This preconditioning
operation insures minimum write recovery times by eliminating the "write recovery glitch."
Reading is performed with the chip select one ($\overline{\mathrm{CS}}_{1}$) input LOW, the chip select two input $\left(\mathrm{CS}_{2}\right)$ and write enable
($\overline{\mathrm{WE}}$) inputs HIGH, and the output enable input ($\overline{\mathrm{OE}}$) LOW. The information stored in the addressed word is read out on the four non-inverting outputs O_{0} to O_{3}.
The outputs of the memory go to an active high impedance state whenever chip select one $\left(\overline{\mathrm{CS}}_{1}\right)$ is HIGH, chip select two $\left(\mathrm{CS}_{2}\right)$ is LOW, output enable $(\overline{\mathrm{OE}})$ is HIGH, or during the writing operation when write enable ($\overline{\mathrm{WE}}$) is LOW.

Logic Block Diagram

Pin Configurations

Jelection Guide (For higher performance and lower power refer to CY7C122 data sheet)

		93422A	93L422A	93422	93L422
Maximum Access Time (ns)	Commercial	35	45	45	60
	Military	45	55	60	75
Maximum Operating Current (mA)	Commercial	120	80	120	80
	Military	130	90	130	90

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 22 to Pin 8) . -0.5 V to +7.0 V
DC Voltage Applied to Outputs
for High Output State -0.5 V to VCC Max
DC Input Voltage -0.5 V to +5.5 V
Output Current, into Outputs (Low) 20 mA
DC Input Current -30 mA to +5.0 mA
Static Discharge Voltage . $>2001 \mathrm{~V}$ (per MIL-STD-883 Method 3015)
Latchup Current
$>200 \mathrm{~mA}$

Operating Range

Range	$\mathbf{V}_{\mathbf{C C}}$	Ambient Temperature
Commercial	$5 \mathrm{~V} \pm 10 \%$	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Military $[6]$	$5 \mathrm{~V} \pm 10 \%$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Function Table

Inputs					Outputs	Mode
CS2	$\overline{\mathrm{CS}} 1$	$\overline{\text { WE }}$	$\overline{\text { OE }}$	D_{n}	$\mathbf{O}_{\mathbf{n}}$	
L	X	X	X	X	${ }^{*} \mathrm{HIGH}$ Z	Not Select
X	H	X	X	X	${ }^{*} \mathrm{HIGH}$ Z	Not Select
H	L	H	H	X	${ }^{*} \mathrm{HIGH}$ Z	Output Disable
H	L	H	L	X	Selected Data	Read Data
H	L	L	X	L	*HIGH Z	Write "0"
H	L	L	X	H	* HIGH Z	Write " 1 "

H = High Voltage Level $L=$ Low Voltage Level $\quad X=$ Don't Care *HIGH Z implies outputs are disabled or off. This condition is defined as a high impedance state for the CY93422.

DC Electrical Characteristics Over Operating Range ${ }^{[5]}$

Parameters	Description	Test Conditions		$\begin{gathered} 93422 \\ 93422 \mathrm{~A} \end{gathered}$		$\begin{gathered} \text { 93L422 } \\ \text { 93L422A } \end{gathered}$		Units
				Min.	Max.	Min.	Max.	
VOH	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Min., } \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{IOH}=-5.2 \mathrm{~mA}$	2.4		2.4		V
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}_{1}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{IOL}=8.0 \mathrm{~mA}$		0.45		0.45	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Level ${ }^{[1]}$	Guaranteed Input Lo Voltage for all Inputs		2.1		2.1		V
$\mathrm{V}_{\text {IL }}$	Input LOW Level ${ }^{[1]}$	Guaranteed Input Lo Voltage for all Inputs			0.8		0.8	V
IIL	Input LOW Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {IN }}$			-300		-300	$\mu \mathrm{A}$
I_{IH}	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=\mathbf{M a x} ., \mathrm{V}_{\text {IN }}$			40		40	$\mu \mathrm{A}$
ISC	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}[2]$			-90		-90	mA
ICC	Power Supply Current	$\begin{aligned} & \text { All Inputs }=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} . \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$		110		70	mA
			$\mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$		110		70	
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$		120		80	
			$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$		130		90	
V_{CL}	Input Clamp Voltage			See Note 4		See Note 4		
$\mathrm{I}_{\text {CEX }}$	Output Leakage Current	$\mathrm{V}_{\text {OUT }}=2.4 \mathrm{~V}$			50		50	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}$.		-50		-50		
CIN	Input Pin Capacitance	See Note 3			4		4	pF
Cout	Output Pin Capacitance	See Note 3			7		7	pF

Notes:

1. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
2. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
3. Tested initially and after any design or process changes that may affect these parameters.
4. The CMOS process does not provide a clamp diode. However, the CY93422 is insensitive to -3 V dc input levels and -5 V undershoot pulses of less than 10 ns (measured at 50% point).
5. See the last page of this specification for Group A subgroup testing information.
6. T_{A} is the "instant on" case temperature.

Commercial Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (Unless Otherwise Noted)

Parameters	Description	93422A		93L422A		93422		93 L 422		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\begin{aligned} & \hline \operatorname{tPLH(A)}{ }^{[1]} \\ & \operatorname{tPHL}(\mathrm{A})^{[1]} \end{aligned}$	Delay from Address to Output (Address Access Time) (See Figure 2)		35		45		45		60	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}}\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}\right) \\ & \mathrm{t}_{\mathrm{PZL}}\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}\right) \end{aligned}$	Delay from Chip Select to Active Output and Correct Data (See Figure 2)		25		30		30		35	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}}(\overline{\mathrm{WE}}) \\ & \mathrm{t}_{\mathrm{PZL}}(\overline{\mathrm{WE}}) \end{aligned}$	Delay from Write Enable to Active Output and Correct Data (Write Recovery) (See Figure 1)		25		40		40		45	ns
$\begin{aligned} & \mathrm{t}_{\text {PZH }}(\overline{\mathrm{OE}}) \\ & \mathrm{t}_{\text {PZL }}(\overline{\mathrm{OE}}) \end{aligned}$	Delay from Output Enable to Active Output and Correct Data (See Figure 2)		25		30		30		35	ns
t_{s} (A)	Setup Time Address (Prior to Initiation of Write) (See Figure 1)	5		5		10		10		ns
$t_{\text {h }}(\mathrm{A})$	Hold Time Address (After Termination of Write) (See Figure I)	5		5		5		5		ns
$\mathrm{t}_{\text {S }}$ (DI)	Setup Time Data Input (Prior to Initiation of Write) (See Figure 1)	5		5		5		5		ns
$t_{h}(\mathrm{DI})$	Hold Time Data Input (After Termination of Write) (See Figure 1)	5		5		5		5		ns
$\mathrm{t}_{\mathbf{s}}\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}\right)$	Setup Time Chip Select (Prior to Initiation of Write) (See Figure 1)	5		5		5		5		ns
$\mathrm{t}_{\mathrm{h}}\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}\right)$	Hold Time Chip Select (After Termination of Write) (See Figure 1)	5		5		5		5		ns
$\mathrm{t}_{\mathrm{pw}}(\overline{\mathrm{WE}})$	Minimum Write Enable Pulse Width to Insure Write (See Figure 1)	20		40		30		45		ns
$\begin{aligned} & \operatorname{t}_{\text {PHZ }}\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}\right) \\ & t_{\text {PLZ }}\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}\right) \end{aligned}$	Delay from Chip Select to Inactive Output (HIGH Z) (See Figure 2)		30		40		30		45	ns
$\begin{aligned} & \operatorname{tpHZ}^{(\overline{W E})} \\ & \text { tplZ }^{(\overline{W E})} \\ & \hline \end{aligned}$	Delay from Write Enable to Inactive Output (HIGH Z) (See Figure I)		30		40		35		45	ns
$\begin{aligned} & \hline \mathrm{t}_{\text {PHZ }}(\overline{\mathrm{OE}}) \\ & \mathrm{t}_{\mathrm{PLZ}}(\overline{\mathrm{OE}}) \end{aligned}$	Delay from Output Enable to Inactive Output (HIGH Z) (See Figure 2)		30		40		30		45	ns

Notes:

tPLH (A) and tPHL (A) are tested with S_{1} closed and $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ with both input and output timing referenced to 1.5 V .
\therefore tPZH ($\overline{\mathrm{WE}}$), $\mathrm{tPZH}\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}\right)$ and $\mathrm{t}_{\mathrm{PZH}}(\overline{\mathrm{OE}})$ are measured with S_{1} open, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and with both the input and output timing refer-
 sured with S_{1} closed, $C_{L}=15 \mathrm{pF}$ and with both the input and output
timing referenced to 1.5 V . tPHZ (WE), tPHZ $\left(\mathrm{CS}_{1}, \mathrm{CS}_{2}\right)$ and tPHZ $(\overline{\mathrm{OE}})$ are measured with S_{1} open, $\mathrm{C}_{\mathrm{L}} \leq 5 \mathrm{pF}$ and are measured between the 1.5 V level on the input to the $\mathrm{V}_{\mathrm{OH}}-500 \mathrm{mV}$ level on the output. tPLZ $(\overline{\mathrm{WE}})$, tPLZ $^{\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}\right) \text { and } \mathrm{t}_{\text {PLZ }}(\overline{\mathrm{OE}}) \text { are measured with }}$ S_{1} closed and $\mathrm{C}_{\mathrm{L}} \leq 5 \mathrm{pF}$ and are measured between the 1.5 V level on the input and the $\mathrm{V}_{\mathrm{OL}}+500 \mathrm{mV}$ level on the output.

Military Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (Unless Otherwise Noted) ${ }^{[5]}$

Parameters	Description	93422A		93L422A		93422		93 L 422		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\begin{aligned} & \operatorname{tPLH}(\mathrm{A}){ }^{[1]} \\ & \operatorname{tPHL}(\mathrm{A})^{[1]} \end{aligned}$	Delay from Address to Output (Address Access Time) (See Figure 2)		45		55		60		75	ns
$\begin{aligned} & \operatorname{tpZH}^{\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}\right)} \\ & \mathrm{t}_{\mathrm{PZL}}\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}\right) \end{aligned}$	Delay from Chip Select to Active Output and Correct Data (See Figure 2)		35		40		45		45	ns
$\begin{aligned} & \text { tPZH }(\overline{\mathrm{WE}}) \\ & \text { t PZL }(\overline{\mathrm{WE}}) \end{aligned}$	Delay from Write Enable to Active Output and Correct Data (Write Recovery) (See Figure 1)		40		45		50		50	ns
$\begin{aligned} & \text { tPZH }(\overline{\mathrm{OE}}) \\ & \operatorname{tPZL}(\overline{\mathrm{OE}}) \end{aligned}$	Delay from Output Enable to Active Output and Correct Data (See Figure 2)		35		40		45		45	ns
t_{5} (A)	Setup Time Address (Prior to Initiation of Write) (See Figure 1)	5		10		10		10		ns
$t_{h}(\mathrm{~A})$	Hold Time Address (After Termination of Write) (See Figure 1)	5		5		5		10		ns
t_{s} (DI)	Setup Time Data Input (Prior to Initiation of Write) (See Figure 1)	5		5		5		5		ns
$t_{\text {h }}$ (DI)	Hold Time Data Input (After Termination of Write) (See Figure 1)	5		5		5		5		ns
$\mathrm{t}_{\mathrm{s}}\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}\right)$	Setup Time Chip Select (Prior to Initiation of Write) (See Figure 1)	5		5		5		5		ns
$\mathrm{th}_{\mathrm{h}}\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}\right)$	Hold Time Chip Select (After Termination of Write) (See Figure 1)	5		5		5		10		ns
$\mathrm{t}_{\mathrm{pw}}(\overline{\mathrm{WE}})$	Minimum Write Enable Pulse Width to Insure Write (See Figure 1)	35		40		40		45		ns
$\begin{aligned} & \operatorname{tpHZ}\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}\right) \\ & \mathrm{t}_{\mathrm{pLZ}}\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}\right) \end{aligned}$	Delay from Chip Select to Inactive Output (HIGH Z) (See Figure 2)		35		40		45		45	ns
$\begin{aligned} & \operatorname{tPHZ}^{(\overline{\mathrm{WE}})} \\ & \mathrm{t}_{\text {PLZ }}(\overline{\mathrm{WE}}) \end{aligned}$	Delay from Write Enable to Inactive Output (HIGH Z) (See Figure 1)		40		40		45		45	ns
$\begin{aligned} & \hline \operatorname{tpHZ}(\overline{\mathrm{OE}}) \\ & \operatorname{tpLZ}(\overline{\mathrm{OE}}) \end{aligned}$	Delay from Output Enable to Inactive Output (HIGH Z) (See Figure 2)		35		40		45		45	ns

Notes:

1. $\mathrm{t}_{\mathrm{PLH}}(\mathrm{A})$ and $\mathrm{t}_{\mathrm{PHL}}(\mathrm{A})$ are tested with S_{1} closed and $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ with both input and output timing referenced to 1.5 V .
2. $\mathrm{t}_{\mathrm{PZH}}(\overline{\mathrm{WE}}), \mathrm{t}_{\mathrm{PZH}}\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}\right)$ and $\mathrm{tPZH}(\overline{\mathrm{OE}})$ are measured with S_{1} open, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and with both the input and output timing referenced to 1.5 V . tPZL $(\overline{\mathrm{WE}}), \mathrm{t}_{\mathrm{PZL}}\left(\mathrm{CS}_{1}, \mathrm{CS}_{2}\right)$ and $\mathrm{t}_{\text {PZL }}(\overline{\mathrm{OE}})$ are measured with S_{1} closed, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and with both the input and output
timing referenced to 1.5 V . $\mathrm{tPHZ}^{(\overline{W E})}$, $\mathrm{tPHZ}^{\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}\right) \text { and } \mathrm{t}_{\mathrm{PHZ}}, ~}$ ($\overline{\mathrm{OE}}$) are measured with S_{1} open, $\mathrm{C}_{\mathrm{L}} \leq 5 \mathrm{pF}$ and are measured between the 1.5 V level on the input to the $\mathrm{V}_{\mathrm{OH}}-500 \mathrm{mV}$ level on the output. tpLZ $(\overline{\mathrm{WE}})$, t PLZ $\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}\right)$ and $\mathrm{t}_{\text {PLZ }}(\overline{\mathrm{OE}})$ are measured with S_{1} closed and $\mathrm{C}_{\mathrm{L}} \leq 5 \mathrm{pF}$ and are measured between the 1.5 V level on the input and the $\mathrm{V}_{\mathrm{OL}}+500 \mathrm{mV}$ level on the output.

SEMICONDUCTOR

Switching Waveforms

Write Mode (with $\overline{\mathbf{O E}}=$ Low)

Key to Timing Diagram

Waveform	Inputs Must be steady	Outputs Will be steady
		Will be
	May change	changing
	L	from H to L
IIITI	May change from L to H	Will be
		changing
		from L to H
	Don't care; any change permitted	Changing;
		state
		unknown
	Does not apply	Center line
		is high
		impedance
0002-4		"off" state

Figure 1

Read Mode

Switching delays from address input, output enable input and the chip select inputs to the data output. The CY93422 disabled output in the "OFF" condition is represented by a single center line.

Figure 2

AC Test Load and Waveform

AC Test Load

Figure 3

Input Pulses

0002-7

Figure 4

See Notes 1 and 2 of Switching Characteristics

Ordering Information

Speed (ns)	Ordering Code		Package Type	Operating Range
	Std. Power	Low Power		
35	CY93422APC CY93422ADC CY93422ALC		$\begin{gathered} \text { P7 } \\ \text { D8 } \\ \text { L54 } \end{gathered}$	Commercial
45	CY93422PC CY93422DC CY93422LC	CY93L422APC CY93L422ADC CY93L422ALC	$\begin{gathered} \hline \text { P7 } \\ \text { D8 } \\ \text { L54 } \end{gathered}$	Commercial
	CY93422ADMB CY93422ALMB		$\begin{gathered} \text { D8 } \\ \text { L54 } \end{gathered}$	Military
55		$\begin{aligned} & \text { CY93L422ADMB } \\ & \text { CY93L422ALMB } \end{aligned}$	$\begin{gathered} \text { D8 } \\ \text { L54 } \\ \hline \end{gathered}$	Military
60	$\begin{aligned} & \text { CY93422DMB } \\ & \text { CY93422LMB } \end{aligned}$		$\begin{gathered} \hline \text { D8 } \\ \text { L54 } \\ \hline \end{gathered}$	Military
		$\begin{aligned} & \text { CY93L422PC } \\ & \text { CY93L422DC } \\ & \text { CY93L422LC } \end{aligned}$	$\begin{gathered} \text { P7 } \\ \text { D8 } \\ \text { L54 } \end{gathered}$	Commercial
75		$\begin{aligned} & \text { CY93L422DMB } \\ & \text { CY93L422LMB } \end{aligned}$	$\begin{gathered} \hline \text { D8 } \\ \text { L54 } \\ \hline \end{gathered}$	Military

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IL}	$1,2,3$
I_{IH}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{CEX}}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
$\mathrm{t}_{\text {PLH(A) }}$	7,8,9,10,11
tPHL(A)	7,8,9,10,11
$\mathrm{tPZH}^{\left(\mathrm{CS}_{1}, \mathrm{CS}_{2}\right)}$	7,8,9,10,11
$\mathrm{tPZL}^{\left(\mathrm{CS}_{1}, \mathrm{CS}_{2}\right)}$	7,8,9,10,11
$\mathrm{t}_{\text {PZH }}(\overline{\mathrm{WE}})$	7,8,9,10,11
$\mathrm{t}_{\text {PZL }}$ ($\overline{\mathrm{WE}}$)	7,8,9,10,11
tPZH ($\overline{\mathrm{OE}}$)	7,8,9,10,11
tPZL ($\overline{\mathrm{OE}}$)	7,8,9,10,11
t_{s} (A)	7,8,9,10,11
t_{h} (A)	7,8,9,10,11
t_{s} (DI)	7,8,9,10,11
th_{h} (DI)	7,8,9,10,11
$\mathrm{t}_{\mathrm{s}}\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}\right)$	7,8,9,10,11
$\mathrm{th}_{\mathrm{h}}\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}\right)$	7,8,9,10,11
t_{pw} ($\overline{\mathrm{WE}}$)	7,8,9,10,11

Document \#: 38-00022-C
PRODUCT INFORMATION
STATIC RAMS 2

BRIDGEMOS 7
QUICKPROQUALITY AND9RELIABILITY
APPLICATION BRIEFS 10
PACKAGES 11

PROMs (Programmable Read Only Memory)

Page Number
Introduction to PROMs..
Device Number Description
CY7C225 512×8 Registered PROM .. . 3-4
CY7C235 1024×8 Registered PROM ...15
CY7C245
2048 x 8 Reprogrammable Registered PROM . 3-26
CY7C245A
CY7C251
2048×8 Reprogrammable Registered PROM
3-38
16,384 x 8 Reprogrammable Power Switched PROM . 3 - 50
CY7C254 $16,384 \times 8$ Reprogrammable PROM ... $3-50$
CY7C261 8192×8 Reprogrammable Power Switched PROM3-60
CY7C263
8192×8 Reprogrammable PROM . 3-60
8192×8 Reprogrammable PROM . 3-60
CY7C264
8192×8 Reprogrammable Registered Diagnostic PROM 3-71
8192×8 Reprogrammable Registered Diagnostic PROM71
32,768 x 8 Reprogrammable Power Switched PROM . 3-84
1024 x 8 PROM 3 . 90
1024x 8 PROM 3-90
2048 x 8 Reprogrammable PROM . 3-99

CY7C268
CY7C269
CY7C271
CY7C281
CY7C282

PROM Programming Information . 3-117

1: Product Line Overview

The Cypress CMOS family of PROMs span 4 K to 256 K bit densities, three functional configurations, and are all byte-wide. The product line is available in both 0.3 and 0.6 inch wide dual-in-line plastic and CERDIP as well as LCC and PLCC packages. The programming technology is EPROM and therefore windowed packages are available in both dual-in-line and LCC configurations, providing erasable products. These byte-wide products are available in registered versions at the $512,1 \mathrm{~K}, 2 \mathrm{~K}$, and 8 K by 8 densities, and in non-registered versions at the $1 \mathrm{~K}, 2 \mathrm{~K}, 8 \mathrm{~K}, 16 \mathrm{~K}$ and 32 K by 8 densities. The registered devices operate in either synchronous or asynchronous output enable modes and may have an initialize feature to preload the pipeline register. The 8 K by 8 registered devices feature a diagnostic shadow register which allows the pipeline register to be loaded or examined via a serial path.
Cypress PROMs perform at the level of their bipolar equivalents or beyond with reduced power levels of CMOS technology. They are capable of 2001 volts of ESD and operate with 10% power supply tolerances.

2: Technology Introduction

Cypress PROMs are executed in an " N " well CMOS EPROM process. Densities of 128 K and under with the exception of the "A" series devices use the 1.2 micron PROM I technology. The 16 K "A" series devices and the future 256 K PROMs use the 0.8 micron PROM II technology with a single ended memory cell. The process provides basic gate delays of 235 picoseconds for a fanout of one at a power consumption of 45 femto joules. The process provides the basis for the development of LSI products that outperform the fastest bipolar products currently available.
Although CMOS static RAMs have challenged bipolar RAMs for speed, CMOS EPROMs have always been a factor of three to ten times slower than bipolar fuse PROMs. There have been two major limitations on CMOS EPROM speed; 1) the single transistor EPROM cell is inherently slower than the bipolar fuse element, and 2) CMOS EPROM technologies have been optimized for cell programmability and density, almost always at the expense of speed. In the Cypress CMOS EPROM technology, both of the aformentioned limitations have been overcome to create CMOS PROMs with performance superior to PROMs implemented in bipolar technology.
In all Cypress PROMs, speed and programmability are optimized independently by separating the read and write transistor functions. Also, for the first time a substrate bias generator is employed in an EPROM technology to improve performance and raise latchup immunity to greater than 200 mA . The result is a CMOS EPROM technology that challenges bipolar fuse technology for both density and speed. In addition, at higher densities, performance and density surpasses the best that bipolar can provide. Limitations of devices implemented in the bipolar fuse technology such as PROGRAMMING YIELD, POWER DISSIPATION and HIGHER DENSITY PERFORMANCE are eliminated or greatly reduced using Cypress CMOS EPROM technology.

3: Design Approach

A. Four Transistor Differential Memory Cell

The $4 \mathrm{~K}, 8 \mathrm{~K}$, and 16 K PROM (except " A " version) use an N-Well CMOS technology along with a new differential four transistor EPROM cell that is optimized for speed. The area of the four transistor cell is 0.43 square mils and the die size is 19,321 square mils for the 2 K by 8 PROM (Figure 1). The floating gate cell is optimized for high read current and fast programmability. This is accomplished by separating the read and program transistors (Figure 2). The program transistor has a separate implant to maximize the generation and collection of hot electrons while the read transistor implant dose is chosen to provide a large read current. Both the n and p channel peripheral transistors have self-aligned, shallow, lightly doped drain (LDD) junctions. The LDD structure reduces overlap capacitance for speed improvement and minimizes hot electron injection for improved reliability. Although common for NMOS static and dynamic RAMs, an on-chip substrate bias generator is used for the first time in an EPROM technology. The results are improved speed, greater than 200 mA latch-up immunity and high parasitic field inversion voltages during programming.

0034-1
Figure 1

0034-2
Figure 2. Non-volatile cell optimized for speed and programmability
Access times of less than 35 ns at 16 K densities and 30 ns at 4 K and 8 K densities over the full operating range are achieved by using differential design techniques and by to-

0034-3
Figure 3. Differential sensing
tally separating the read and program paths. This allows the read path to be optimized for speed. The X and Y decoding paths are predecoded to optimize the power-delay product. A differentail sensing scheme and the four transistor cell are used to sense bit-line swings as low as 100 mV at high speed. The sense amplifier (Figure 3) consists of three stages of equal gain. A gain of 4 per stage was found to be optimum. The Cascode stage amplifies the bit line swings and feeds them into a differential amplifier. The output of the differential amplifier is further amplified and voltages shifted by a level shifter and latch. This signal is then fed into an output buffer having a TTL fan-out of ten.

B. Two Transistor Memory Cell

The Cypress 64 K and greater density PROMs use a two transistor memory cell. This cell uses a single ended sensing scheme with the exception of the 256 K device which uses a differential sensing circuit. This combination allows for a more compact design and reduced manufacturing costs. This is an excellent compromise between performance and high density, allowing the development of devices with performance of 35 ns and 45 ns access times at densities from 64 K to 256 K bits and 25 ns for the " A " series 16K using the PROM II technology. This two transistor cell still uses the high speed read transistor and the optimized EPROM transistor for performance and reliable programming. The sense amplifier uses a reference voltage on one input and the read transistor on the other, instead of two read transistors. This single ended sensing is a more conventional technique and has the effect of causing an erased device to contain all " 0 "'s.

4: Programming

A. Differential Memory Cells

Cypress PROMs are programmed a BYTE at a time by applying 12 to 14 volts on one pin and the desired logic
levels to input pins. Both logic "ONE" and logic "ZERO" are programmed into the differential cell. A BIT is programmed by applying 12 to 14 volts on the control gate and 9 volts on the drain of the floating gate write transistor. This causes hot electrons from the channel to be injected onto the floating gate thereby raising the threshold voltage. Because the read transistor shares a common floating gate with the program transistor, the threshold of the read transistor is raised from about 1 volt to greater than 5 volts resulting in a transistor that is turned "OFF" when selected in a read mode of operation. Since both sides of the differential cell are at equal potential before programming, a threshold shift of 100 mV is enough to be determined as the correct logic state. Because an unprogrammed cell has neither a ONE nor a ZERO in it before programming, a special BLANK CHECK mode of operation is implemented. In this mode the output of each half of the cell is compared against a fixed reference which allows distinction of a programmed or unprogrammed cell. A MARGIN mode is also provided to monitor the thresholds of the individual BITs allowing the monitoring of the quality of programming during the manufacturing operation.

B. Single Ended Memory Cells

The programming mechanism of the EPROM transistor in a single ended memory cell is the same as its counterpart in a double ended memory cell. The difference is that only ones " 1 "'s are programmed in a single ended cell. A " 1 " applied to the I/O pin during programming causes an erased EPROM transistor to be programmed while a " 0 " allows the EPROM transistor to remain unprogrammed.

5: Erasability

For the first time at PROM speeds, Cypress PROMs using CMOS EPROM technology offer reprogrammability when packaged in windowed CERDIP. This is available at densities of 16 K and larger, both registered and non-registered.

Wavelengths of light less than 4000 Angstroms begin to erase Cypress PROMs. For this reason, an opaque label should be placed over the window if the PROM is exposed to sunlight or fluorescent lighting for extended periods of time.

The recommended dose of ultraviolet light for erasure is a wavelength of 2537 Angstroms for a minimum dose (UV intensity \times exposure time) of $25 \mathrm{Wsec} / \mathrm{cm}^{2}$. For an ultraviolet lamp with a $12 \mathrm{~mW} / \mathrm{cm}^{2}$ power rating the exposure time would be approximately $30-35$ minutes. The industry EPROM erasure standard is $15 \mathrm{Wsec} / \mathrm{cm}^{2}$. Cypress EPROMs require $12 / 3$ longer erase times.
The PROM needs to be within 1 inch of the lamp during erasure. Permanent damage may result if the PROM is exposed to high intensity light for an extended period of time. $7258 \mathrm{Wsec} / \mathrm{cm}^{2}$ is the recommended maximum dosage.

Some devices are sensitive to photo-electric effects during programming. Cypress recommends covering the windows of reprogrammable devices during programming.

6: Reliability

The CMOS EPROM approach to PROMs has some significant benefits to the user in the area of programming and functional yield. Since a cell may be programmed and erased multiple times, CMOS PROMs from Cypress can be tested 100% for programmability during the manufacturing process. Because each CMOS PROM contains a PHANTOM array, both the functionality and performance of the devices may be tested after they are packaged thus assuring the user that not only will every cell program, but that the product performs to the specification.

Features

- CMOS for optimum speed/power
- High speed
- 25 ns max set-up
- 12 ns clock to output
- Low power
- 495 mW (commercial)
- 660 mW (military)
- Synchronous and asynchronous output enables
- On-chip edge-triggered registers
- Buffered Common PRESET and CLEAR inputs
- EPROM technology, $\mathbf{1 0 0 \%}$ programmable
- Slim, 300 mil, 24 pin plastic or hermetic DIP, or 28 pin LCC
- $5 \mathrm{~V} \pm \mathbf{1 0 \%} \mathrm{V}_{\mathrm{CC}}$, commercial and military
- TTL compatible I/O
- Direct replacement for bipolar PROMs
- Capable of withstanding greater than 1500 V static discharge

Product Characteristics

The CY7C225 is a high performance 512 word by 8 bit electrically Programmable Read Only Memory packaged in a slim 300 mil plastic or hermetic DIP and 28 pin Leadless Chip Carrier. The memory cells utilize proven EPROM
floating gate technology and byte-wide intelligent programming algorithms.
The CY7C225 replaces bipolar devices and offers the advantages of lower power, superior performance and high programming yield. The EPROM cell requires only 13.5 V for the supervoltage and low current requirements allow for gang programming. The EPROM cells allow for each memory location to be tested 100%, as each location is written into, erased, and repeatedly exercized prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming the product will meet AC specification limits.
The CY7C225 has asynchronous PRESET and CLEAR functions.

Logic Block Diagram

0020-1

Pin Configurations

0020-2

Selection Guide

		7C225-25	7C225-30	7C225-35	7C225-40
Maximum Set-up Time (ns)	25	30	35	40	
Maximum Clock to Ouput (ns)					
Maximum Operating Current (mA)	Commercial	90	15	20	25
	Military		90		90

CY7C225
SEMICONDUCTOR

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 24 to Pin 12)

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

DC Voltage Applied to Outputs
in High Z State -0.5 V to +7.0 V
DC Input Voltage -3.0 V to +7.0 V
DC Program Voltage (Pins 7, 18, 20) 14.0V

Static Discharge Voltage . > 1500V
(Per MIL-STD-883 Method 3015)
Latch-up Current . $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	VCC
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[6]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range ${ }^{[7]}$

Parameters	Description	Test Conditions		Min.	Max.	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}_{.,} \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$		2.4		V
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}_{\mathrm{I}}, \mathrm{I} \mathrm{IL}=-16 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$			0.4	V
V_{IH}	Input HIGH Level	Guaranteed Input Logical HIGH Voltage for All Inputs ${ }^{[2]}$		2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed Input Logical LOW Voltage for All inputs ${ }^{[2]}$			0.8	V
IIX	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$		-10	+10	$\mu \mathrm{A}$
V_{CD}	Input Clamp Diode Voltage	Note 1				
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$ Output Disabled [4]		-40	$+40$	$\mu \mathrm{A}$
Ios	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$ [3]		-20	-90	mA
$\mathbf{I}_{\text {CC }}$	Power Supply Current	$\begin{aligned} & \text { GND } \leq \mathbf{V}_{\text {IN }} \leq \mathbf{V}_{\mathrm{CC}} \\ & \mathbf{V}_{\mathrm{CC}}=\text { Max. } \end{aligned}$	Commercial		90	mA
			Military		120	

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	5	pF
COUT	Output Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	8	pF

Notes:

1. The CMOS process does not provide a clamp diode. However, the CY7C225 is insensitive to -3 V dc input levels and -5 V undershoot pulses of less than 10 ns (measured at 50% point).
2. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment (see Notes on Testing).
3. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
4. For devices using the synchronous enable, the device must be clocked after applying these voltages to perform this measurement.
5. Tested initially and after any design or process changes that may affect these parameters.
6. T_{A} is the "instant on" case temperature.
7. See the last page of this specification for Group A subgroup testing information.

Switching Characteristics Over Operating Range ${ }^{[7, ~ 8]}$

Parameters	Description	7C225-25		7C225-30		7C225-35		7C225-40		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {SA }}$	Address Setup to Clock HIGH	25		30		35		40		ns
t_{HA}	Address Hold from Clock HIGH	0		0		0		0		ns
t_{CO}	Clock HIGH to Valid Output		12		15		20		25	ns
tPWC	Clock Pulse Width	10		15		20		20		ns
tSE_{S}	\bar{E}_{S} Setup to Clock HIGH	10		10		10		10		ns
$\mathrm{t}_{\mathrm{HE}}{ }^{\text {S }}$	$\bar{E}_{\text {S }}$ Hold from Clock HIGH	0		5		5		5		ns
$\mathrm{t}_{\mathrm{DP}}, \mathrm{t}_{\mathrm{DC}}$	Delay from $\overline{\text { PRESET }}$ or CLEAR to Valid Output		20		20		20		20	ns
$\mathrm{t}_{\mathrm{RP}, \mathrm{t}_{\text {R }}}$	PRESET or CLEAR Recovery to Clock HIGH	15		20		20		20		ns
tpwp, tpWC	$\overline{\text { PRESET }}$ or CLEAR Pulse Width	15		20		20		20		ns
tcos	Valid Output from Clock HIGH ${ }^{[1]}$		20		20		25		30	ns
thzC	Inactive Output from Clock HIGH[1, 3]		20		20		25		30	ns
t ${ }^{\text {doe }}$	Valid Output from E LOW ${ }^{\text {[2] }}$		20		20		25		30	ns
$\mathrm{t}_{\mathrm{HZE}}$	Inactive Output from $\overline{\mathrm{E}} \mathrm{HIGH}^{[2,3]}$		20		20		25		30	ns

Notes:

1. Applies only when the synchronous (E_{S}) function is used.
2. See Figure $1 a$ for all switching characteristics except t_{HZ}.
3. Applies only when the asynchronous ($\overline{\mathrm{E}}$) function is used.
4. Transition is measured at steady state HIGH level -500 mV or steady state LOW level +500 mV on the output from the 1.5 V level on the input with loads shown in Figure $1 b$.
5. Tests are performed with rise and fall times of 5 ns or less.
6. See Figure $1 b$ for thz.
7. All device test loads should be located within $2^{\prime \prime}$ of device outputs.
8. See the last page of this specification for Group A subgroup testing information.

AC Test Loads and Waveforms $[5,6,7]$

Figure 1a

Figure 1b

Figure 2

Equivalent to:
THÉVENIN EQUIVALENT

Functional Description

The CY7C225 is a CMOS electrically Programmable Read Only Memory organized as 512 words x 8 -bits and is a pin-for-pin replacement for bipolar TTL fusible link PROMs. The CY7C225 incorporates a D-type, master-slave register on chip, reducing the cost and size of pipelined microprogrammed systems and applications where accessed PROM data is stored temporarily in a register. Additional flexibility is provided with synchronous (\bar{E}_{S}) and asynchronous (\bar{E}) output enables, and CLEAR and PRESET inputs.
Upon power-up, the synchronous enable (\bar{E}_{S}) flip-flop will be in the set condition causing the outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$ to be in the OFF or high impedance state. Data is read by
applying the memory location to the address inputs ($\mathrm{A}_{0}-$ A_{8}) and a logic LOW to the enable (E_{S}) input. The stored data is accessed and loaded into the master flip-flops of the data register during the address set-up time. At the next LOW-to-HIGH transition of the clock (CP), data is transferred to the slave flip-flops, which drive the output buffers, and the accessed data will appear at the outputs $\left(\mathrm{O}_{0^{-}}\right.$ O_{7}) provided the asynchronous enable $(\overline{\mathrm{E}})$ is also LOW.
The outputs may be disabled at any time by switching the asynchronous enable ($\overline{\mathrm{E}}$) to a logic HIGH, and may be returned to the active state by switching the enable to a logic LOW.

Functional Description (Continued)

Regardless of the condition of $\overline{\mathrm{E}}$, the outputs will go to the OFF or high impedance state upon the next positive clock edge after the synchronous enable (\bar{E}_{S}) input is switched to a HIGH level. If the synchronous enable pin is switched to a logic LOW, the subsequent positive clock edge will return the output to the active state if $\overline{\mathrm{E}}$ is LOW. Following a positive clock edge, the address and synchronous enable inputs are free to change since no change in the output will occur until the next low to high transition of the clock. This unique feature allows the CY7C225 decoders and sense amplifiers to access the next location while previously addressed data remains stable on the outputs.

System timing is simplified in that the on-chip edge triggered register allows the PROM clock to be derived directly from the system clock without introducing race conditions. The on-chip register timing requirements are similar to those of discrete registers available in the market.

The CY7C225 has buffered asynchronous CLEAR and PRESET input (INIT). The initialize function is useful during power-up and time-out sequences.
Applying a LOW to the PRESET input causes an immediate load of all ones into the master and slave flip-flops of the register, independent of all other inputs, including the clock (CP). Applying a LOW to the CLEAR input, resets the flip-flops to all zeros. The initialize data will appear at the device outputs after the outputs are enabled by bringing the asynchronous enable (E) LOW.
When power is applied the (internal) synchronous enable flip-flop will be in a state such that the outputs will be in the high impedance state. In order to enable the outputs a clock must occur and the $\overline{\mathrm{E}}_{\mathrm{S}}$ input pin must be LOW at least a setup time prior to the clock LOW to HIGH transition. The $\overline{\mathrm{E}}$ input may then be used to enable the outputs.

Switching Waveforms

Notes on Testing

Incoming test procedures on these devices should be carefully planned, taking into account the high performance and output drive capabilities of the parts. The following notes may be useful.

1. Ensure that adequate decoupling capacitance is employed across the device V_{CC} and ground terminals. Multiple capacitors are recommended, including a $0.1 \mu \mathrm{~F}$ or larger capacitor and a $0.01 \mu \mathrm{~F}$ or smaller capacitor placed as close to the device terminals as possible. Inadequate decoupling may result in large variations of power supply voltage, creating erroneous function or transient performance failures.
2. Do not leave any inputs disconnected (floating) during any tests.
3. Do not attempt to perform threshold tests under AC conditions. Large amplitude, fast ground current transients normally occur as the device outputs discharge the load capacitances. These transients flowing through the parasitic inductance between the device ground pin and the test system ground can create significant reductions in observable input noise immunity.
4. Output levels are measured at 1.5 V reference levels.
5. Transition is measured at steady state HIGH level -500 mV or steady state LOW level +500 mV on the output from the 1.5 V level on inputs with load shown in Figure 1 b.

Typical DC and AC Characteristics

CLOCK TO OUTPUT TIME

OUTPUT SOURCE CURRENT vs. VOLTAGE

NORMALIZED SUPPLY CURRENT vs. AMBIENT TEMPERATURE

NORMALIZED SETUP TIME vs. SUPPLY VOLTAGE

TYPICAL ACCESS TIME CHANGE vs. OUTPUT LOADING

CLOCK TO OUTPUT TIME
vs. VCC

NORMALIZED SETUP TIME vs. TEMPERATURE

OUTPUT SINK CURRENT

0020-7

Device Programming

Overview:

There is a programmable function contained in the 7 C 225 CMOS 512×8 Registered PROM; the 512×8 array. All of the programming elements are "EPROM" cells, and are in an erased state when the device is shipped.

The 512×8 array uses a differential memory cell, with differential sensing techniques. In the erased state the cell contains neither a one nor a zero. The erased state of this array may be verified by using the "BLANK CHECK ONES" and "BLANK CHECK ZEROS" function, see Table 3.

DC Programming Parameters $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Table 1

Parameter	Description	Min.	Max.	Units
$\mathrm{V}_{\mathbf{P P}}{ }^{[1]}$	Programming Voltage	13.0	14.0	V
$\mathrm{~V}_{\mathrm{CCP}}$	Supply Voltage	4.75	5.25	V
$\mathrm{~V}_{\mathrm{IHP}}$	Input High Voltage	3.0		V
$\mathrm{~V}_{\text {ILP }}$	Input Low Voltage		0.4	V
$\mathrm{~V}_{\mathrm{OH}}{ }^{[2]}$	Output High Voltage	2.4		V
$\mathrm{~V}_{\mathrm{OL}}{ }^{[2]}$	Output Low Voltage		0.4	V
I_{PP}	Programming Supply Current		50	mA

AC Programming Parameters $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Table 2

Parameter	Description	Min.	Max.	Units
$\mathrm{t}_{\text {PP }}$	Programming Pulse Width	100	10,000	$\mu \mathrm{~s}$
t_{AS}	Address Setup Time	1.0		$\mu \mathrm{~s}$
t_{DS}	Data Setup Time	1.0		$\mu \mathrm{~s}$
t_{AH}	Address Hold Time	1.0		$\mu \mathrm{~s}$
t_{DH}	Data Hold Time	1.0		$\mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}[3]$	VPP Rise and Fall Time	50		ns
t_{VD}	Delay to Verify	1.0		$\mu \mathrm{~s}$
t_{VP}	Verify Pulse Width	2.0		$\mu \mathrm{~s}$
t_{DV}	Verify Data Valid		1.0	$\mu \mathrm{~s}$
t_{DZ}	Verify HIGH to High Z		1.0	$\mu \mathrm{~s}$

Notes:

1. $\mathrm{V}_{\mathrm{CCP}}$ must be applied prior to V_{PP}.
2. Measured 10% and 90% points.
3. During verify operation.

Mode Selection

Table 3

Mode		Pin Function ${ }^{\text {[1] }}$					$\begin{gathered} \text { Outputs } \\ (9-11,13-17) \end{gathered}$
	Read or Output Disable	CP	$\overline{\mathrm{E}}_{\boldsymbol{S}}$	$\overline{\text { CLR }}$	$\overline{\mathbf{E}}$	$\overline{\text { PS }}$	
	Other	$\overline{\text { PGM }}$	$\overline{\text { VFY }}$	$\mathrm{V}_{\mathbf{P P}}$	$\overline{\mathbf{E}}$	$\overline{\text { PS }}$	
	Pin	(18)	(19)	(20)	(21)	(22)	
Read [2,3]		X	$\mathrm{V}_{\text {IL }}$	V_{IH}	$\mathrm{V}_{\text {IL }}$	V_{IH}	Data Out
Output Disable ${ }^{[5]}$		X	V_{IH}	V_{IH}	X	V_{IH}	High Z
Output Disable		X	X	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	V_{IH}	High Z
CLEAR		X	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	V_{IH}	Zeros
PRESET		X	$\mathrm{V}_{\text {IL }}$	V_{IH}	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	Ones
Program ${ }^{[4]}$		$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {PP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	Data In
Program Verify ${ }^{[4]}$		$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	V_{PP}	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	Data Out
Program Inhibit ${ }^{4]}$		$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {PP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	High Z
Intelligent Program ${ }^{[4]}$		$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	V_{PP}	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	Data In
Blank Check Ones ${ }^{[4]}$		$V_{\text {PP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	Ones
Blank Check Zeros ${ }^{[4]}$		$V_{\text {PP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	Zeros

Notes:

1. $X=$ Don't care but not to exceed $V_{P P}$.
2. During read operation, the output latches are loaded on a " 0 " to " 1 " transition of CP.
3. Pin 19 must be LOW prior to the " 0 " to " 1 " transition on CP (18) that loads the register.

Figure 3. Programming Pinouts
4. During programming and verification, all unspecified pins to be at $\mathrm{V}_{\text {ILP }}$.
5. Pin 19 must be HIGH prior to the " 0 " to " 1 " transition on CP (18) that loads the register.

The CY7C225 programming algorithm allows significantly faster programming than the "worst case" specification of 10 msec .
Typical programming time for a byte is less than 2.5 msec . The use of EPROM cells allows factory testing of programmed cells, measurement of data retention and erasure to ensure reliable data retention and functional performance. A flowchart of the algorithm is shown in Figure 4.
The algorithm utilizes two different pulse types: initial and overprogram. The duration of the $\overline{\text { PGM }}$ pulse (t_{PP}) is 0.1 msec which will then be followed by a longer overprogram pulse of $24(0.1)(\mathrm{X}) \mathrm{msec} . \mathrm{X}$ is an iteration counter and is equal to the NUMBER of the initial 0.1 msec pulses applied before verification occurs. Up to four 0.1 msec pulses are provided before the overprogram pulse is applied.
The entire sequence of program pulses and byte verifications is performed at $\mathrm{V}_{\mathrm{CCP}}=5.0 \mathrm{~V}$. When all bytes have been programmed all bytes should be compared (Read mode) to original data with $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.

0020-9
Figure 4. Programming Flowchart

Programming Sequence 512×8 Array

Power the device for normal read mode operation with pin 18, 19, 20 and 21 at V_{IH}. Per Figure 5 take pin 20 to V_{PP}. The device is now in the program inhibit mode of operation with the output lines in a high impedance state; see Figure 5. Again per Figure 5 address, program, and verify one byte of data. Repeat this for each location to be programmed.
If the brute force programming method is used, the pulse width of the program pulse should be 10 ms , and each location is programmed with a single pulse. Any location that fails to verify causes the device to be rejected.
If the intelligent programming technique is used, the program pulse width should be $100 \mu \mathrm{~s}$. Each location is ultimately programmed and verified until it verifies correctly up to and including 4 times. When the location verifies, one
additional programming pulse should be applied of duration 24X the sum of the previous programming pulses before advancing to the next address to repeat the process.

Blank Check

A virgin device contains neither one's nor zero's because of the differential cell used for high speed. To verify that a PROM is unprogrammed, use the two blank check modes provided in Table 3. In both of these modes, address and read locations 0 thru 511. A device is considered virgin if all locations are respectively " 1 's" and " 0 ' s " when addressed in the "BLANK ONES AND ZEROS" modes.
Because a virgin device contains neither ones nor zeros, it is necessary to program both one's and zero's. It is recommended that all locations be programmed to ensure that ambiguous states do not exist.

Figure 5. PROM Programming Waveforms

Ordering Information

Speed ns		Ordering Code	Package Type	Operating Range
$t_{\text {SA }}$	tco			
25	12	$\begin{aligned} & \text { CY7C225-25PC } \\ & \text { CY7C225-25DC } \\ & \text { CY7C225-25LC } \end{aligned}$	$\begin{aligned} & \hline \text { P13 } \\ & \text { D14 } \\ & \text { L64 } \\ & \hline \end{aligned}$	Commercial
30	15	$\begin{aligned} & \text { CY7C225-30PC } \\ & \text { CY7C225-30DC } \\ & \text { CY7C225-30LC } \end{aligned}$	$\begin{aligned} & \hline \text { P13 } \\ & \text { D14 } \\ & \text { L64 } \end{aligned}$	Commercial
		$\begin{aligned} & \text { CY7C225-30DMB } \\ & \text { CY7C225-30LMB } \end{aligned}$	$\begin{aligned} & \text { D14 } \\ & \text { L64 } \\ & \hline \end{aligned}$	Military
35	20	$\begin{aligned} & \text { CY7C225-35DMB } \\ & \text { CY7C225-35LMB } \end{aligned}$	$\begin{aligned} & \text { D14 } \\ & \text { L64 } \end{aligned}$	Military
40	25	$\begin{aligned} & \text { CY7C225-40PC } \\ & \text { CY7C225-40DC } \\ & \text { CY7C225-40LC } \end{aligned}$	$\begin{aligned} & \mathrm{P} 13 \\ & \mathrm{D} 14 \\ & \mathrm{~L} 64 \\ & \hline \end{aligned}$	Commercial
		$\begin{aligned} & \text { CY7C225-40DMB } \\ & \text { CY7C225-40LMB } \end{aligned}$	$\begin{aligned} & \text { D14 } \\ & \text { L64 } \end{aligned}$	Military

CIFICATIONS
MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
$\mathrm{t}_{\text {SA }}$	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{CO}	$7,8,9,10,11$
t_{DP}	$7,8,9,10,11$
t_{RP}	$7,8,9,10,11$

Document \#: 38-00002-B

Features

- CMOS for optimum speed/power
- High speed
- 25 ns max set-up
- 12 ns clock to output
- Low power
- 495 mW (commercial)
- 660 mW (military)
- Synchronous and asynchronous output enables
- On-chip edge-triggered registers
- Programmable asynchronous register (INIT)
- EPROM technology, $\mathbf{1 0 0 \%}$ programmable
- Slim, 300 mil, 24 pin plastic or hermetic DIP or 28 pin LCC
- $\mathbf{5 V} \pm \mathbf{1 0 \%} \mathrm{V}_{\mathrm{CC}}$, commercial and military
- TTL compatible I/O
- Direct replacement for bipolar PROMs
- Capable of withstanding greater than 1500 V static discharge

Product Characteristics

The CY7C235 is a high performance 1024 word by 8 bit electrically Programmable Read Only Memory packaged in a slim 300 mil plastic or hermetic DIP or 28-pin Leadless Chip carrier. The memory cells utilize proven EPROM floating gate technology and byte-wide intelligent programming algorithms.
The CY7C235 replaces bipolar devices and offers the advantages of lower
power, superior performance and high programming yield. The EPROM cell requires only 13.5 V for the supervoltage and low current requirements allow for gang programming. The EPROM cells allow for each memory location to be tested 100%, as each location is written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming the product will meet AC specification limits.
The CY7C235 has an asynchronous initialize function (INIT). This function acts as a 1025th 8-bit word loaded into the on-chip register. It is user programmable with any desired word or may be used as a PRESET or CLEAR function on the outputs.

Pin Configurations

0005-2

0005-12

Logic Block Diagram

0005-1

Selection Guide

		7C235-25	7C235-30	7C235-40
Maximum Set-up Time (ns)		25	30	40
Maximum Clock to Output (ns)		12	15	20
Maximum Operating Current (mA)	Commercial	90	90	90
	Military		120	120

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 24 to Pin 12 for DIP) \qquad
DC Voltage Applied to Outputs
in High Z State. -0.5 V to +7.0 V
DC Input Voltage

$$
-3.0 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

DC Program Voltage
(Pins 7, 18, 20 for DIP)
14.0 V

Static Discharge Volume . $>1500 \mathrm{~V}$
(Per MIL-STD-883 Method 3015)
Latch-up Current . $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	V $_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[6]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range ${ }^{[7]}$

Parameters	Description	Test Conditions		Min.	Max.	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$			0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed Input Logical HIGH Voltage for All Inputs ${ }^{[2]}$		2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed Input Logical LOW Voltage for All Inputs ${ }^{[2]}$			0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	$\mu \mathrm{A}$
V_{CD}	Input Clamp Diode Voltage	Note 1				
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$ Output Disabled ${ }^{[4]}$		-40	+40	$\mu \mathrm{A}$
Ios	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}^{[3]}$		-20	-90	mA
$\mathrm{I}_{\mathbf{C C}}$	Power Supply Current	$\begin{aligned} & \mathrm{GND} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} . \end{aligned}$	Commercial		90	mA
			Military		120	

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	5	pF
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	8	

Notes:

1. The CMOS process does not provide a clamp diode. However, the CY7C235 is insensitive to -3 V dc input levels and -5 V undershoot pulses of less than 10 ns (measured at 50% point).
2. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment (see Notes on Testing).
3. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
4. For devices using the synchronous enable, the device must be clocked after applying these voltages to perform this measurement.
5. Tested initially and after any design or process changes that may affect these parameters.
6. T_{A} is the "instant on" case temperature.
7. See the last page of this specification for Group A subgroup testing information.

Switching Characteristics Over Operating Range ${ }^{[4, ~ 8]}$

Parameters	Description	7C235-25		7C235-30		7C235-40		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
$t_{\text {S }}$	Address Setup to Clock HIGH	25		30		40		ns
t_{HA}	Address Hold from Clock HIGH	0		0		0		ns
t_{CO}	Clock HIGH to Valid Output		12		15		20	ns
tpWC	Clock Pulse Width	12		15		20		ns
${ }^{\text {tSE }}$ S	\bar{E}_{S} Setup to Clock HIGH	10		10		15		ns
t_{HE}	$\bar{E}_{\text {S }}$ Hold from Clock HIGH	5		5		5		ns
$\mathrm{t}_{\text {DI }}$	Delay from INIT to Valid Output		25		25		35	ns
$\mathrm{t}_{\text {RI }}$	INIT Recovery to Clock HIGH	20		20		20		ns
tPWI	INIT Pulse Width	20		20		25		ns
$\mathrm{t}_{\mathrm{COS}}$	Inactive to Valid Output from Clock HIGH[1]		20		20		25	ns
thzC	Inactive Output from Clock HIGH ${ }^{[1,3]}$		20		20		25	ns
$\mathrm{t}_{\text {DOE }}$	Valid Output from E LOW ${ }^{\text {[2] }}$		20		20		25	ns
$\mathrm{t}_{\text {HZE }}$	Inactive Output from $\overline{\mathrm{E}}$ HIGH ${ }^{[2,3]}$		20		20		25	ns

Notes:

1. Applies only when the synchronous (\bar{E}_{S}) function is used.
2. Applies only when the asynchronous ($\overline{\mathrm{E}}$) function is used.
3. Transition is measured at steady state High level -500 mV or steady state Low level +500 mV on the output from the 1.5 V level on the input with loads shown in Figure 1 lb.
4. Tests are performed with rise and fall times of 5 ns or less.
5. See Figure $1 a$ for all switching characteristics except t_{HZ}.
6. See Figure $1 b$ for t_{HZ}.
7. All device test loads should be located within $2^{\prime \prime}$ of device outputs.
8. See the last page of this specification for Group A subgroup testing information.

AC Test Loads and Waveforms $[5,6,7]$

Figure 1a

0005-3
Figure 1b

Equivalent to:

THÉVENIN EQUIVALENT

0005-4

Functional Description

The CY7C235 is a CMOS electrically Programmable Read Only Memory organized as 1024 word x 8 -bits and is a pin-for-pin replacement for bipolar TTL fusible link PROMs. The CY7C235 incorporates a D-type, master-slave register on chip, reducing the cost and size of pipelined microprogrammed systems and applications where accessed PROM data is stored temporarily in a register. Additional flexibility is provided with synchronous (\bar{E}_{S}) and asynchronous ($\overline{\mathrm{E}}$) output enables and asynchronous initialization ($\overline{\mathrm{INIT}}$). Upon power-up, the synchronous enable ($\overline{\mathrm{E}}_{\mathrm{S}}$) flip-flop will be in the set condition causing the outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$ to be in the OFF or high impedance state. Data is read by
applying the memory location to the address input ($\mathrm{A}_{0}-$ A 9) and a logic LOW to the enable ($\overline{\mathrm{E}}_{\mathrm{S}}$) input. The stored data is accessed and loaded into the master flip-flops of the data register during the address set-up time. At the next LOW-to-HIGH transition of the clock (CP), data is transferred to the slave flip-flops, which drive the output buffers, and the accessed data will appear at the outputs $\left(\mathrm{O}_{0}-\right.$ O_{7}) provided the asynchronous enable $(\overline{\mathrm{E}})$ is also LOW.
The outputs may be disabled at any time by switching the asynchronous enable ($\overline{\mathrm{E}})$ to a logic HIGH, and may be returned to the active state by switching the enable to a logic LOW.

Functional Description (Continued)

Regardless of the condition of $\overline{\mathrm{E}}$, the outputs will go to the OFF or high impedance state upon the next positive clock edge after the synchronous enable ($\overline{\mathbf{E}}_{S}$) input is switched to a HIGH level. If the synchronous enable pin is switched to a logic LOW, the subsequent positive clock edge will return the output to the active state if $\overline{\mathrm{E}}$ is LOW. Following a positive clock edge, the address and synchronous enable inputs are free to change since no change in the output will occur until the next low to high transition of the clock. This unique feature allows the CY7C235 decoders and sense amplifiers to access the next location while previously addressed data remains stable on the outputs.
System timing is simplified in that the on-chip edge triggered register allows the PROM clock to be derived directly from the system clock without introducing race conditions. The on-chip register timing requirements are similar to those of discrete registers available in the market.
The CY7C235 has an asynchronous initialize input (INIT). The initialize function is useful during power-up and timeout sequences and can facilitate implementation of other sophisticated functions such as a built-in "jump start" address. When activated the initialize control input causes the contents of a user programmed 1025 th 8 -bit word to be loaded into the on-chip register. Each bit is programmable
and the initialize function can be used to load any desired combination of " 1 "s and " 0 "s into the register. In the unprogrammed state, activating INIT will generate a register CLEAR (all outputs LOW). If all the bits of the initialize word are programmed, activating INIT performs a register PRESET (all outputs HIGH).
Applying a LOW to the INIT input causes an immediate load of the programmed initialize word into the master and slave flip-flops of the register, independent of all other inputs, including the clock (CP). The initialize data will appear at the device outputs after the outputs are enabled by bringing the asynchronous enable $(\overline{\mathrm{E}}) \mathrm{LOW}$.
When power is applied the (internal) synchronous enable flip-flop will be in a state such that the outputs will be in the high impedance state. In order to enable the outputs, a clock must occur and the ES input pin must be LOW at least a setup time prior to the clock LOW to HIGH transition. The \bar{E} input may then be used to enable the outputs. When the asynchronous initialize input, INIT, is LOW, the data in the initialize byte will be asynchronously loaded into the output register. It will not, however, appear on the output pins until they are enabled, as described in the preceding paragraph.

Switching Waveforms

Notes on Testing

Incoming test procedures on these devices should be carefully planned, taking into account the high performance and output drive capabilities of the parts. The following notes may be useful.

1. Ensure that adequate decoupling capacitance is employed across the device $V_{C C}$ and ground terminals. Multiple capacitors are recommended, including a $0.1 \mu \mathrm{~F}$ or larger capacitor and a $0.01 \mu \mathrm{~F}$ or smaller capacitor placed as close to the device terminals as possible. Inadequate decoupling may result in large variations of power supply voltage, creating erroneous function or transient performance failures.
2. Do not leave any inputs disconnected (floating) during any tests.
3. Do not attempt to perform threshold tests under AC conditions. Large amplitude, fast ground current transients normally occur as the device outputs discharge the load capacitances. These transients flowing through the parasitic inductance between the device ground pin and the test system ground can create significant reductions in observable input noise immunity.
4. Output levels are measured at 1.5 V reference levels.
5. Transition is measured at steady state HIGH level -500 mV or steady state LOW level +500 mV on the output from the 1.5 V level on inputs with load shown in Figure $1 b$.

Typical DC and AC Characteristics

NORMALIZED CLOCK TO OUTPUT TIME vs. TEMPERATURE

OUTPUT SOURCE CURRENT vs. OUTPUT VOLTAGE

NORMALIZED SUPPLY CURRENT vs. AMBIENT TEMPERATURE

NORMALIZED SETUP TIME vs. SUPPLY VOLTAGE

TYPICAL ACCESS TIME CHANGE vs. OUTPUT LOADING

NORMALIZED CLOCK TO OUTPUT
TIME vs. VCC

NORMALIZED SETUP TIME vs. TEMPERATURE

0005-7

Device Programming

Overview:

There are two independent programmable functions contained in the 7C235 CMOS 1K x 8 Registered PROM; the $1 \mathrm{~K} \times 8$ array, and the INITIAL BYTE. All of the programming elements are "EPROM"' cells, and are in an erased state when the device is shipped. The erased state for the "INITIAL BYTE" is all " 0 ' s " or "LOW". The "INITIAL BYTE" may be accessed operationally through
the use of the initialize function. The $1 \mathrm{~K} \times 8$ array uses a differential memory cell, with differential sensing techniques. In the erased state the cell contains neither a one nor a zero. The erased state of this array may be verified by using the "BLANK CHECK ONES" and "BLANK CHECK ZEROS" function, see Table 3.

DC Programming Parameters $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Table 1

Parameter	Description	Min.	Max.	Units
$\mathrm{V}_{\mathbf{P P}}{ }^{[1]}$	Programming Voltage	13.0	14.0	V
$\mathrm{~V}_{\mathrm{CCP}}$	Supply Voltage	4.75	5.25	V
$\mathrm{~V}_{\mathrm{IHP}}$	Input High Voltage	3.0		V
$\mathrm{~V}_{\mathrm{ILP}}$	Input Low Voltage		0.4	V
$\mathrm{~V}_{\mathbf{O H}}{ }^{[2]}$	Output High Voltage	2.4		V
$\mathrm{~V}_{\mathrm{OL}}{ }^{[2]}$	Output Low Voltage		0.4	V
$\mathrm{I}_{\mathbf{P P}}$	Programming Supply Current		50	mA

AC Programming Parameters $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Table 2

Parameter	Description	Min.	Max.	Units
tPP	Programming Pulse Width	100	10,000	$\mu \mathrm{~s}$
t_{AS}	Address Setup Time	1.0		$\mu \mathrm{~s}$
t_{DS}	Data Setup Time	1.0		$\mu \mathrm{~s}$
t_{AH}	Address Hold Time	1.0		$\mu \mathrm{~s}$
t_{DH}	Data Hold Time	1.0		$\mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}[3]$	VPP Rise and Fall Time	1.0		$\mu \mathrm{~s}$
t_{VD}	Delay to Verify	1.0		$\mu \mathrm{~s}$
t_{VP}	Verify Pulse Width	2.0		$\mu \mathrm{~s}$
t_{DV}	Verify Data Valid			$\mu \mathrm{s}$
t_{DZ}	Verify HIGH to High Z		1.0	$\mu \mathrm{~s}$

Notes:

1. $\mathrm{V}_{\mathrm{CCP}}$ must be applied prior to V_{PP}.
2. During verify operation.
3. Measured 10% and 90% points.

Mode Selection

Table 3

		Pin Function						$\begin{gathered} \text { Outputs } \\ \text { (9-11, 13-17) } \\ \text { DIP } \end{gathered}$
Mode	Read or Output Disable	\mathbf{A}_{2}	CP	$\overline{\mathbf{E}}_{\mathbf{S}}$	INIT	$\overline{\mathbf{E}}$	A_{1}	
	Other	A_{2}	$\overline{\text { PGM }}$	$\overline{\text { VFY }}$	$\mathbf{V}_{\mathbf{P P}}$	$\overline{\mathbf{E}}$	A_{1}	
	(DIP) Pin	(6)	(18)	(19)	(20)	(21)	(7)	
Read ${ }^{[2,3]}$		X	X	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IL }}$	X	Data Out
Output Disable ${ }^{[5]}$		X	X	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	X	X	High Z
Output Disable		X	X	X	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	X	High Z
Initialize ${ }^{[6]}$		X	X	X	V_{IL}	$\mathrm{V}_{\text {IL }}$	X	1025th word
Program ${ }^{[1,4]}$		X	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {PP }}$	$V_{\text {IHP }}$	X	Data In
Program Verify ${ }^{[1,4]}$		X	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$V_{P P}$	$\mathrm{V}_{\text {IHP }}$	X	Data Out
Program Inhibit $[1,4]$		X	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{P P}$	$\mathrm{V}_{\text {IHP }}$	X	High Z
Intelligent Program ${ }^{\text {[1,4] }}$		X	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{P P}$	$\mathrm{V}_{\text {IHP }}$	X	Data In
Program Initial Byte ${ }^{[4]}$		$V_{\text {ILP }}$	$V_{\text {ILP }}$	$V_{\text {IHP }}$	$V_{\text {PP }}$	$V_{\text {IHP }}$	$V_{P P}$	Data In
Blank Check Ones ${ }^{[1,4]}$		X	$V_{P P}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	X	Ones
Blank Check Zeros ${ }^{[1,4]}$		X	$V_{P P}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	X	Zeros

Notes:

1. $X=$ Don't care but not to exceed $V_{P P}$.
2. During read operation, the output latches are loaded on a " 0 " to " 1 " transition of CP.
3. Pin 19 must be LOW prior to the " 0 " to " 1 " transition on CP (18) that loads the register.
4. During programming and verification, all unspecified pins to be at $V_{\text {ILP }}$.
5. Pin 19 must be HIGH prior to the " 0 " to " 1 " transition on CP (18) that loads the register.
6. LOW to HIGH clock transition required to enable outputs.

The CY7C235 programming algorithm allows significantly faster programming than the "worst case" specification of 10 msec .

Typical programming time for a byte is less than 2.5 msec . The use of EPROM cells allows factory testing of programmed cells, measurement of data retention and erasure to ensure reliable data retention and functional performance. A flowchart of the algorithm is shown in Figure 4.
The algorithm utilizes two different pulse types: initial and overprogram. The duration of the $\overline{\text { PGM }}$ pulse (tpp) is 0.1 msec which will then be followed by a longer overprogram pulse of $24(0.1)(\mathrm{X}) \mathrm{msec} . \mathrm{X}$ is an iteration counter and is equal to the NUMBER of the initial 0.1 msec pulses applied before verification occurs. Up to four 0.1 msec pulses are provided before the overprogram pulse is applied.
The entire sequence of program pulses and byte verifications is performed at $\mathrm{V}_{\mathrm{CCP}}=5.0 \mathrm{~V}$. When all bytes have been programmed all bytes should be compared (Read mode) to original data with $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.

0005-9
Figure 4. Programming Flowchart

Programming Sequence 1K x 8 Array

Power the device for normal read mode operation with pin 18, 19, 20 and 21 at $\mathrm{V}_{\mathbf{I H}}$. Per Figure 6 take pin 20 to $\mathrm{V}_{\text {PP }}$.
The device is now in the program inhibit mode of operation with the output lines in a high impedance state; see Figures 5 and 6. Again per Figure 6 address program and verify one byte of data. Repeat this for each location to be programmed.
If the brute force programming method is used, the pulse width of the program pulse should be 10 ms , and each
location is programmed with a single pulse. Any location that fails to verify causes the device to be rejected.
If the intelligent programming technique is used, the program pulse width should be $100 \mu \mathrm{~s}$. Each location is ultimately programmed and verified until it verifies correctly up to and including 4 times. When the location verifies, one additional programming pulse should be applied of duration 24X the sum of the previous programming pulses before advancing to the next address to repeat the process.

Figure 5. PROM Programming Waveforms

Figure 6. Initial Byte Programming Waveforms

Programming the Initial Byte

The CY7C235 registered PROM has a 1025th byte of data used to initialize the value of the register. This initial byte is value " 0 " when the part is received. If the user desires to have a value other than " 0 " for register initialization, this must be programmed into the 1025th byte. This byte is programmed in a similar manner to the 1024 normal bytes in the array except for two considerations. First, since all of the normal addresses of the part are used up, a super voltage will be used to create additional effective addresses. The actual address has $V_{P P}$ on \mathbf{A}_{1} pin 7, and $V_{\text {ILP }}$ on A_{2}, pin 6, per Table 3. The programming and verification of "INITIAL BYTE" is accomplished operationally by performing an initialize function.

Bit Map Data

Programmer Address		RAM Data
Decimal	Hex	Contents
0	0	Data
\bullet	\bullet	\bullet
\bullet	\bullet	\bullet
1023	\bullet	\bullet
1024	3 FF	Data
	400	Init Byte

Blank Check

A virgin device contains neither one's nor zero's because of the differential cell used for high speed. To verify that a PROM is unprogrammed, use the two blank check modes provided in Table 3. In both of these modes, address and read locations 0 thru 1023. A device is considered virgin if all locations are respectively " 1 's" and " 0 's" when addresses in the "BLANK ONES AND ZEROS" modes.
Because a virgin device contains neither ones nor zeros, it is necessary to program both one's and zero's. It is recommended that all locations be programmed to ensure that ambiguous states do not exist.

Ordering Information

Speed ns		Ordering Code	Package Type	Operating Range
$\mathrm{t}_{\text {SA }}$	t_{CO}			
25	12	CY7C235-25PC CY7C235-25DC	$\begin{aligned} & \text { P13 } \\ & \text { D14 } \end{aligned}$	Commercial
30	15	$\begin{aligned} & \text { CY7C235-30PC } \\ & \text { CY7C235-30DC } \\ & \text { CY7C235-30JC } \end{aligned}$	$\begin{gathered} \text { P13 } \\ \text { D14 } \\ \text { J64 } \end{gathered}$	
		CY7C235-30DMB CY7C235-30LMB	$\begin{aligned} & \text { D14 } \\ & \text { L64 } \end{aligned}$	Military
40	20	CY7C235-40PC CY7C235-40DC	$\begin{aligned} & \text { P13 } \\ & \text { D14 } \end{aligned}$	Commercial
		CY7C235-40DMB CY7C235-40LMB	$\begin{aligned} & \text { D14 } \\ & \text { L64 } \end{aligned}$	Military

R

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{SA}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{CO}	$7,8,9,10,11$

Document \#: 38-00003-B

Features

- Windowed for reprogrammability
- CMOS for optimum speed/power
- High speed
- 25 ns max set-up
- 12 ns clock to output
- Low power
- 330 mW (commercial) for $-35 \mathrm{~ns},-45 \mathrm{~ns}$
- $\mathbf{6 6 0 \mathrm { mW } \text { (military) }) ~ (1) ~}$
- Programmable synchronous or asynchronous output enable
- On-chip edge-triggered registers
- Programmable asynchronous register (INIT)
- EPROM technology, $\mathbf{1 0 0 \%}$ programmable
- Slim, 300 mil, 24 pin plastic or hermetic DIP
- $\mathbf{5 V} \pm 10 \% \mathrm{~V}_{\mathrm{CC}}$, commercial and military
- TTL compatible I/O
- Direct replacement for bipolar PROMs
- Capable of withstanding greater than 2000 V static discharge

Logic Block Diagram

Pin Configurations

0016-2

Selection Guide

		7C245-25	7C245-35	7C245-45	
Maximum Setup Time (ns)			25	35	$\mathbf{4 5}$
Maximum Clock to Output (ns)			12	15	25
Maximum Operating Current (mA)	STD	Commercial	90	90	90
		Military		120	120
	L	Commercial		60	60

Product Characteristics

The CY7C245 is a high performance 2048 word by 8 bit electrically Programmable Read Only Memory packaged in a slim 300 mil plastic or hermetic DIP. The ceramic package may be equipped with an erasure window; when exposed to UV light the PROM is erased and can then be reprogrammed. The memory cells utilize proven EPROM floating gate technology and byte-wide intelligent programming algorithms.
The CY7C245 replaces bipolar devices and offers the advantages of lower power, reprogrammability, superior performance and high programming yield. The EPROM cell requires only 13.5 V for the supervoltage and low current requirements allow for gang programming. The EPROM cells allow for each memory location to be tested 100%, as each location is written into, erased, and repeatedly exercized prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming the product will meet AC specification limits. The CY7C245 has an asynchronous initialize function (INIT). This function acts as a 2049th 8 -bit word loaded into the on-chip register. It is user programmable with any desired word or may be used as a PRESET or CLEAR function on the outputs.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature..............$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with

Supply Voltage to Ground Potential
(Pin 24 to Pin 12) $\ldots \ldots \ldots \ldots \ldots . . .0 .5 \mathrm{~F}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State. -0.5 V to +7.0 V

DC Program Voltage (Pins 7, 18, 20) 14.0V
UV Erasure . 7258 Wsec/cm ${ }^{2}$
Static Discharge Voltage . $>2001 \mathrm{~V}$
(Per MIL-STD-883 Method 3015)
Latchup Current $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	V $_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[7]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range[6]

Parameters	Description	Test Conditions		7C245L-35, 45		7C245-25		7C245-35, 45		Units
				Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{VOH}^{\text {O }}$	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}_{.,} \mathrm{I}_{\mathrm{OH}}= \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$-4.0 \mathrm{~mA}$	2.4		2.4		2.4		V
Vol	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}_{1}, \mathrm{I}_{\mathrm{OL}}= \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$			0.4		0.4		0.4	V
V_{IH}	Input HIGH Level	Guaranteed Input Lo Voltage for All Inpu	cal HIGH	2.0	V_{CC}	2.0	$\mathrm{V}_{\text {CC }}$	2.0	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed Input Log Voltage for All Inputs	$\begin{aligned} & \text { cal LOW } \\ & \hline \end{aligned}$		0.8		0.8		0.8	V
$\mathrm{IIX}^{\text {I }}$	Input Leakage Current	GND $\leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$		-10	+ 10	-10	+10	-10	+10	$\mu \mathrm{A}$
$V_{C D}$	Input Clamp Diode Voltage	Note 5		Note 5						
IOZ	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$ Output Disabled ${ }^{[3]}$		-40	+40	-40	+40	-40	+40	$\mu \mathrm{A}$
Ios	Output Short Circuit Current	$\mathbf{V}_{\text {CC }}=$ Max., $\mathbf{V}_{\text {OUT }}=0.0 \mathrm{~V}^{[2]}$		-20	-90	-20	-90	-20	-90	mA
I_{CC}	Power Supply Current	$\begin{aligned} & \text { GND } \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{CC}}=\text { Max. } \end{aligned}$	Commercial		60		90		90	mA
			Military						120	

Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max.	Units
CIN	Input Capacitance	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	5	pF
COUT	Output Capacitance		8	

Notes:

1. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment (see Notes on Testing).
2. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
3. For devices using the synchronous enable, the device must be clocked after applying these voltages to perform this measurement.
4. Tested initially and after any design or process changes that may affect these parameters.
5. The CMOS process does not provide a clamp diode. However, the CY7C245 is insensitive to -3 V dc input levels and -5 V undershoot pulses of less than 10 ns (measured at 50% point).
6. See the last page of this specification for Group A subgroup testing information.
7. T_{A} is the "instant on" case temperature.

Switching Characteristics Over Operating Range ${ }^{[8]}$

Parameters	Description	7C245-25		7C245-35		7C245-45		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
tSA	Address Setup to Clock HIGH	25		35		45		ns
$\mathrm{tha}^{\text {H }}$	Address Hold from Clock HIGH	0		0		0		ns
tco	Clock HIGH to Valid Output		12		15		25	ns
tpwC	Clock Pulse Width	15		20		20		ns
${ }^{\text {S }} \mathrm{SE}_{\mathrm{S}}$	\bar{E}_{S} Setup to Clock HIGH	12		15		15		ns
thE_{S}	\bar{E}_{S} Hold from Clock HIGH	5		5		5		ns
tDI	Delay from INIT to Valid Output		20		20		35	ns
tri	INIT Recovery to Clock HIGH	15		20		20		ns
tPWI	INIT Pulse Width	15		20		25		ns
tcos	Valid Output from Clock HIGH ${ }^{[1]}$		15		20		30	ns
thZC	Inactive Output from Clock HIGH ${ }^{[1,3]}$		15		20		30	ns
tDOE	Valid Output from E LOW ${ }^{\text {[2] }}$		15		20		30	ns
thze	Inactive Output from $\overline{\mathrm{E}} \mathrm{HIGH}^{[2,3]}$		15		20		30	ns

Notes:

1. Applies only when the synchronous $\left(\overline{\mathrm{E}}_{S}\right)$ function is used.
2. Applies only when the asynchronous ($\overline{\mathrm{E}}$) function is used.
3. Transition is measured at steady state High level -500 mV or steady state Low level +500 mV on the output from the 1.5 V level on the input with loads shown in Figure $1 b$.
4. Tests are performed with rise and fall times of 5 ns or less.

AC Test Loads and Waveforms ${ }^{[5,6,7]}$

Figure 1a

0016-3
Figure 1b

Equivalent to:

THÉVENIN EQUIVALENT

OUTPUT $O \longrightarrow \underbrace{100 \Omega}_{0} \Omega$

Functional Description

The CY7C245 is a CMOS electrically Programmable Read Only Memory organized as 2048 words $\times 8$-bits and is a pin-for-pin replacement for bipolar TTL fusible link PROMs. The CY7C245 incorporates a D-type, masterslave register on chip, reducing the cost and size of pipelined microprogrammed systems and applications where accessed PROM data is stored temporarily in a register. Additional flexibility is provided with a programmable synchronous ($\overline{\mathrm{E}}_{\mathrm{S}}$) or asynchronous ($\overline{\mathrm{E}}$) output enable and asynchronous initialization (INIT).
Upon power-up the state of the outputs will depend on the programmed state of the enable function ($\overline{\bar{E}_{S}}$ or $\overline{\mathrm{E}}$). If the synchronous enable ($\overline{\mathrm{E}_{S}}$) has been programmed, the register will be in the set condition causing the outputs
5. See Figure la for all switching characteristics except $\mathbf{t}_{\mathbf{H Z}}$.
6. See Figure 1 b for t_{HZ}.
7. All device test loads should be located within $2^{\prime \prime}$ of device outputs.
8. See the last page of this specification for Group A subgroup testing information.

0016-5
Figure 2
$\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$ to be in the OFF or high impedance state. If the asynchronous enable $(\overline{\mathrm{E}})$ is being used, the outputs will come up in the OFF or high impedance state only if the enable ($\overline{\mathrm{E}}$) input is at a HIGH logic level. Data is read by applying the memory location to the address inputs ($\mathrm{A}_{0}-\mathrm{A}_{10}$) and a logic LOW to the enable input. The stored data is accessed and loaded into the master flip-flops of the data register during the address set-up time. At the next LOW-to-HIGH transition of the clock (CP), data is transferred to the slave flip-flops, which drive the output buffers, and the accessed data will appear at the outputs ($\mathrm{O}_{0}-\mathrm{O}_{7}$).
If the asynchronous enable $(\overline{\mathrm{E}})$ is being used, the outputs may be disabled at any time by switching the enable to a

Functional Description (Continued)

logic HIGH, and may be returned to the active state by switching the enable to a logic LOW.
If the synchronous enable ($\overline{\mathrm{E}}_{S}$) is being used, the outputs will go to the OFF or high impedance state upon the next positive clock edge after the synchronous enable input is switched to a HIGH level. If the synchronous enable pin is switched to a logic LOW, the subsequent positive clock edge will return the output to the active state. Following a positive clock edge, the address and synchronous enable inputs are free to change since no change in the output will occur until the next low to high transition of the clock. This unique feature allows the CY7C245 decoders and sense amplifiers to access the next location while previously addressed data remains stable on the outputs.
System timing is simplified in that the on-chip edge triggered register allows the PROM clock to be derived directly from the system clock without introducing race conditions. The on-chip register timing requirements are similar to those of discrete registers available in the market.

The CY7C245 has an asynchronous initialize input (INIT). The initialize function is useful during power-up and timeout sequences and can facilitate implementation of other sophisticated functions such as a built-in "jump start" address. When activated the initialize control input causes the contents of a user programmed 2049th 8-bit word to be loaded into the on-chip register. Each bit is programmable and the initialize function can be used to load any desired combination of " 1 "s and " 0 "s into the register. In the unprogrammed state, activating INIT will generate a register CLEAR (all outputs LOW). If all the bits of the initialize word are programmed, activating INIT performs a register PRESET (all outputs HIGH).
Applying a LOW to the INIT input causes an immediate load of the programmed initialize word into the master and slave flip-flops of the register, independent of all other inputs, including the clock (CP). The initialize data will appear at the device outputs after the outputs are enabled by bringing the asynchronous enable ($\overline{\mathrm{E}}$) LOW.

Switching Waveforms

Notes on Testing

Incoming test procedures on these devices should be carefully planned, taking into account the high performance and output drive capabilities of the parts. The following notes may be useful.

1. Ensure that adequate decoupling capacitance is employed across the device $V_{C C}$ and ground terminals. Multiple capacitors are recommended, including a $0.1 \mu \mathrm{~F}$ or larger capacitor and a $0.01 \mu \mathrm{~F}$ or smaller capacitor placed as close to the device terminals as possible. Inadequate decoupling may result in large variations of power supply voltage, creating erroneous function or transient performance failures.
2. Do not leave any inputs disconnected (floating) during any tests.
3. Do not attempt to perform threshold tests under AC conditions. Large amplitude, fast ground current transients normally occur as the device outputs discharge the load capacitances. These transients flowing through the parasitic inductance between the device ground pin and the test system ground can create significant reductions in observable input noise immunity.
4. Output levels are measured at 1.5 V reference levels.
5. Transition is measured at steady state HIGH level -500 mV or steady state LOW level +500 mV on the output from the 1.5 V level on inputs with load shown in Figure $1 b$.

Typical DC and AC Characteristics

CLOCK TO OUTPUT TIME

NORMALIZED SETUP TIME vs. SUPPLY VOLTAGE

OUTPUT SOURCE CURRENT vs. VOLTAGE

CLOCK TO OUTPUT TIME vs. VCC

NORMALIZED SETUP TIME vs. TEMPERATURE

OUTPUT SINK CURRENT vs. OUTPUT VOLTAGE

Erasure Characteristics

Wavelengths of light less than 4000 Angstroms begin to erase the 7C245. For this reason, an opaque label should be placed over the window if the PROM is exposed to sunlight or fluorescent lighting for extended periods of time.
The recommended dose for erasure is ultraviolet light with a wavelength of 2537 Angstroms for a minimum dose (UV intensity \times exposure time) of $25 \mathrm{Wsec} / \mathrm{cm}^{2}$. For an ultraviolet lamp with a $12 \mathrm{~mW} / \mathrm{cm}^{2}$ power rating the exposure time would be approximately $30-35$ minutes. The 7C245 needs to be within 1 inch of the lamp during erasure. Permanent damage may result if the PROM is exposed to high intensity UV light for an extended period of time. 7258 $\mathrm{Wsec} / \mathrm{cm}^{2}$ is the recommended maximum dosage.

Device Programming OVERVIEW:

There are three independent programmable functions contained in the 7C245 CMOS $2 \mathrm{~K} \times 8$ Registered PROM; the $2 \mathrm{~K} \times 8$ array, the initial byte, and the synchronous enable bit. All of the programming elements are "EPROM" cells, and are in an erased state when the device is shipped. This erased state manifests itself differently in each case. The erased state for ENABLE bit is the "ASYNCHRONOUS ENABLE" mode. The erased state for the "INITIAL BYTE" is all " 0 's" or "LOW". The "INITIAL BYTE" may be accessed operationally thru the use of the initialize function. The $2 \mathrm{~K} \times 8$ array uses a differential memory cell, with differential sensing techniques. In the erased state the cell contains neither a one nor a zero. The erased state of this array may be verified by using the "BLANK CHECK ONES" and "BLANK CHECK ZEROS" function, see Table 3.

DC Programming Parameters $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Table 1

Parameter	Description	Min.	Max.	Units
$\mathrm{V}_{\mathrm{PP}}{ }^{[1]}$	Programming Voltage	13.0	14.0	V
$\mathrm{~V}_{\mathrm{CCP}}$	Supply Voltage	4.75	5.25	V
$\mathrm{~V}_{\mathrm{IHP}}$	Input High Voltage	3.0		V
$\mathrm{~V}_{\mathrm{ILP}}$	Input Low Voltage		0.4	V
$\mathrm{~V}_{\mathrm{OH}}{ }^{[2]}$	Output High Voltage	2.4		V
$\mathrm{~V}_{\mathrm{OL}}{ }^{[2]}$	Output Low Voltage		0.4	V
IPP	Programming Supply Current		50	mA

AC Programming Parameters $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Table 2

Parameter	Description	Min.	Max.	Units
$\mathrm{t}_{\text {PP }}$	Programming Pulse Width	100	10,000	$\mu \mathrm{~s}$
t_{AS}	Address Setup Time	1.0		$\mu \mathrm{~s}$
t_{DS}	Data Setup Time	1.0		$\mu \mathrm{~s}$
t_{AH}	Address Hold Time	1.0		$\mu \mathrm{~s}$
t_{DH}	Data Hold Time	1.0		$\mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{R},} \mathrm{t}_{\mathrm{F}}[3]$	VPP Rise and Fall Time	1.0		$\mu \mathrm{~s}$
t_{VD}	Delay to Verify	1.0		$\mu \mathrm{~s}$
t_{VP}	Verify Pulse Width	2.0		$\mu \mathrm{~s}$
t_{DV}	Verify Data Valid		1.0	$\mu \mathrm{~s}$
t_{DZ}	Verify HIGH to High Z		1.0	$\mu \mathrm{~s}$

Notes:

1. $\mathrm{V}_{\mathrm{CCP}}$ must be applied prior to V_{PP}.
2. During verify operation.
3. Measured 10% and 90% points.

Table 3

Mode		Pin Function					$\begin{gathered} \text { Outputs } \\ (9-11,13-17) \end{gathered}$
	Read or Output Disable	\mathbf{A}_{2}	CP	$\overline{\mathbf{E}} / \overline{\mathbf{E}}_{\mathbf{S}}$	INIT	A_{1}	
	Other	A_{2}	PGM	$\overline{\text { VFY }}$	$\mathbf{V P P}_{\text {P }}$	A_{1}	
	Pin	(6)	(18)	(19)	20	(7)	
Read [2,3]		X	X	$V_{\text {IL }}$	$\mathrm{V}_{\text {IH }}$	X	Data Out
Output Disable ${ }^{[5]}$		X	X	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	X	High Z
Program ${ }^{\text {[1,4] }}$		X	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {PP }}$	X	Data In
Program Verify ${ }^{[1,4]}$		X	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {PP }}$	X	Data Out
Program Inhibit ${ }^{[1,4]}$		X	$V_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {PP }}$	X	High Z
Intelligent Program ${ }^{\text {[1,4] }}$		X	VILP	$\mathrm{V}_{\text {IHP }}$	$V_{\text {PP }}$	X	Data In
Program Synch Enable ${ }^{[4]}$		$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	V IHP	$V_{\text {PP }}$	$V_{\text {PP }}$	High Z
Program Initial Byte ${ }^{[4]}$		VILP	$V_{\text {ILP }}$	VIHP	$V_{P P}$	$V_{\text {PP }}$	Data In

Notes:

1. $X=$ Don't care but not to exceed $V_{P P}$.
2. During read operation, the output latches are loaded on a " 0 " to " 1 " transition of CP.
3. If the registered device is being operated in a synchronous mode, pin 19 must be LOW prior to the " 0 " to " 1 " transition on CP (18) that loads the register.

Figure 3. Programming Pinouts
4. During programming and verification, all unspecified pins to be at $\mathrm{V}_{\text {ILP }}$.
5. If the registered device is being operated in a synchronous mode, pin 19 must be HIGH prior to the " 0 " to " 1 " transition on CP (18) that loads the register.

The CY7C245 programming algorithm allows significantly faster programming than the "worst case" specification of 10 msec .
Typical programming time for a byte is less than 2.5 msec . The use of EPROM cells allows factory testing of programmed cells, measurement of data retention and erasure to ensure reliable data retention and functional performance. A flowchart of the algorithm is shown in Figure 4.
The algorithm utilizes two different pulse types: initial and overprogram. The duration of the PGM pulse (t_{PP}) is 0.1 msec which will then be followed by a longer overprogram pulse of $24(0.1)(X) \mathrm{msec} . \mathrm{X}$ is an iteration counter and is equal to the NUMBER of the initial 0.1 msec pulses applied before verification occurs. Up to four 0.1 msec pulses are provided before the overprogram pulse is applied.
The entire sequence of program pulses and byte verifications is performed at $\mathrm{V}_{\mathrm{CCP}}=5.0 \mathrm{~V}$. When all bytes have been programmed all bytes should be compared (Read mode) to original data with $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.

Bit Map Data

Programmer	Address	RAM Data
Decimal	Hex	Contents
0	0	DATA
\bullet	\bullet	\vdots
\bullet	\bullet	\vdots
2047	\bullet	DFF
2048	800	INIT BYTE
2049	801	CONTROL BYTE

Control Byte
00 Asynchronous output enable (default state)
01 Synchronous output enable

Programming Sequence $2 \mathrm{~K} \times 8$ Array

Power the device for normal read mode operation with pin 18, 19 and 20 at VIH. Per Figure 5 take pin 20 to VPp. The device is now in the program inhibit mode of operation with the output lines in a high impedance state; see Figures 5 and 6. Again per Figure 5 address program and verify one byte of data. Repeat this for each location to be programmed.
If the brute force programming method is used, the pulse width of the program pulse should be 10 ms , and each
location is programmed with a single pulse. Any location that fails to verify causes the device to be rejected.
If the intelligent programming technique is used, the program pulse width should be $100 \mu \mathrm{~s}$. Each location is ultimately programmed and verified until it verifies correctly up to and including 4 times. When the location verifies, one additional programming pulse should be applied of duration 24 X the sum of the previous programming pulses before advancing to the next address to repeat the process.

Figure 5. PROM Programming Waveforms

Figure 6. Initial Byte Programming Waveforms

Programming the Initialization Byte

The CY7C245 registered PROM has a 2049th byte of data used to initialize the value of the register. This initial byte is value " 0 " when the part is received. If the user desires to have a value other than " 0 " for register initialization, this must be programmed into the 2049th byte. This byte is programmed in a similar manner to the 2048 normal bytes in the array except for two considerations. First, since all of the normal addresses of the part are used up, a super voltage will be used to create additional effective addresses. The actual address has V_{PP} on A_{1} pin 7, and $\mathrm{V}_{\text {ILP }}$ on A_{2}, pin 6, per Table 3. The programming and verification of "INITIAL BYTE" is accomplished operationally by performing an initialize function.

Programming Synchronous Enable

The CY7C245 provides for both a synchronous and asynchronous enable function. The device is delivered in an asynchronous mode of operation and only requires that the user alter the device if synchronous operation is required. The determination of the option is accomplished thru the use of an EPROM cell which is programmed only if synchronous operation is required. As with the INITIAL byte, this function is addressed thru the use of a supervoltage. Per Table 3, $V_{P p}$ is applied to pin $7\left(\mathrm{~A}_{1}\right)$ with pin $6\left(\mathrm{~A}_{2}\right)$ at $\mathrm{V}_{\text {IHP }}$. This addresses the cell that programs synchronous enable. Programming the cell is accomplished with a 10 ms program pulse on pin 18 (PGM) but does not require any data as there is no choice as to how synchronous enable may be programmed, only if it is to be programmed.

$V_{\text {ILP }}---$
0016-12
Figure 7. Program Synchronous Enable

Verification of Synchronous Enable

Verification of the synchronous enable function is accomplished operationally. Power the device for read operation with pin 20 at V_{IH}, cause clock pin 18 to transition from $\mathrm{V}_{\text {IL }}$ to $\mathrm{V}_{\text {IH }}$. The output should be in a High Z state. Take pin 20, ENABLE, to $V_{\text {IL }}$. The outputs should remain in a high Z state. Transition the clock from $V_{I L}$ to $V_{I H}$, the outputs should now contain the data that is present. Again set pin 19 to $\mathbf{V}_{\mathbf{I H}}$. The output should remain driven. Clocking pin 18 once more from V_{IL} to V_{IH} should place the outputs again in a High Z state.

Blank Check

A virgin device contains neither one's nor zero's because of the differential cell used for high speed. To verify that a PROM is unprogrammed, use the two blank check modes provided in Table 3. In both of these modes, address and read locations 0 thru 2047. A device is considered virgin if all locations are respectively " 1 's" and " 0 's" when addressed in the "BLANK ONES AND ZEROS" modes.
Because a virgin device contains neither ones nor zeros, it is necessary to program both one's and zero's. It is recommended that all locations be programmed to ensure that ambiguous states do not exist.

Ordering Information

Speed (ns)		$\begin{aligned} & \mathbf{I}_{\mathbf{C C}} \\ & \mathbf{m A} \\ & \hline \end{aligned}$	Ordering Code	Package Type	Operating Range
$\mathrm{t}_{\text {SA }}$	tco				
25	12	90	CY7C245-25PC	P13	Commercial
			CY7C245-25WC	W14	
35	15	60	CY7C245L-35PC	P13	Commercial
			CY7C245L-35WC	W14	
		90	CY7C245-35PC	P13	
			CY7C245-35SC	S13	
			CY7C245-35WC	W14	
			CY7C245-35LC	L64	
		120	CY7C245-35DMB	D14	Military
			CY7C245-35QMB	Q64	
			CY7C245-35WMB	W14	
			CY7C245-35LMB	L64	

Speed (ns)		$\left\lvert\, \begin{aligned} & \mathbf{I}_{\mathbf{C C}} \\ & \mathbf{m A} \end{aligned}\right.$	Ordering Code	Package Type	Operating Range
$t_{\text {SA }}$	tco				
45	25	60	CY7C245L-45PC	P13	Commercial
			CY7C245L-45WC	W14	
		90	CY7C245-45PC	P13	
			CY7C245-45SC	S13	
			CY7C245-45WC	W14	
			CY7C245-45LC	L64	
		120	CY7C245-45WMB	W14	Military
			CY7C245-45LMB	L64	
			CY7C245-45DMB	D14	
			CY7C245-45QMB	Q64	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
$\mathbf{t}_{\text {SA }}$	$7,8,9,10,11$
\mathbf{t}_{HA}	$7,8,9,10,11$
t_{CO}	$7,8,9,10,11$

Document \#: 38-00004-C

Features

- Windowed for reprogrammability
- CMOS for optimum speed/power
- High speed
- 18 ns max set-up
- 12 ns clock to output
- Low power
- 330 mW (commercial) for $-35 \mathrm{~ns}$
- 660 mW (military)
- Programmable synchronous or asynchronous output enable
- On-chip edge-triggered registers
- Programmable asynchronous register (INIT)
- EPROM technology, $\mathbf{1 0 0 \%}$ programmable
- Slim, $300 \mathrm{mil}, 24$ pin plastic or hermetic DIP
- $5 \mathrm{~V} \pm 10 \% \mathrm{~V}_{\mathrm{CC}}$, commercial and military
- TTL compatible I/O
- Direct replacement for bipolar PROMs
- Capable of withstanding greater than 2000 V static discharge

Logic Block Diagram

0121-1

Pin Configurations

0121-2

Selection Guide

			7C245A-18	7C245A-25	7C245A-35
Maximum Setup Time (ns)			18	25	35
Maximum Clock to Output (ns)			12	15	20
Maximum Operating Current (mA)	STD	Commercial	120	90	90
		Military		120	120
	L	Commercial			60

Product Characteristics

The CY7C245A is a high performance 2048 word by 8 bit electrically Programmable Read Only Memory packaged in a slim 300 mil plastic or hermetic DIP. The ceramic package may be equipped with an erasure window; when exposed to UV light the PROM is erased and can then be reprogrammed. The memory cells utilize proven EPROM floating gate technology and byte-wide intelligent programming algorithms.
The CY7C245A replaces bipolar devices and offers the advantages of lower power, reprogrammability, superior performance and high programming yield. The EPROM cell requires only 12.5 V for the supervoltage and low current requirements allow for gang programming. The EPROM cells allow for each memory location to be tested 100%, as each location is written into, erased, and repeatedly exercized prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming the product will meet AC specification limits. The CY7C245A has an asynchronous initialize function (INIT). This function acts as a 2049 th 8 -bit word loaded into the on-chip register. It is user programmable with any desired word or may be used as a PRESET or CLEAR function on the outputs.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $\ldots \ldots \ldots \ldots . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $\ldots \ldots \ldots \ldots \ldots \ldots,-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 24 to Pin 12) -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State....................... -0.5 V to +7.0 V
DC Input Voltage $\ldots \ldots-3.0 \mathrm{~V}$ to +7.0 V
DC Program Voltage (Pins 7, 18, 20)13.0V
UV Erasure . 7258 Wsec/cm ${ }^{2}$
Static Discharge Voltage . $>2001 \mathrm{~V}$
(Per MIL-STD-883 Method 3015)
Latchup Current $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	VCC
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[4]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range ${ }^{[7]}$

Parameters	Description	Test Conditions		7C245A-18		7C245A-25, 35		7C245AL-35		Units
				Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{VOH}_{\mathrm{OH}}$	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}= \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \hline \end{aligned}$	$4.0 \mathrm{~mA}$	2.4		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & \mathbf{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}= \\ & \mathbf{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \hline \end{aligned}$			0.4		0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed Input Log Voltage for All Inputs	al HIGH	2.0	V_{CC}	2.0	$\mathrm{V}_{\text {cc }}$	2.0	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed Input Log Voltage for All Inputs	al LOW		0.8		0.8		0.8	V
IX	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$		-10	$+10$	-10	+10	-10	+ 10	$\mu \mathrm{A}$
V_{CD}	Input Clamp Diode Voltage	Note 5		Note 5						
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{Cc}}$ Output Disabled [3]		-40	$+40$	-40	+40	-40	+40	$\mu \mathrm{A}$
Ios	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}^{[2]}$		-20	-90	-20	-90	-20	-90	mA
I_{CC}	Power Supply Current	$\begin{aligned} & \mathrm{GND} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{CC}}=\text { Max. } \end{aligned}$	Commercial		120		90		60	mA
			Military				120			

Capacitance ${ }^{[6]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	5	pF
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	8	

Notes:

1. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment (see Notes on Testing).
2. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
3. For devices using the synchronous enable, the device must be clocked after applying these voltages to perform this measurement.
4. T_{A} is the "instant on" case temperature.
5. The CMOS process does not provide a clamp diode. However, the CY7C245A is insensitive to -3 V dc input levels and -5 V undershoot pulses of less than 10 ns (measured at 50% point).
6. Tested initially and after any design or process changes that may affect these parameters.
7. See the last page of this specification for Group A subgroup testing information.

Switching Characteristics Over Operating Range ${ }^{[8]}$

Parameters	Description	7C245A-18		7C245A-25		7C245A-35		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {SA }}$	Address Setup to Clock HIGH	18		25		35		ns
t_{HA}	Address Hold from Clock HIGH	0		0		0		ns
t_{CO}	Clock HIGH to Valid Output		12		12		15	ns
tpWC	Clock Pulse Width	12		15		20		ns
${ }^{\text {S }}{ }^{\text {E }}$ S	$\bar{E}_{\text {S }}$ Setup to Clock HIGH	10		12		15		ns
$\mathrm{t}_{\mathrm{HE}}{ }^{\text {S }}$	$\bar{E}_{\text {S }}$ Hold from Clock HIGH	5		5		5		ns
$t_{\text {DI }}$	Delay from INIT to Valid Output		20		20		20	ns
tri	$\overline{\text { INIT R Recovery to Clock HIGH }}$	15		15		20		ns
tPWI	INIT Pulse Width	15		15		20		ns
$\mathrm{t}_{\cos }$	Valid Output from Clock HIGH ${ }^{[1]}$		15		15		20	ns
$\mathrm{t}_{\mathrm{HZC}}$	Inactive Output from Clock HIGH ${ }^{[1,3]}$		15		15		20	ns
tDOE	Valid Output from E LOW[2]		15		15		20	ns
${ }_{\text {thze }}$	Inactive Output from $\overline{\mathrm{E}} \mathrm{HIGH}{ }^{[2,3]}$		15		15		20	ns

Notes:

1. Applies only when the synchronous ($\overline{\mathrm{E}}_{S}$) function is used.
2. Applies only when the asynchronous (E) function is used.
3. Transition is measured at steady state High level -500 mV or steady state Low level +500 mV on the output from the 1.5 V level on the input with loads shown in Figure 1b.

AC Test Loads and Waveforms $[5,6,7]$

Figure 1a

0121-4
Figure 1b

Equivalent to:

THÉVENIN EQUIVALENT

OUTPUT O—— 2.0 V 0121-6

Functional Description

The CY7C245A is a CMOS electrically Programmable Read Only Memory organized as 2048 words x 8 -bits and is a pin-for-pin replacement for bipolar TTL fusible link PROMs. The CY7C245A incorporates a D-type, masterslave register on chip, reducing the cost and size of pipelined microprogrammed systems and applications where accessed PROM data is stored temporarily in a register. Additional flexibility is provided with a programmable synchronous (\bar{E}_{S}) or asynchronous $(\overline{\mathrm{E}})$ output enable and asynchronous initialization (INIT).
Upon power-up the state of the outputs will depend on the programmed state of the enable function ($\overline{\mathrm{E}}_{S}$ or $\overline{\mathrm{E}}$). If the synchronous enable (E_{S}) has been programmed, the register will be in the set condition causing the outputs
4. Tests are performed with rise and fall times of 5 ns or less.
5. See Figure $1 a$ for all switching characteristics except $\mathrm{t}_{\mathbf{H Z}}$.
6. See Figure $1 b$ for t_{HZ}.
7. All device test loads should be located within $2^{\prime \prime}$ of device outputs.
8. See the last page of this specification for Group A subgroup testing information.

0121-5
Figure 2
$\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$ to be in the OFF or high impedance state. If the asynchronous enable $(\overline{\mathrm{E}})$ is being used, the outputs will come up in the OFF or high impedance state only if the enable ($\overline{\mathrm{E}}$) input is at a HIGH logic level. Data is read by applying the memory location to the address inputs ($\mathrm{A}_{0}-\mathrm{A}_{10}$) and a logic LOW to the enable input. The stored data is accessed and loaded into the master flip-flops of the data register during the address set-up time. At the next LOW-to-HIGH transition of the clock (CP), data is transferred to the slave flip-flops, which drive the output buffers, and the accessed data will appear at the outputs ($\mathrm{O}_{0}-\mathrm{O}_{7}$).
If the asynchronous enable $(\overline{\mathrm{E}})$ is being used, the outputs may be disabled at any time by switching the enable to a

Functional Description (Continued)

ogic HIGH, and may be returned to the active state by ;witching the enable to a logic LOW.
If the synchronous enable ($\overline{\mathrm{E}_{S}}$) is being used, the outputs vill go to the OFF or high impedance state upon the next rositive clock edge after the synchronous enable input is ;witched to a HIGH level. If the synchronous enable pin is ;witched to a logic LOW, the subsequent positive clock sdge will return the output to the active state. Following a oositive clock edge, the address and synchronous enable nputs are free to change since no change in the output will jccur until the next low to high transition of the clock. This unique feature allows the CY7C245A decoders and sense amplifiers to access the next location while previously addressed data remains stable on the outputs.
System timing is simplified in that the on-chip edge triggered register allows the PROM clock to be derived directly from the system clock without introducing race conditions. The on-chip register timing requirements are similar to those of discrete registers available in the market.

The CY7C245A has an asynchronous initialize input (INIT). The initialize function is useful during power-up and time-out sequences and can facilitate implementation of other sophisticated functions such as a built-in "jump start" address. When activated the initialize control input causes the contents of a user programmed 2049th 8-bit word to be loaded into the on-chip register. Each bit is programmable and the initialize function can be used to load any desired combination of " 1 "s and " 0 "s into the register. In the unprogrammed state, activating INIT will generate a register CLEAR (all outputs LOW). If all the bits of the initialize word are programmed, activating INIT performs a register PRESET (all outputs HIGH).
Applying a LOW to the INIT input causes an immediate load of the programmed initialize word into the master and slave flip-flops of the register, independent of all other inputs, including the clock (CP). The initialize data will appear at the device outputs after the outputs are enabled by bringing the asynchronous enable ($\overline{\mathrm{E}}$) LOW.

Switching Waveforms

Notes on Testing

Incoming test procedures on these devices should be carefully planned, taking into account the high performance and output drive capabilities of the parts. The following notes may be useful.

1. Ensure that adequate decoupling capacitance is employed across the device $V_{C C}$ and ground terminals. Multiple capacitors are recommended, including a $0.1 \mu \mathrm{~F}$ or larger capacitor and a $0.01 \mu \mathrm{~F}$ or smaller capacitor placed as close to the device terminals as possible. Inadequate decoupling may result in large variations of power supply voltage, creating erroneous function or transient performance failures.
2. Do not leave any inputs disconnected (floating) during any tests.
3. Do not attempt to perform threshold tests under AC conditions. Large amplitude, fast ground current transients normally occur as the device outputs discharge the load capacitances. These transients flowing through the parasitic inductance between the device ground pin and the test system ground can create significant reductions in observable input noise immunity.
4. Output levels are measured at 1.5 V reference levels.
5. Transition is measured at steady state HIGH level -500 mV or steady state LOW level +500 mV on the output from the 1.5 V level on inputs with load shown in Figure Ib.

Typical DC and AC Characteristics

CLOCK TO OUTPUT TIME vs. TEMPERATURE

OUTPUT SOURCE CURRENT
vs. VOLTAGE

NORMALIZED SUPPLY CURRENT vs. AMBIENT TEMPERATURE

NORMALIZED SETUP TIME
vs. SUPPLY VOLTAGE

TYPICAL ACCESS TIME CHANGE
vs. OUTPUT LOADING

CLOCK TO OUTPUT TIME
vs. $V_{C C}$

NORMALIZED SETUP TIME
vs. TEMPERATURE

OUTPUT SINK CURRENT vs. OUTPUT VOLTAGE

0121-9

Erasure Characteristics

Wavelengths of light less than 4000 Angstroms begin to erase the 7C245A. For this reason, an opaque label should be placed over the window if the PROM is exposed to sunlight or fluorescent lighting for extended periods of time.
The recommended dose for erasure is ultraviolet light with a wavelength of 2537 Angstroms for a minimum dose (UV intensity \times exposure time) of $25 \mathrm{Wsec} / \mathrm{cm}^{2}$. For an ultraviolet lamp with a $12 \mathrm{~mW} / \mathrm{cm}^{2}$ power rating the exposure time would be approximately 30-35 minutes. The 7C245A needs to be within 1 inch of the lamp during erasure. Permanent damage may result if the PROM is exposed to high intensity UV light for an extended period of time. 7258 $\mathrm{Wsec} / \mathrm{cm}^{2}$ is the recommended maximum dosage.

Device Programming

OVERVIEW:

There are three independent programmable functions contained in the 7C245A CMOS 2K x 8 Registered PROM; the $2 \mathrm{~K} \times 8$ array, the initial byte, and the synchronous enable bit. All of the programming elements are "EPROM" cells, and are in an erased state when the device is shipped. This erased state manifests itself differently in each case. The erased state for ENABLE bit is the "ASYNCHRONOUS ENABLE" mode. The erased state for the "INITIAL BYTE" is all " 0 's" or "LOW". The "INITIAL BYTE" may be accessed operationally thru the use of the initialize function.

DC Programming Parameters $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Table 1

Parameter	Description	Min.	Max.	Units
$\mathrm{V}_{\mathrm{PP}}{ }^{[1]}$	Programming Voltage	12.0	13.0	V
$\mathrm{~V}_{\mathrm{CCP}}$	Supply Voltage	4.75	5.25	V
$\mathrm{~V}_{\mathrm{IHP}}$	Input High Voltage	3.0		V
$\mathrm{~V}_{\mathrm{ILP}}$	Input Low Voltage		0.4	V
$\mathrm{~V}_{\mathrm{OH}}{ }^{[2]}$	Output High Voltage	2.4		V
$\mathrm{~V}_{\mathrm{OL}}{ }^{[2]}$	Output Low Voltage		0.4	V
I_{PP}	Programming Supply Current		50	mA

AC Programming Parameters $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Table 2

Parameter	Description	Min.	Max.	Units
$t_{\text {PP }}$	Programming Pulse Width	200	10,000	$\mu \mathrm{~s}$
t_{AS}	Address Setup Time	1.0		$\mu \mathrm{~s}$
t_{DS}	Data Setup Time	1.0		$\mu \mathrm{~s}$
t_{AH}	Address Hold Time	1.0		$\mu \mathrm{~s}$
t_{DH}	Data Hold Time	1.0		$\mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}[3]$	VPP Rise and Fall Time	1.0		$\mu \mathrm{~s}$
t_{VD}	Delay to Verify	1.0		$\mu \mathrm{~s}$
t_{VP}	Verify Pulse Width	2.0		$\mu \mathrm{~s}$
t_{DV}	Verify Data Valid			$\mu \mathrm{s}$
t_{DZ}	Verify HIGH to High Z		1.0	$\mu \mathrm{~s}$

Notes:

1. $\mathrm{V}_{\mathrm{CCP}}$ must be applied prior to V_{PP}.
2. During verify operation.
3. Measured 10% and 90% points.

SEMICONDUCTOR

Mode Selection

Table 3

Mode		Pin Function ${ }^{\text {[1] }}$					$\begin{gathered} \text { Outputs } \\ (9-11,13-17) \end{gathered}$
	Read or Output Disable	A_{3}	CP	$\overline{\mathbf{E}} / \overline{\mathbf{E}}_{\mathbf{S}}$	$\overline{\text { INIT }}$	\mathbf{A}_{0}	
	Other	A_{3}	PGM	$\overline{\text { VFY }}$	$\mathbf{V P P}$	A_{0}	
	Pin	(5)	(18)	(19)	20	(8)	
Read [2,3]		X	X	$\mathrm{V}_{\text {IL }}$	V_{IH}	X	Data Out
Output Disable ${ }^{[5]}$		X	X	$\mathrm{V}_{\text {IH }}$	$V_{\text {IH }}$	X	High Z
Program ${ }^{44}$		X	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {PP }}$	X	Data In
Program Verify [4]		X	$V_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {PP }}$	X	Data Out
Program Inhibit ${ }^{\text {[4] }}$		X	$V_{\text {IHP }}$	$V_{\text {IHP }}$	$V_{\text {PP }}$	X	High Z
Intelligent Program ${ }^{\text {[4] }}$		X	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	V_{PP}	X	Data In
Program Synch Enable ${ }^{[4]}$		$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$V_{\text {IHP }}$	$\mathrm{V}_{\text {PP }}$	$V_{P P}$	High Z
Program Initial Byte ${ }^{[4]}$		VILP	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {PP }}$	$V_{\text {PP }}$	Data In

Notes:

1. $X=$ Don't care but not to exceed $V_{P P}$.
2. During read operation, the output latches are loaded on a " 0 " to " 1 " transition of CP.
3. If the registered device is being operated in a synchronous mode, pin 19 must be LOW prior to the " 0 "' to " 1 " transition on CP (18) that loads the register.

Figure 3. Programming Pinouts
4. During programming and verification, all unspecified pins to be at VILP.
5. If the registered device is being operated in a synchronous mode, pin 19 must be HIGH prior to the " 0 " to " 1 " transition on CP (18) that loads the register.

The CY7C245A programming algorithm allows significantly faster programming than the "worst case" specification of 10 msec .

Typical programming time for a byte is less than 2.5 msec . The use of EPROM cells allows factory testing of programmed cells, measurement of data retention and erasure to ensure reliable data retention and functional performance. A flowchart of the algorithm is shown in Figure 4.

The algorithm utilizes two different pulse types: initial and overprogram. The duration of the PGM pulse (tpp) is 0.2 msec which will then be followed by a longer overprogram pulse of $4(0.1)(\mathrm{X}) \mathrm{msec}$. X is an iteration counter and is equal to the NUMBER of the initial 0.2 msec pulses applied before verification occurs. Up to ten 0.2 msec pulses are provided before the overprogram pulse is applied.
The entire sequence of program pulses and byte verifications is performed at $\mathrm{V}_{\mathrm{CCP}}=5.0 \mathrm{~V}$. When all bytes have been programmed all bytes should be compared (Read mode) to original data with $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.

Bit Map Data

Programmer Address		RAM Data
Decimal	Hex	Contents
0	0	DATA
\bullet	\bullet	\bullet
\bullet	\bullet	\bullet
\bullet	\bullet	\bullet
2047	7FF	DATA
2048	800	INIT BYTE
2049	801	CONTROL BYTE

Control Byte
00 Asynchronous output enable (default state)
01 Synchronous output enable

Figure 4. Programming Flowchart

Programming Sequence 2K x 8 Array

Power the device for normal read mode operation with pin 18, 19 and 20 at VIH. $_{\text {IH }}$ Per Figure 5 take pin 20 to $\mathrm{V}_{\text {Pp. }}$. The device is now in the program inhibit mode of operation with the output lines in a high impedance state; see Figures 5 and 6. Again per Figure 5 address program and verify one byte of data. Repeat this for each location to be programmed.
If the brute force programming method is used, the pulse width of the program pulse should be 10 ms , and each
location is programmed with a single pulse. Any location that fails to verify causes the device to be rejected.
If the intelligent programming technique is used, the program pulse width should be $200 \mu \mathrm{~s}$. Each location is ultimately programmed and verified until it verifies correctly up to and including 10 times. When the location verifies, one additional programming pulse should be applied of duration 4X the sum of the previous programming pulses before advancing to the next address to repeat the process.

Figure 5. PROM Programming Waveforms

Figure 6. Initial Byte Programming Waveforms

Programming the Initialization Byte

The CY7C245A registered PROM has a 2049th byte of data used to initialize the value of the register. This initial byte is value " 0 " when the part is received. If the user desires to have a value other than " 0 " for register initialization, this must be programmed into the 2049th byte. This byte is programmed in a similar manner to the 2048 normal bytes in the array except for two considerations. First, since all of the normal addresses of the part are used up, a super voltage will be used to create additional effective addresses. The actual address has $V_{P P}$ on A_{0} pin 8, and $V_{\text {ILP }}$ on A_{3}, pin 5, per Table 3. The programming and verification of "INITIAL BYTE" is accomplished operationally by performing an initialize function.

Programming Synchronous Enable

The CY7C245A provides for both a synchronous and asynchronous enable function. The device is delivered in an asynchronous mode of operation and only requires that the user alter the device if synchronous operation is required. The determination of the option is accomplished thru the use of an EPROM cell which is programmed only if synchronous operation is required. As with the INITIAL byte, this function is addressed thru the use of a supervoltage. Per Table 3, $\mathrm{V}_{P P}$ is applied to pin $8\left(\mathrm{~A}_{0}\right)$ with pin $5\left(\mathrm{~A}_{3}\right)$ at $\mathrm{V}_{\text {IHP }}$. This addresses the cell that programs synchronous enable. Programming the cell is accomplished with a 10 ms program pulse on pin $18(\overline{\mathrm{PGM}})$ but does not require any data as there is no choice as to how synchronous enable may be programmed, only if it is to be programmed.

Figure 7. Program Synchronous Enable

Verification of Synchronous Enable

Verification of the synchronous enable function is accomplished operationally. Power the device for read operation with pin 20 at $V_{\text {IH }}$, cause clock pin 18 to transition from $\mathrm{V}_{\text {IL }}$ to $\mathrm{V}_{\text {IH. }}$. The output should be in a High Z state. Take pin 20, ENABLE, to $V_{I L}$. The outputs should remain in a high Z state. Transition the clock from $V_{I L}$ to $V_{I H}$, the outputs should now contain the data that is present. Again set pin 19 to V_{IH}. The output should remain driven. Clocking pin 18 once more from $V_{\text {IL }}$ to $V_{\text {IH }}$ should place the outputs again in a High Z state.

Blank Check

A virgin device contains all zeros. To blank check this PROM, use the verify mode to read locations 0 thru 2047. A device is considered virgin if all locations are " 0 ' s " when addressed.

Ordering Information

Speed (ns)		$\mathbf{I C C}_{\mathbf{C l}}$$\mid \mathbf{m A}$	Ordering Code	Package Type	Operating Range
tsA	tco				
18	12	120	CY7C245A-18PC	P13	Commercial
			CY7C245A-18WC	W14	
25	15	90	CY7C245A-25PC	P13	Commercial
			CY7C245A-25SC	S13	
			CY7C245A-25WC	W14	
			CY7C245A-25LC	L64	
		120	CY7C245A-25DMB	D14	Military
			CY7C245A-25QMB	Q64	
			CY7C245A-25WMB	W14	
			CY7C245A-25LMB	L64	

Speed (ns)		$\left\lvert\, \begin{aligned} & \mathbf{I}_{\mathbf{C C}} \\ & \mathbf{m A} \end{aligned}\right.$	Ordering Code	PackageType	Operating Range
tSA	tCO				
35	20	60	CY7C245AL-35PC	P13	Commercial
			CY7C245AL-35WC	W14	
		90	CY7C245A-35PC	P13	
			CY7C245A-35SC	S13	
			CY7C245A-35WC	W14	
			CY7C245A-35LC	L64	
		120	CY7C245A-35WMB	W14	Military
			CY7C245A-35LMB	L64	
			CY7C245A-35DMB	D14	
			CY7C245A-35QMB	Q64	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
\mathbf{V}_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathbf{V}_{\mathbf{I L}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{SA}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{CO}	$7,8,9,10,11$

Document \# : 38-00004-A

Features

- CMOS for optimum
speed/power
- Windowed for reprogrammability
- High speed
- 45 ns (commercial)
- 55 ns (military)
- Low power
- 550 mW (commercial)
- 660 mW (military)
- Super low standby power (7C251)
- Less than 165 mW when deselected
- Fast access: 50 ns
- EPROM technology 100% programmable
- Slim 300 mil or standard 600 mil packaging available
- $\mathbf{5 V} \pm \mathbf{1 0 \%} \mathrm{V}_{\mathrm{CC}}$, commercial and military
- TTL compatible I/O
- Direct replacement for bipolar PROMs
- Capable of withstanding $>\mathbf{2 0 0 1 V}$ static discharge

Product Characteristics

The CY7C251 and CY7C254 are high performance 16,384 word by 8 bit CMOS PROMs. When deselected, the 7C251 automatically powers down into a low power stand-by mode. It is packaged in the 300 mil wide package. The 7C254 is packaged in 600 mil wide packages and does not power down when deselected. The 7C251 and 7C254 reprogrammable CERDIP packages are equipped with an erasure window; when exposed to UV light, these PROMs are erased and can then be reprogrammed. The memory cells utilize proven EPROM floating gate technology and byte-wide intelligent programming algorithms.

16,384 x 8 PROM Power Switched and Reprogrammable

The CY7C251 and CY7C254 are plugin replacements for bipolar devices and offer the advantages of lower power, superior performance and programming yield. The EPROM cell requires only 12.5 V for the supervoltage and low current requirements allow for gang programming. The EPROM cells allow for each memory location to be tested 100%, as each location is written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming the product will meet DC and AC specification limits.
Reading is accomplished by placing all four chip selects in their active states. The contents of the memory location addressed by the address lines ($\mathrm{A}_{0}-$ A_{13}) will become available on the output lines $\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$.

Selection Guide

		7C251-45 7C254-45	7C251-55 7C254-55	7C251-65 7C254-65
Maximum Access Time (ns)		$\mathbf{4 5}$	$\mathbf{5 5}$	65
Maximum Operating Current (mA)	Commercial	100	100	100
Standby Current (mA) (7C251 only)	Military		120	120
	Commercial	30	30	30

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 28 to Pin 14)
-0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage -3.0 V to +7.0 V
DC Program Voltage (Pin 22) 13.5V

Static Discharge Voltage
$>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latchup Current
$>200 \mathrm{~mA}$
UV Exposure . $7258 \mathrm{Wsec} / \mathrm{cm}^{2}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[5]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[6]}$

Parameters	Description	Test Conditions		$\begin{aligned} & \hline 7 \mathrm{C} 251-45 \\ & \text { 7C254-45 } \\ & \hline \end{aligned}$		$\begin{array}{r} \text { 7C251-55,65 } \\ \text { 7C254-55,65 } \\ \hline \end{array}$		Units
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0$		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=16.0 \mathrm{~m}$			0.5		0.5	V
V_{IH}	Input HIGH Level 1 1]			2.0		2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Level[1]				0.8		0.8	V
$\mathrm{I}_{\text {IX }}$	Input Current	GND $\geq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$		-10	$+10$	-10	+10	$\mu \mathrm{A}$
V_{CD}	Input Diode Clamp Voltage			Note 2		Note 2		
I_{OZ}	Output Leakage Current	$\mathrm{V}_{\mathrm{OL}} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\mathrm{OH}}$, Output Disabled		-40	+40	-40	$+40$	$\mu \mathrm{A}$
Ios	Output Short Circuit Current ${ }^{[3]}$	$\mathbf{V}_{\text {CC }}=$ Max., $\mathbf{V}_{\text {OUT }}=\mathbf{G N D}$		-20	-90	-20	-90	mA
I_{CC}	Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max.}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Commercial		100		100	mA
			Military				120	mA
$\mathrm{I}_{\text {SB }}$	Standby Supply Current (7C251)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Commercial		30		30	mA
			Military				35	mA

Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	10	pF
Cout	Output Capacitance		10	

Notes:

1. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
2. The CMOS process does not provide a clamp diode. However, the CY7C251 and CY7C254 are insensitive to - 3 V dc input levels and -5 V undershoot pulses of less than 10 ns (measured at 50% point).
3. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
4. Tested initially and after any design or process changes that may affect these parameters.
5. T_{A} is the "instant on" case temperature.
6. See the last page of this specification for Group A subgroup testing information.

Switching Characteristics Over the Operating Range ${ }^{[6,7]}$

Parameters	Description	$\begin{aligned} & \text { 7C251-45 } \\ & \text { 7C254-45 } \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{C} 251-55 \\ & \text { 7C254-55 } \end{aligned}$		$\begin{aligned} & \text { 7C251-65 } \\ & \text { 7C254-65 } \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
t_{AA}	Address to Output Valid		45		55		65	ns
$\mathrm{t}_{\mathrm{HZCS}}^{1}$	Chip Select Inactive to High Z [8, 9]		25		30		35	ns
$\mathrm{t}_{\mathrm{HZCS}}^{2}$	Chip Select Inactive to High Z (7C251, $\overline{\mathrm{CS}}_{1}$ Only) ${ }^{[8]}$		50		60		70	ns
$\mathrm{t}_{\mathrm{ACS}}{ }_{1}$	Chip Select Active to Output Valid ${ }^{\text {[9] }}$		25		30		35	ns
$\mathrm{t}_{\mathrm{ACS}}^{2}$	Chip Select Active to Output Valid (7C251, $\overline{\mathrm{CS}}_{1}$ Only)		50		60		70	ns
$\mathrm{t}_{\text {PU }}$	Chip Select Active to Power Up (7C251)	0		0		0		ns
tpD	Chip Select Inactive to Power Down (7C251)		50		60		70	ns

AC Test Loads and Waveforms

Figure 1a

Figure 1b

0086-6
Figure 2. Input Pulses

Equivalent to: THÉVENIN EQUIVALENT

0086-7

Notes:

7. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and loads shown in Figure Ia, 1 b.

Erasure Characteristics

Wavelengths of light less than 4000 Angstroms begin to erase the 7C251 and 7C254 in the windowed package. For this reason, an opaque label should be placed over the window if the PROM is exposed to sunlight or fluorescent lighting for extended periods of time.
The recommended dose of ultraviolet light for erasure is a wavelength of 2537 Angstroms for a minimum dose (UV
8. $\mathrm{t}_{\text {HZCS }}$ is tested with load shown in Figure 1b. Transition is measured at steady state High level -500 mV or steady state Low level +500 mV on the output from the 1.5 V level on the input.
9. $\mathrm{t}_{\mathrm{HZCS}_{1}}$ and $\mathrm{t}_{\mathrm{ACS}}^{1}$ refers to 7 C 253 and 7C254 (all chip selects); and $7 \mathrm{C} 251\left(\mathrm{CS}_{2}, \mathrm{CS}_{3}\right.$ and $\overline{\mathrm{CS}}_{4}$ only).
intensity \times exposure time) or $25 \mathrm{Wsec} / \mathrm{cm}^{2}$. For an ultraviolet lamp with a $12 \mathrm{~mW} / \mathrm{cm}^{2}$ power rating the exposure time would be approximately 45 minutes. The 7 C 251 or 7 C 254 needs to be within 1 inch of the lamp during erasure. Permanent damage may result if the PROM is exposed to high intensity UV light for an extended period of time. $7258 \mathrm{~W} \times \mathrm{sec} / \mathrm{cm}^{2}$ is the recommended maximum dosage.

Device Programming

The CY7C251 and CY7C254 all program identically. They utilize an intelligent programming algorithm to assure consistent programming quality. These 128 K PROMS use a single ended memory cell design. In an unprogrammed state, the memory contains all " 0 "'s. During programming, a " 1 " on a data-in pin causes the addressed location to be programmed, and a " 0 " causes the location to remain unprogrammed.

Programming Pinout

The Programming Pinout of all three devices are shown in Figure 3 below, and are identical. The programming mode is entered by raising the pin 22 to $V_{\text {Pp. The }}$ Thdressed location is programmed and verified with the application of a PGM and VFY pulse applied to pins 23 and 21 respectively. Entering and exiting the programming mode should be done with care. Proper sequencing as described in the dialog on the programming algorithm and shown in the timing diagram and programming flow chart must be implemented.

Programming And Blankcheck

Blankcheck

Blankcheck is accomplished by performing a verify cycle ($\overline{\mathrm{VFY}}$ toggles on each address), sequencing through all memory address locations, where all the data read will be " 0 "s.

Programming Algorithm

Programming is accomplished with an intelligent algorithm. The sequence of operations is to enter the programming mode by placing $V_{P P}$ on pin 22 . This should be done after a minimum delay from power up, and be removed prior to power down by the same delay (see the timing diagram and AC specifications for details). Once in this mode, programming is accomplished by addressing a location, placing the data to be programmed into a location on the data pins, and clocking the PGM signal from $V_{\text {IHP }}$ to $V_{\text {ILP }}$ and back to $\mathrm{V}_{\text {IHP }}$ with a pulse width of $200 \mu \mathrm{~s}$. The data is removed from the data pins and the content of the location is then verified by taking the $\overline{\mathrm{VFY}}$ signal from $\mathrm{V}_{\text {IHP }}$ to $\mathrm{V}_{\text {ILP }}$, comparing the output with the desired data and then returning $\overline{\mathrm{VFY}}$ to $\mathrm{V}_{\mathrm{IHP}}$. If the contents are correct, a second overprogram pulse of 4 times the original 200μ s is delivered with the data to be programmed again on the data pins. If the data is not correct, a second $200 \mu \mathrm{~s}$ pulse is applied to $\overline{\mathbf{P G M}}$ with the data to be programmed on the data pins. The compare and overprogram operation is repeated with an overprogram pulse width 4 times the sum of the initial program pulses. This operation is continued until the location is programmed or 10 initial program pulses have been attempted. If on the 10 th attempt, the location fails to verify, an overprogram pulse of 8 ms is applied, and the content of the location is once more verified. If the location still fails to verify, the device is rejected. Once a location verifies successfully, the address is advanced to the next location, and the process is repeated until all locations are programmed. After all locations are programmed, they should be verified at $\mathrm{V}_{\mathrm{CCP}}=5.0 \mathrm{~V}$.

0086-8

Figure 3. Programming Pinout (DIP Package)

Operating Modes

Read

Read is the normal operating mode for a programmed device. In this mode, all signals are normal TTL levels. The PROM is addressed with a 14 bit field, 4 chip select bits, and the contents of the addressed location appear on the data out pins.

Program, Program Inhibit, Program Verify

These modes are entered by placing a high voltage V_{PP} on pin 22. Pin 23 becomes an active LOW program ($\overline{\mathrm{PGM}}$) signal and pin 21 becomes an active LOW verify (VFY) signal. Pins 21 and 23 should never be active LOW at the same time. The PROGRAM mode exists when $\overline{\text { PGM }}$ is LOW, and VFY is HIGH. The VERIFY mode exists when the reverse is true, $\overline{\text { PGM HIGH and } \overline{\text { VFY }} \text { LOW and the }}$ PROGRAM INHIBIT mode is entered with both PGM and VFY HIGH. PROGRAM INHIBIT is specifically provided to allow data to be placed on and removed from the data pins without conflict.

Blankcheck

Blankcheck mode is identical to PROGRAM VERIFY and is entered in the same manner as described above.

Programming Sequence

The flowchart in Figure 4 is a detailed description of the intelligent programming cycle used to program the devices covered in this specification. Of particular importance are the areas of power sequencing used to enter and exit the programming operation. This flowchart combined with the timing diagrams AC and DC parameters accurately describe this complete operation.
The timing diagram in Figure 5 contains all of the timing information necessary for describing the relations required for programming the devices covered in this specification. Some of the information pertains to each cycle of programming as specified in Figure 4, and some pertains only to entry and exit from the programming mode of operation.
$T_{P}, T_{P D}$ and $T_{H P}$ refer to the entry and exit from the programming mode of operation. Note that this is referenced to PGM and VFY operations.
$\mathrm{T}_{\mathrm{DS}}, \mathrm{T}_{\mathrm{AS}}, \mathrm{T}_{\mathrm{AH}}$ and T_{DH} refer to the required setup and hold times for the address and data for $\overline{\text { PGM }}$ and $\overline{V F Y}$ operations. These parameters must be adhered to, in all operations, including $V_{F Y}$. This precludes the option then of verifying the device by holding the V_{FY} signal LOW, and sequencing the addresses.

Table 1. Operating Modes

Mode	Read or Output Disable	Pin Function				$\begin{gathered} \text { Outputs } \\ (11-13,15-19) \end{gathered}$
		$\overline{\mathbf{C S}}_{4}$	CS_{3}	$\overline{\mathbf{C S}}_{2}$	$\overline{C S}_{1}$	
	Other	N/A	$\overline{\text { VFY }}$	$\mathbf{V P P}_{\mathbf{P}}$	$\overline{\text { PGM }}$	
	Pin Number	(20)	(21)	(22)	(23)	
Read		$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	Data Out
Output Disable ${ }^{[1]}$		X	X	X	V_{IH}	High Z
Output Disable ${ }^{[1]}$		X	X	V_{IH}	X	High Z
Output Disable [1]		X	$\mathrm{V}_{\text {IL }}$	X	X	High Z
Output Disable ${ }^{[1]}$		$\mathrm{V}_{\text {IH }}$	X	X	X	High Z
Program		X	$\mathrm{V}_{\text {IHP }}$	$V_{P P}$	$\mathrm{V}_{\text {ILP }}$	Data In
Program Verify		X	$\mathrm{V}_{\text {ILP }}$	$V_{\text {PP }}$	$V_{\text {IHP }}$	Data Out
Program Inhibit		X	$V_{\text {IHP }}$	$V_{\text {PP }}$	$V_{\text {IHP }}$	High Z
Blank Check		X	$\mathrm{V}_{\text {ILP }}$	$V_{P P}$	$\mathrm{V}_{\text {IHP }}$	Data Out

Note:

1. $X=$ Don't care but not to exceed $V_{C C}+5 \%$.
```
                        O
```

```
                        O
```

 SEMICONDUCTOR
 R

ypical AC and DC Characteristics

NORMALIZED ACCESS TIME vs. TEMPERATURE

NORMALIZED SUPPLY CURRENT

OUTPUT SOURCE CURRENT vs. VOLTAGE

NORMALIZED ACCESS TIME vs. SUPPLY VOLTAGE

Figure 4. Programming Flowchart

Figure 5. Programming Waveforms
Note: Power, V_{PP} and V_{CC} should not be cycled for each program verify cycle but remain static during programming.

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
45	CY7C251-45PC CY7C251-45WC CY7C254-45WC CY7C254-45PC CY7C254-45DC	$\begin{aligned} & \hline \text { P21 } \\ & \text { W22 } \\ & \text { W16 } \\ & \text { P15 } \\ & \text { D16 } \\ & \hline \end{aligned}$	Commercial
55	CY7C251-55PC CY7C251-55WC CY7C254-55WC CY7C254-55PC CY7C254-55DC	$\begin{aligned} & \hline \text { P21 } \\ & \text { W22 } \\ & \text { W16 } \\ & \text { P15 } \\ & \text { D16 } \\ & \hline \end{aligned}$	
	CY7C251-55WMB CY7C251-55DMB CY7C254-55WMB CY7C254-55DMB	$\begin{aligned} & \text { W22 } \\ & \text { D22 } \\ & \text { W16 } \\ & \text { D16 } \\ & \hline \end{aligned}$	Military
65	CY7C251-65PC CY7C251-65WC CY7C254-65WC CY7C254-65PC CY7C254-65DC	$\begin{aligned} & \text { P21 } \\ & \text { W22 } \\ & \text { W16 } \\ & \text { P15 } \\ & \text { D16 } \\ & \hline \end{aligned}$	Commercial
	CY7C25i-65WMB CY7C251-65DMB CY7C251-65LMB CY7C251-65QMB CY7C254-65WMB CY7C254-65LMB CY7C254-65QMB CY7C254-65DMB	$\begin{aligned} & \text { W22 } \\ & \text { D22 } \\ & \text { L55 } \\ & \text { Q55 } \\ & \text { W16 } \\ & \text { L55 } \\ & \text { Q55 } \\ & \text { D16 } \\ & \hline \end{aligned}$	Military

NDUCTOR

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB}}{ }^{[2]}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS} 1}[1]$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS} 2}{ }^{[2]}$	$7,8,9,10,11$

Notes:

1. 7C254 only.
2. 7C251 only.

Document \#: 38-00056-C

Features

- CMOS for optimum speed/power
- Windowed for reprogrammability
- High speed
- 35 ns (commercial)
- 45 ns (military)
- Low power
- 550 mW (commercial)
- 660 mW (military)
- Super low standby power (7C261)
- Less than 185 mW when deselected
- Fast access: 35 ns
- EPROM technology $\mathbf{1 0 0 \%}$ programmable
- Slim $\mathbf{3 0 0}$ mil or standard 600 mil packaging available
- $\mathbf{5 V} \pm \mathbf{1 0 \%} \mathrm{V}_{\mathrm{CC}}$, commercial and military
- TTL compatible I/O
- Direct replacement for bipolar PROMs
- Capable of withstanding $>\mathbf{2 0 0 0 V}$ static discharge

Product Characteristics

The CY7C261, CY7C263 and
CY7C264 are high performance 8192
word by 8 bit CMOS PROMs. When deselected, the 7C261 automatically powers down into a low power standby mode. It is packaged in the 300 mil wide package. The 7C263 and 7C264 are packaged in 300 mil and 600 mil wide packages respectively and do not power down when deselected. The reprogrammable CERDIP packages are equipped with an erasure window; when exposed to UV light, these PROMs are erased and can then be reprogrammed. The memory cells utilize proven EPROM floating gate technology and byte-wide intelligent programming algorithms.

8192×8 PROM Power Switched and Reprogrammable

The CY7C261, CY7C263 and

 CY7C264 are plug-in replacements for bipolar devices and offer the advantages of lower power, superior performance and programming yield. The EPROM cell requires only 12.5 V for the supervoltage and low current requirements allow for gang programming. The EPROM cells allow for each memory location to be tested 100%, as each location is written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming the product will meet DC and AC specification limits.Reading is accomplished by placing an active LOW signal on $\overline{\mathrm{CS}}$. The contents of the memory location addressed by the address lines $\left(\mathrm{A}_{0}-\mathrm{A}_{12}\right)$ will become available on the output lines $\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$.

Logic Block Diagram

0052-1

Pin Configurations

0052-2

0052-3

Selection Guide

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	
mbient Temperature with	
Power Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 24 to Pin 12)	-0.5 V to +7.0 V
DC Voltage Applied to Outputs in High Z State.	-0.5 V to +7.0 V
DC Input Voltage	-3.0 V to +7.0 V
DC Program Voltage (Pin 19 DIP, Pin 23 LCC)	

Static Discharge Voltage . > 2001 V (per MIL-STD-883, Method 3015)
Latchup Current . $>200 \mathrm{~mA}$
UV Exposure . 7258 Wsec/cm ${ }^{2}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[5]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[6]}$

Parameters	Description	Test Conditions		$\begin{aligned} & \hline \text { 7C261-35, 40 } \\ & \text { 7C263-35, 40 } \\ & \text { 7C264-35,40 } \\ & \hline \end{aligned}$		7C261-45,55 7C263-45,55 7C264-45,55		Units
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0$		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=16.0 \mathrm{~m}$			0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Level [1]			2.0		2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Level ${ }^{[1]}$				0.8		0.8	V
$\mathrm{I}_{\text {IX }}$	Input Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	$\mu \mathrm{A}$
V_{CD}	Input Diode Clamp Voltage			Note 2		Note 2		
I_{OZ}	Output Leakage Current	$\mathrm{V}_{\mathrm{OL}} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {OH }}$, Output Disabled		-40	+40	-40	+40	$\mu \mathrm{A}$
IOS	Output Short Circuit Current ${ }^{[3]}$	$\mathbf{V}_{\text {CC }}=$ Max., $\mathbf{V}_{\text {OUT }}=$ GND		-20	-90	-20	-90	mA
I_{CC}	Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Maxx}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V} \\ & \mathbf{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Commercial		100		100	mA
			Military				120	mA
$\mathrm{I}_{\text {SB }}$	Standby Supply Current (7C261)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Commercial		30		30	mA
			Military				30	mA

Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	5	pF
	$\mathrm{C}_{\mathrm{CC}}=5.0 \mathrm{~V}$	8		

Notes:

1. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
2. The CMOS process does not provide a clamp diode. However, the CY7C261, CY7C263 \& CY7C264 are insensitive to -3 V dc input levels and -5 V undershoot pulses of less than 10 ns (measured at 50% point).
3. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
4. Tested initially and after any design or process changes that may affect these parameters.
5. T_{A} is the "instant on" case temperature.
6. See the last page of this specification for Group A subgroup testing information.

Switching Characteristics Over the Operating Range ${ }^{[5,6]}$

Parameters	Description	7C261-35 7C263-35 7C264-35		$\begin{aligned} & \text { 7C261-40 } \\ & \text { 7C263-40 } \\ & \text { 7C264-40 } \end{aligned}$		$\begin{aligned} & \text { 7C261-45 } \\ & \text { 7C263-45 } \\ & \text { 7C264-45 } \end{aligned}$		7C261-557C263-557C264-55		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t_{AA}	Address to Output Valid		35		40		45		55	ns
$\mathrm{t}_{\mathrm{HZCS}}^{1}$	Chip Select Inactive to High $\mathrm{Z}^{[8]}$		25		25		30		35	ns
$\mathrm{t}_{\mathrm{HZCS}}^{2}$	Chip Select Inactive to High Z (7C261) ${ }^{[8]}$		30		35		45		55	ns
$\mathrm{t}_{\mathrm{ACS}} 1$	Chip Select Active to Output Valid		25		25		30		35	ns
$\mathrm{t}_{\text {ACS }} \mathbf{}$	Chip Select Active to Output Valid (7C261)		40		45		45		55	ns
$\mathrm{t}_{\text {PU }}$	Chip Select Active to Power Up (7C261)	0		0		0		0		ns
$t_{P D}$	Chip Select Inactive to Power Down (7C261)		35		40		45		55	ns

AC Test Loads and Waveforms

Figure 1a

Figure 1b

0052-4

Equivalent to: THÉVENIN EQUIVALENT
OUTPUT O——O 2.0 V 0052-5

Notes:
7. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and
loads shown in Figure 1a, $1 b$.

Erasure Characteristics

Wavelengths of light less than 4000 Angstroms begin to erase the devices in the windowed package. For this reason, an opaque label should be placed over the window if the PROM is exposed to sunlight or fluorescent lighting for extended periods of time.
The recommended dose of ultraviolet light for erasure is a wavelength of 2537 Angstroms for a minimum dose (UV

0052-6

Figure 2. Input Pulses
the least significant bit on pin 8 . These address bits are loaded into an onboard register by clocking pin 21, the latch signal, from $V_{\text {ILP }}$ to $V_{\text {IHP }}$ and back to $V_{\text {ILP }}$. The lower 8 address bits are then placed on pins 8 through 1 , with the least significant bit on pin 8 . The upper 5 bits remain in the onboard latch until a new value is loaded or power is removed from the device. All 256 bytes addressed by the lower 8 bits may be accessed by sequencing the lower 8 addresses without changing the upper 5 bits or relatching the value in the onboard register.

Blankcheck

Blankcheck is accomplished by performing a verify cycle, sequencing through all memory address locations, where all the data read will be " 0 "s.

Programming Algorithm

Programming is accomplished with an intelligent algorithm. The sequence of operations is to enter the programming mode by placing VPP on pin 19. This should be done after a minimum delay from power up, and be removed prior to power down by the same delay (see the timing diagram and AC specifications for details). Once in this mode, programming is accomplished by addressing a location as described above, placing the data to be programmed into a location on the data pins, and clocking the PGM signal from $V_{\text {IHP }}$ to $V_{\text {ILP }}$ and back to $\mathrm{V}_{\text {IHP }}$ with a pulse width of $200 \mu \mathrm{~s}$. The data is removed from the data pins and the content of the location is then verified by taking the $\overline{\text { VFY }}$ signal from $\mathrm{V}_{\text {IHP }}$ to $\mathrm{V}_{\text {ILP }}$, comparing the output with the desired data and then returning $\overline{\mathrm{VFY}}$ to $\mathrm{V}_{\text {IHP. }}$. If the contents are correct, a second overprogram pulse of 4 times the original $200 \mu \mathrm{~s}$ is delivered with the data to be programmed again on the data pins. If the data is not correct, a second 200μ s pulse is applied to $\overline{\text { PGM }}$ with the data to be programmed on the data pins. The compare and overprogram operation is repeated with an overprogram pulse width 4 times the sum of the initial program pulses. This operation is continued until the location is programmed or 10 initial program pulses have been attempted. If on the 10 th attempt, the location fails to verify, an overprogram pulse of 8 ms is applied, and the content of the

Figure 3. Programming Pinout (DIP Package)
location is once more verified. If the location still fails to verify, the device is rejected. Once a location verifies successfully, the address is advanced to the next location, and the process is repeated until all locations are programmed. After all locations are programmed, they should be verified at $\mathrm{V}_{\mathrm{CCP}}=5.0 \mathrm{~V}$.

Operating Modes

Read

Read is the normal operating mode for a programmed device. In this mode, all signals are normal TTL levels. The PROM is addressed with a 13 bit field, a chip select, (active LOW), is applied to the $\overline{\mathrm{CS}}$ pin, and the contents of the addressed location appear on the data out pins.

Program, Program Inhibit, Program Verify

These modes are entered by placing a high voltage V_{Pp} on pin 19, with pins 18 and 20 set to VILp. In this state, pin 21 becomes a latch signal, allowing the upper 5 address bits to be latched into an onboard register, pin 22 becomes an active LOW program ($\overline{\mathrm{PGM}}$) signal and pin 23 becomes an active LOW verify ($\overline{\mathrm{VFY}}$) signal. Pins 22 and 23 should never be active LOW at the same time. The PROGRAM mode exists when $\overline{\text { PGM }}$ is LOW, and VFY is HIGH. The VERIFY mode exists when the reverse is true, $\overline{\text { PGM }}$ HIGH and VFY LOW and the PROGRAM INHIBIT mode is entered with both PGM and VFY HIGH. PROGRAM INHIBIT is specifically provided to allow data to be placed on and removed from the data pins without conflict.

Blankcheck

Blankcheck mode is identical to PROGRAM VERIFY and is entered in the same manner as described above.

Programming Sequence

The flowchart in Figure 4 is a detailed description of the intelligent programming cycle used to program the devices covered in this specification. Of particular importance are the areas of power sequencing used to enter and exit the programming operation. This flowchart combined with the timing diagrams AC and DC parameters accurately describe this complete operation. Note should be taken of the inner and outer addressing loops which allow 256 bytes to be programmed each time the onboard register containing the upper 5 address bits is loaded.
The timing diagram in Figure 5 contains all of the timing information necessary for describing the relations required for programming the devices covered in this specification. Some of the information pertains to each cycle of programming as specified in the inner loops of Figure 5, some for the outer loop where the upper address is advanced, and some pertains only to entry and exit from the programming mode of operation.
In particular, the timing sequence associated with the Latch signal on pin 21 and addresses AY8 through AY12 pertain only to the outer loop where the upper 5 (N in the flow chart) address bits are incremented.
$T_{P}, T_{P D}$ and $T_{H P}$ refer to the entry and exit from the programming mode of operation. Note that this is referenced to LATCH, $\overline{\text { PGM }}$ and $\overline{\mathrm{VFY}}$ operations.
$T_{D S}, T_{A S}, T_{A H}$ and $T_{D H}$ refer to the required setup and hold times for the address and data for $\overline{\text { PGM }}$ and $\overline{V F Y}$ operations. These parameters must be adhered to, in all operations, including $V_{F Y}$. This precludes the option then of verifying the device by holding the V_{FY} signal LOW, and sequencing the addresses.

Table 1. Operating Modes

Mode	Pins 1 thru 3 A7-A5, AX7-AX5	$\begin{gathered} \text { Pins } 4 \text { thru } 8 \\ \text { A4-A0, AX4-AX0 } \\ \text { AY12-AY8 } \end{gathered}$	Pins 9 thru 11 D0 thru D2	Pins 13 thru 17 D3 thru D7	$\begin{gathered} \text { Pin } \\ 18 \end{gathered}$	$\begin{array}{\|c} \text { Pin } \\ 19 \end{array}$	$\begin{gathered} \text { Pin } \\ 20 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 21 \end{gathered}$	$\begin{gathered} \text { Pin } \\ \mathbf{2 2} \end{gathered}$	$\begin{gathered} \text { Pin } \\ 23 \end{gathered}$
Read	A7 thru A5	A4 thru A0	DO0 thru DO2	DO3 thru DO7	A12	A11	$\overline{\mathrm{CS}}$	A10	A9	A8
Program	AX7 thru AX5	$\begin{array}{r} \text { AX4 thru AX0 } \\ \text { AY12-AY8 } \end{array}$	$\mathrm{DI}_{0} \text { thru } \mathrm{DI}_{2}$ Input	$\begin{aligned} & \mathrm{DI}_{3} \text { thru } \mathrm{DI}_{7} \\ & \text { Input } \end{aligned}$	VILP	$V_{\text {PP }}$	$V_{\text {ILP }}$	LAT	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$
Program Inhibit	AX7 thru AX5	$\begin{array}{r} \hline \text { AX4 thru AX0 } \\ \text { AY12-AY8 } \end{array}$	High Z	High Z	$V_{\text {ILP }}$	VPP	$V_{\text {ILP }}$	LAT	VIHP	VIHP
Program Verify	AX7 thru AX5	$\begin{array}{\|r} \hline \text { AX4 thru AX0 } \\ \text { AY12-AY8 } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { DO0 thru DO2 } \\ \text { Output } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { DO3 thru DO7 } \\ \text { Output } \\ \hline \end{array}$	$V_{\text {ILP }}$	$V_{\text {PP }}$	$V_{\text {ILP }}$	LAT	$\mathrm{V}_{\mathrm{IHP}}$	VILP
Blank Check	AX7 thru AX5	$\begin{array}{r} \hline \text { AX4 thru AX0 } \\ \text { AY12-AY8 } \\ \hline \end{array}$	DI_{0} thru DI_{2} Output	DI_{3} thru DI_{7} Output	VILP	VPP	$V_{\text {ILP }}$	LAT	VIHP	VILP

Typical AC and DC Characteristics

TYPICAL ACCESS TIME CHANGE vs. OUTPUT LOADING

Figure 4. Programming Flowchart

Figure 5. Programming Waveforms
Note: Power, V_{PP} and V_{CC} should not be cycled for each program verify cycle but remain static during programming.

Table 2. DC Programming Parameters $\mathrm{T}_{\mathbf{A}}=25^{\circ} \mathrm{C}$

Parameter	Description	Min.	Max.	Units
V_{PP}	Programming Voltage	12.0	13.0	V
$\mathrm{~V}_{\mathrm{CCP}}$	Power Supply Voltage During Programming	4.75	5.25	V
I_{PP}	V $_{\text {PP }}$ Supply Current		50	mA
$\mathrm{~V}_{\mathrm{IHP}}$	Input High Voltage During Programming	3.0	$\mathrm{~V}_{\mathrm{CCP}}$	V
$\mathrm{V}_{\mathrm{ILP}}$	Input Low Voltage During Programming	-3.0	0.4	V
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	2.4		V
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage		0.4	V

Table 3. AC Programming Parameters $\mathrm{T}_{\mathbf{A}}=25^{\circ} \mathrm{C}$

Parameter	Description	Min.	Max.	Units
T_{AS}	Address Setup Time to $\overline{\text { PGM }} / \overline{\mathrm{VFY}}$	1.0		$\mu \mathrm{s}$
$\mathrm{T}_{\text {AH }}$	Address Hold Time from $\overline{\text { PGM }} / \overline{\mathrm{VFY}}$	1.0		$\mu \mathrm{s}$
TDS	Data Setup Time to $\overline{\text { PGM }}$	1.0		$\mu \mathrm{s}$
T ${ }_{\text {DH }}$	Data Hold Time $\overline{\text { PGM }}$	1.0		$\mu \mathrm{s}$
T_{PP}	Program Pulse Width	0.2	10	ms
$\mathrm{T}_{\mathrm{R}, \mathrm{F}}$	VPP Rise and Fall Time	100		ns
$\mathrm{T}_{\text {ALS }}$	Address Setup Time to Latch	1.0		$\mu \mathrm{s}$
$\mathrm{T}_{\text {ALH }}$	Address Hold Time from Latch	1.0		$\mu \mathrm{s}$
T_{LP}	Latch Pulse Width	1.0		$\mu \mathrm{s}$
T_{DV}	Delay to Verify	1.0		μs
TVD	Verify to Data Out		1.0	$\mu \mathrm{s}$
TVH	Data Hold Time from Verify		1.0	$\mu \mathrm{s}$
TVP	Verify Pulse Width	2.0		$\mu \mathrm{s}$
T_{DZ}	Verify to High Z		1.0	$\mu \mathrm{s}$
T_{DP}	Delay to Function	1.0		$\mu \mathrm{s}$
T_{HP}	Hold From Function	1.0		$\mu \mathrm{s}$
$\mathrm{T}_{\mathbf{P}}$	Power Up/Down	20.0		ms

SEMICONDUCTOR

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
35	CY7C261-35PC	P13	Commercial
	CY7C261-35WC	W14	
	CY7C263-35PC	P13	
	CY7C263-35WC	W14	
	CY7C264-35PC	P13	
	CY7C264-35WC	W14	
40	CY7C264-35DC	D12	
	CY7C261-40PC	P13	Commercial
	CY7C261-40WC	W14	
	CY7C263-40PC	P13	
	CY7C263-40WC	W14	
	CY7C264-40PC	P11	
	CY7C264-40DC	D12	
	CY7C264-40WC	W12	
	CY7C261-45PC	P13	
	CY7C261-45WC	W14	
	CY7C263-45PC	P13	
	CY7C263-45WC	W14	
	CY7C264-45PC	P11	
	CY7C264-45DC	D12	
	CY7C264-45WC	W12	
	CY7C261-45WMB	W14	Military
	CY7C261-45DMB	D14	
	CY7C261-45LMB	L64	
	CY7C261-45QMB	Q64	
	CY7C263-45WMB	W14	
	CY7C263-45DMB	D14	
	CY7C263-45LMB	L64	
	CY7C263-45QMB	Q64	
	CY7C264-45DMB	D12	

Speed (ns)	Ordering Code	Package Type	Operating Range
55	CY7C261-55PC	P13	Commercial
	CY7C261-55WC	W14	
	CY7C263-55PC	P13	
	CY7C263-55WC	W14	
	CY7C264-55PC	P11	
	CY7C264-55DC	D12	
	CY7C264-55WC	W12	
	CY7C261-55WMB	W14	Military
	CY7C261-55DMB	D14	
	CY7C261-55LMB	L64	
	CY7C261-55QMB	Q64	
	CY7C263-55WMB	W14	
	CY7C263-55DMB	D14	
	CY7C263-55LMB	L64	
	CY7C263-55QMB	Q64	
	CY7C264-55DMB	D12	
	CY7C264-55WMB	W12	

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB}}[2]$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{HZCS}{ }{ }^{[1]}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{HZCS} 2}{ }^{[2]}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS} 1}[1]$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS} 2}[2]$	$7,8,9,10,11$

Notes:

1. 7C263 and 7C264 only.
2. 7C261 only.

Document \#: 38-00005-C

64K Registered Diagnostic PROM

Features

- CMOS for optimum speed/ power
- High speed
- 40 ns max set-up
- $\mathbf{2 0}$ ns clock to output
- Low power
- 550 mW (commercial)
- 660 mW (military)
- On-chip edge-triggered registers
- Ideal for pipelined microprogrammed systems
- On-chip diagnostic shift register
- For serial observability and controllability of the output register
- EPROM technology
- 100% programmable
- Reprogrammable (7C269W)
- $5 \mathrm{~V} \pm 10 \% \mathrm{~V}_{\mathrm{CC}}$, commercial and military
- Capable of withstanding greater than 2001V static discharge
- Slim, 300 mil 28 pin plastic or hermetic DIP (7C269)

Functional Description

The CY7C268 and CY7C269 are 64K Registered Diagnostic PROMs. They are both organized 8192 words by 8 bits wide, and have both a Pipeline Output Register and an Onboard Diagnostic Shift Register. In addition, both devices feature a Programmable Initialize Byte which may be loaded into the Pipeline Register with the Initialize signal. The Programmable Initialize Byte is the 8193 rd byte in the PROM and its value is programmed at time of use.
The 7C268 has 32 pins and features full diagnostic capabilities while the 7C269 provides limited diagnostics and is available in a space efficient 28 pin package. This allows the designer to optimize his design for either board area efficiency with the 7C269, or combine the 7C268 with other diagnostic products with the standard interface.
CY7C268: The 7C268 provides 13 address signals (A_{0} through A_{12}), 8 data out signals $\left(\mathrm{O}_{0}\right.$ through $\left.\mathrm{O}_{7}\right)$, ENA (enable), PCLK (pipeline clock) and INIT (initialize) for control. The full stan-
dard featured diagnostics of the 7C268 utilizes the SI and SO (shift in and shift out), MODE and DCLK signals. These signals allow serial data to be shifted into and out of the Diagnostic Shift Register at the same time the Pipeline Register is used for normal operation. The MODE signal is used to control the transfer of the information in the Diagnostic Register to the Pipeline Register or the data on the Output Bus into the Diagnostic Register. The data on the Output Bus may be provided from the Pipeline Register or an external source.

When the MODE signal is LOW, the PROM operates in a normal pipeline mode. The contents of the addressed memory location is loaded into the Pipeline Register on the rising edge of PCLK. The outputs are enabled with the ENA signal either synchronously or asynchronously, depending on how the device is configured when programmed. If programmed for asynchronous enable, ENA LOW enables

Logic Block Diagram

Pin Configurations
CY7C268

0112-2

CY7C269

0112-3

Selection Guide

	7C268/9-40	7C268/9-50	7C268/9-60	
Maximum Set-up Time (ns)		40	50	60
Maximum Clock to Output (ns)		20	25	25
Maximum Operating Current (mA)	Commercial	100	80	80
	Military		120	100

Functional Description (Continued)

the outputs. If configured for synchronous enable, $\overline{\text { ENA }}$ LOW during the rising edge of PCLK will enable the outputs synchronously with PCLK. ENA HIGH during the rising edge of PCLK will synchronously disable the outputs. The asynchronous Initialize signal INIT transfers the Initialize Byte into the Pipeline Register on a HIGH to LOW transition. INIT LOW disables PCLK and needs to transition back to a HIGH in order to enable PCLK. DCLK shifts data into SI and out of SO on each rising edge.
When MODE is HIGH, the rising edge of the PCLK signal loads the Pipeline Register with the contents of the Diagnostic Register. Similarly, DCLK, in this mode, loads the Diagnostic Register with the information on the Data Output Pins. The information loaded will be either the contents of the Pipeline Register if the outputs are enabled, or data on the bus, if the outputs are disabled (in a high impedance state).
CY7C269: This product is optimized for applications that require diagnostics in a minimum amount of board area. Packaged in 28 pins, the PROM has 13 Address Signals (A_{0} through A_{12}), 8 Data Out Signals (0_{0} through 0_{7}), \bar{E} / \bar{I}, (Enable or Initialize) and CLOCK (pipeline and diagnostic clock). Additional diagnostic signals consist of MODE, SI (shift in) and SO (shift out). Normal pipelined operation and Diagnostic operation are mutually exclusive.
When the MODE signal is LOW, the 7C269 operates in a normal pipelined mode. CLOCK functions as a pipeline clock, loading the contents of the addressed memory location into the Pipeline Register on each rising edge. The data will appear on the Outputs if they are enabled. One pin on the 7C269 is programmed to perform either the

Enable or the Initialize function. If the \bar{E} / \bar{I} pin is used for a INIT (Asynchronous Initialize) function, the outputs are permanently enabled and the Initialize Word is loaded into the Pipeline Register on a High to LOW transition of the INIT signal. The INIT LOW disables CLOCK and must return high to re-enable CLOCK. If the $\overline{\mathrm{E}} / \overline{\mathrm{I}}$ pin is used for an enable signal, it may be programmed for either synchronous or asynchronous operation. This enable function then operates exactly the same as the 7 C 268.
When the MODE signal is HIGH, the 7C269 operates in the diagnostic mode. The $\overline{\mathrm{E}} / \overline{\mathrm{I}}$ signal becomes a secondary mode signal designating whether to shift the Diagnostic Shift Register or to load either the Diagnostic Register or the Pipeline Register. If $\overline{\mathrm{E}} / \overline{\mathrm{I}}$ is HIGH, CLOCK performs the function of DCLK, shifting SI into the least significant location of the Diagnostic Register and all bits one location toward the most significant location on each rising edge.
The contents of the most significant location in the Diagnostic Register are available on the SO pin.
If the \bar{E} / \bar{I} signal is LOW, SI becomes a direction signal; transferring the contents of the Diagnostic Register into the Pipeline Register when SI is LOW. When SI is HIGH, the contents of the Output pins are transferred into the Diagnostic Register. Both transfers occur on a LOW to HIGH transition of the CLOCK. If the Outputs are enabled, the contents of the Pipeline Register are transferred into the Diagnostic Register. If the Outputs are disabled, an external source of data may be loaded into the Diagnostic Register. In this condition, the SO signal is internally driven to be the same as the SI signal thus propagating the "direction of transfer information" to the next device in the string.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C} \quad$ Static Discharge Voltage . $>2001 \mathrm{~V}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage
-3.0 V to +7.0 V
DC Program Voltage
14.0 V
(per MIL-STD-883, Method 3015)
Latchup Current . $>200 \mathrm{~mA}$
UV Exposure . 7258 Wsec/c
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[1]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{2]}$

Parameters		Test		Com	rcial			Units
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min.,	$=-2 \mathrm{~mA}$	2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & \mathbf{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}^{\prime} \\ & \left(\mathrm{I}_{\mathrm{OL}}=8 \mathrm{mAf}\right. \end{aligned}$	$=12 \mathrm{~mA}$ ilitary)		0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.0		2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8		0.8	V
IIX	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$			10		10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\begin{aligned} & \text { GND } \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\mathrm{CC}} \\ & \text { Output Disabled } \end{aligned}$			40		40	$\mu \mathrm{A}$
Ios	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=$ GND			90		90	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathbf{V}_{\mathrm{CC}}=\mathbf{M a x} . \\ & \mathbf{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	7C268/9-40		100			mA
			7C268/9-50		80		120	
			7C268/9-60		80		100	

Capacitance ${ }^{[2]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	5	pF
	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	8		

Switching Characteristics Over the Operating Range ${ }^{[3]}$

Parameters	Description	$\begin{array}{r} 7 \mathrm{C} 268-40 \\ \text { 7C269-40 } \\ \hline \end{array}$		$\begin{array}{r} \text { 7C268-50 } \\ \text { 7C269-50 } \\ \hline \end{array}$		$\begin{array}{r} 7 \mathrm{C} 268-60 \\ \text { 7C269-60 } \\ \hline \end{array}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
t_{AS}	Address Set-Up to Clock	40		50		60		ns
tha	Address Hold from Clock	0		0		0		ns
t_{CO}	Clock to Output Valid		20		25		25	ns
$\mathrm{t}_{\text {PW }}$	Clock Pulse Width	15		20		20		ns
tSES	ES Set-Up to Clock (Sync Enable Only)	15		15		15		ns
thes	ES Hold from Clock	5		5		5		ns
t_{DI}	Init to Out Valid		25		35		35	ns
t_{RI}	Init Recovery to Clock	20		25		25		ns

Switching Characteristics Over the Operating Range ${ }^{[3]}$ (Continued)

Parameters	Description	$\begin{array}{r} 7 \mathrm{C} 268-40 \\ \text { 7C269-40 } \\ \hline \end{array}$		$\begin{aligned} & \hline \text { 7C268-50 } \\ & \text { 7C269-50 } \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \text { 7C268-60 } \\ & \text { 7C269-60 } \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
tPWI	Init Pulse Width	25		35		35		ns
$\mathrm{t}_{\mathrm{COS}}$	Output Valid from Clock (Sync. Mode)		20		25		25	ns
$\mathrm{t}_{\mathrm{HZC}}$	Output Inactive from Clock (Sync. Mode)		20		25		25	ns
$\mathrm{t}_{\text {DOE }}$	Output Valid from \bar{E} Low (Async. Mode)		20		25		25	ns
$\mathrm{t}_{\text {HZE }}$	Output Inactive from $\overline{\mathbf{E}}$ High (Async. Mode)		20		25		25	ns

Diagnostic Mode Switching Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	Commercial		Military		Units
		Min.	Max.	Min.	Max.	
tSSDI	Set-Up SDI to Clock	30		35		ns
$\mathrm{t}_{\mathrm{HSDI}}$	SDI Hold from Clock	0		0		ns
$\mathrm{t}_{\text {DSDO }}$	SDO Delay from Clock		30		40	ns
tocl	Minimum Clock Low	25		25		ns
$\mathrm{t}_{\text {DCH }}$	Minimum Clock High	25		25		ns
$\mathrm{t}_{\text {SM }}$	Set-Up to Mode Change	25		30		ns
thM	Hold from Mode Change (7C269)	0		0		ns
t_{MS}	Mode to SDO		25		30	ns
$\mathrm{t}_{\text {SS }}$	SDI to SDO		40		45	ns
tso	Data Set-Up to DCLK	25		30		ns
t_{HO}	Data Hold from DCLK	10		15		ns

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

CY7C268
CY7C269
SEMICONDUCTOR

Switching Waveforms 7C268, 7C269

Pipeline Operation (Mode = 0)

Notes on Testing:

Incoming test procedures on these devices should be carefully planned, taking into account the high performance and output drive capabilities of the parts. The following notes may be useful.

1. Ensure that adequate decoupling capacitance is employed across the device $V_{C C}$ and ground terminals. Multiple capacitors are recommended, including a $0.1 \mu \mathrm{~F}$ or larger capacitor and a $0.01 \mu \mathrm{~F}$ or smaller capacitor placed as close to the device terminals as possible. Inadequate decoupling may result in large variations of power supply voltage, creating erroneous function or transient performance failures.
2. Do not leave any inputs disconnected (floating) during any tests.

7C268 Diagnostic Waveforms

[^9]
Switching Waveforms (Continued)

7C269 Diagnostic Application (Shifting the Shadow Register)

0112-11
7C269 Diagnostic Application (Parallel Data Transfer)

Notes:

6. Asynchronous enable mode only.

Device Programming

The CY7C268 and CY7C269 program identically. They utilize an intelligent programming algorithm to assure consistent programming quality. These 64 K PROMS use a single ended memory cell design. In an unprogrammed state, the memory contains all " 0 " s . During programming, a " 1 " on a data-in pin causes the addressed location to be programmed, and a " 0 " causes the location to remain unprogrammed.
7. The mode transition to HIGH latches the asynchronous enable state. If the enable state is changed and held before leaving the diagnostic mode (mode $\mathrm{H} \rightarrow \mathrm{L}$) then the output impedance change delay is $t_{\text {MS }}$.

Programming Pinout

The Programming Pinout of both devices is shown in Figures $3 a$ and $3 b$. The programming mode is entered by putting 12.5 V on the V_{PP} pin. The addressed location is programmed and verified with the application of a PGM and $\overline{\mathrm{VFY}}$ pulse. Entering and exiting the programming mode should be done with care. Proper sequencing as described in the dialog on the programming algorithm and shown in the timing diagram and programming flow chart must be implemented.

0112-13
Figure 3a. 7C268 Programming Pinout

Programming and Blankcheck (Memory Bits)

Blankcheck

Blankcheck is accomplished by performing a verify cycle (VFY toggles on each address), sequencing through all memory address locations, where all the data read will be " 0 "'s. (Refer to mode table for pin states)

Programming Algorithm

Programming is accomplished with an intelligent algorithm. The sequence of operations is to enter the programming mode by placing 12.5 V on $\mathrm{V}_{\text {PP }}$. This should be done after a minimum delay from power up, and be removed prior to power down by the same delay (see the timing diagram and AC specifications for details). Once in this mode, programming is accomplished by addressing a location as described above, placing the data to be programmed into a location on the data pins, and clocking the PGM signal from $\mathrm{V}_{\text {IHP }}$ to $\mathrm{V}_{\text {ILP }}$ and back to $\mathrm{V}_{\text {IHP }}$ with a pulse width of $200 \mu \mathrm{~s}$. The data is removed from the data pins and the content of the location is then verified by taking the $\overline{\mathrm{VFY}}$ signal from $\mathrm{V}_{\text {IHP }}$ to $\mathrm{V}_{\text {ILP }}$, comparing the output with the desired data and then returning VFY to $\mathrm{V}_{\text {IHP. }}$. If the contents are correct, a second overprogram pulse of 4 times the original 200μ s is delivered with the data to be programmed again on the data pins. If the data is not correct, a second 200μ s pulse is applied to $\overline{\text { PGM }}$ with the data to be programmed on the data pins. The compare and overprogram operation is repeated with an overprogram pulse width 4 times the sum of the initial program pulses. This operation is continued until the location is programmed or 10 initial program pulses have been attempted. If on the 10th attempt, the location fails to verify, an overprogram pulse of 8 ms is applied, and the content of the location is once more verified. If the location still fails to verify, the device is rejected. Once a location verifies successfully, the address is advanced to the next location, and the process is repeated until all locations are programmed.

0112-14
Figure 3b. 7C269 Programming Pinout

After all locations are programmed, they should be verified at $\mathrm{V}_{\mathrm{CCP}}=5.0 \mathrm{~V}$.

Programming Algorithm for the Architecture

Both the 7C268 and 7C269 offer a limited selection of programmed architecture. Programming these features should be done with a single 10 ms wide pulse in place of the intelligent algorithm mainly because these features are verified operationally, not with the VFY pin. Architecture programming is implemented by applying the supervoltage to two additional pins during programming. In programming the 7C269 architecture $V_{P P}$ is applied to pins 3,9 and 22 while in programming the 7 C 268 architecture V_{PP} is applied to pins 3, 11, 26. Specific choice of a particular mode will depend on the states of the other pins during programming so it is important that the condition of the other pins be met as set forth in the mode table. The same considerations with respect to power up and power down apply during architecture programming as during intelligent programming. Once the supervoltages have been established and the correct logic states exist on the other device pins, programming may begin. Programming is accomplished by pulling PGM from HIGH to LOW and then back to HIGH with a pulse width equal to 10 ms .
To check whether a 7 C 269 has been programmed as output enable or initialize enable, pin 22 ($\overline{\mathrm{E}} / \overline{\mathrm{I}}$) should be pulled LOW followed by a LOW to HIGH transition on pin 8 (CLOCK). The data read at the outputs is stored and complement data is shifted into the shadow register. A shift from shadow to pipeline is performed and the CLOCK is again pulled from LOW to HIGH. At this point, if the new data read is data-complement, the device has been programmed as Output enable while if the new data read-true then the device is programmed as Initialize enable and the configuration of the Initialize byte can be read directly by pulling \bar{E} / \bar{I} from HIGH to LOW.

CYPRESS
SEMICONDUCTOR
Mode Table 7C268

Mode Select	$\begin{aligned} & \text { P2 } \\ & \text { A6 } \end{aligned}$	$\begin{aligned} & \text { P3 } \\ & \text { A5 } \end{aligned}$	$\begin{gathered} \text { P30 } \\ \text { A9 } \end{gathered}$	$\begin{aligned} & \text { P6 } \\ & \text { A2 } \end{aligned}$	$\begin{gathered} \text { P7 } \\ \text { MD } \\ \hline \mathbf{P G M} \end{gathered}$	$\begin{gathered} \text { P9 } \\ \text { DCLK } \end{gathered}$	$\begin{gathered} \text { P10 } \\ \text { PCLK } \end{gathered}$	$\begin{gathered} \text { P11 } \\ \text { A1 } \end{gathered}$	$\begin{gathered} \text { P12 } \\ \text { A0 } \end{gathered}$	$\begin{aligned} & \text { P22 } \\ & \text { SDO } \\ & \overline{\mathbf{V F Y}} \end{aligned}$	$\begin{aligned} & \text { P23 } \\ & \text { SDI } \end{aligned}$	$\begin{array}{r} \mathbf{P} 24 \\ \mathbf{A 1 2} \end{array}$	$\begin{aligned} & \mathbf{P 2 6} \\ & \overline{\text { INT }} \\ & \mathbf{V P P}^{2} \end{aligned}$	$\frac{\mathrm{P} 27}{\mathrm{E} / \mathrm{E}_{\mathbf{S}}}$	$\begin{aligned} & \text { P28 } \\ & \text { A11 } \end{aligned}$
Normal Read [2]	A6	A5	A9	A2	L	X	L/H	A1	A0	SDO	X	A12	H	H/L	A11
Load SR to PR ${ }^{[2]}$	A6	A5	A9	A2	H	L	L/H	A1	A0	SDI	X	A12	H	X	A11
Load Output to SR	A6	A5	A9	A2	H	L/H	L	A1	A0	SDI	L	A12	H	H	A11
Shift Shadow ${ }^{\text {[2] }}$	A6	A5	A9	A2	L	L/H	L	A1	A0	SDO	DIN	A12	H	X	A11
Program (Memory)	A6	A5	A9	A2	L	L	L	A1	A0	H	L	A12	VPP	H	A11
Program Verify	A6	A5	A9	A2	H	L	L	A1	A0	L	L	A12	$V_{\text {PP }}$	H	A11
Program Inhibit	A6	A5	A9	A2	H	L	L	A1	A0	H	L	A12	$\mathrm{V}_{\text {PP }}$	H	A11
Async. Enable Read	A6	A5	A9	A2	L	L	X	A1	A0	SDO	L	A12	H	H/L	A11
Sync. Enable Read	A6	A5	A9	A2	L	L	L/H	A1	A0	SDO	L	A12	H	H/L	A11
Async. Init. Read	A6	A5	A9	A2	L	L	X	A1	A0	SDO	L	A12	L	L	A11
Program Sync. Enable[1]	H	V_{HH}	X	H	L	L	L	V_{HH}	L	H	L	H	$V_{P P}$	H	H
Program Initial Byte	H	V_{HH}	X	L	L	L	L	V_{HH}	H	H	L	X	$V_{\text {PP }}$	H	L

Notes:

1. Default is Async. Enable.
2. For the asynchronous enable operation, the data out is enabled by bringing \bar{E} LOW. For the synchronous enable operation, data out is enabled on the first LOW to HIGH clock transition after $\overline{\mathrm{E}}$ is brought

LOW. When $\overline{\mathrm{E}}$ goes from LOW to HIGH (enable to disable) the outputs will go to the high impedance state (after a propagation delay) immediately if the asynchronous enable was programmed. If the synchronous enable was selected, a LOW to HIGH clock transition is required.

Mode Table 7C269

Mode Select	$\begin{aligned} & \text { P2 } \\ & \text { A6 } \end{aligned}$	$\begin{aligned} & \text { P3 } \\ & \text { A5 } \end{aligned}$	$\begin{gathered} \text { P26 } \\ \text { A9 } \end{gathered}$	$\begin{aligned} & \text { P6 } \\ & \text { A2 } \end{aligned}$	$\begin{gathered} \text { P7 } \\ \mathbf{M D} \\ \hline \mathbf{P G M} \end{gathered}$	$\begin{gathered} \text { P8 } \\ \text { CLK } \end{gathered}$	$\begin{aligned} & \text { P9 } \\ & \text { A1 } \end{aligned}$	$\begin{gathered} \text { P10 } \\ \text { A0 } \end{gathered}$	$\begin{aligned} & \text { P21 } \\ & \text { SDI } \end{aligned}$	$\begin{gathered} \text { P20 } \\ \text { SDO } \\ \overline{\mathbf{V F F Y}} \end{gathered}$	$\begin{aligned} & \text { P24 } \\ & \text { A11 } \end{aligned}$	$\begin{aligned} & \mathbf{P 2 2} \\ & \overline{\mathbf{E} / \overline{\mathbf{I}}} \\ & \mathbf{V}_{\mathbf{P P}} \end{aligned}$	$\begin{aligned} & \mathbf{P 2 3} \\ & \mathbf{A 1 2} \end{aligned}$
Normal Read	A6	A5	A9	A2	L	L/H	A1	A0	X	HI Z	A11	H/L	A12
Load SR to PR ${ }^{[3]}$	A6	A5	A9	A2	H	L/H	A1	A0	L	SDI	A11	L	A12
Load Output to SR[3]	A6	A5	A9	A2	H	L/H	A1	A0	H	SDI	A11	L	A12
Shift Shadow ${ }^{\text {[3] }}$	A6	A5	A9	A. 2	H	L/H	A1	A0	DIN	SDO	A11	H	A12
Program (Memory)	A6	A5	A9	A2	L	L	A1	A0	X	H	A11	$\mathrm{V}_{\text {PP }}$	A12
Program Verify	A6	A5	A9	A2	H	L	A1	A0	X	L	A11	$V_{\text {PP }}$	A12
Program Inhibit	A6	A5	A9	A2	H	L	A1	A0	X	H	A11	$V_{\text {PP }}$	A12
Async. Enable Read	A6	A5	A9	A2	L	L	A1	A0	X	HI Z	A11	L	A12
Sync. Enable Read	A6	A5	A9	A2	L	L/H	A1	A0	X	HI Z	A11	L	A12
Async. Init. Read	A6	A5	A9	A2	L	L	A1	A0	X	HI Z	A11	L	A12
Program Sync. Enable[1]	H	V_{HH}	A9	H	L	L	V_{HH}	L	X	H	H	V_{PP}	H
Program Initialize ${ }^{\text {[2] }}$	H	V_{HH}	A9	L	L	L	V_{HH}	L	X	H	H	V_{PP}	L
Program Initial Byte	H	V_{HH}	A9	L	L	L	V_{HH}	H	X	H	L	$V_{\text {PP }}$	A12

Notes:

1. Default is Async. Enable.
2. Default is Enable.
3. If \bar{I} selected, outputs always enabled. If $\overline{\mathrm{E}}$ selected, during diagnostic operation the data outputs will remain in the state they were in when the mode was entered. When enabled, the data outputs will reflect the outputs of the pipeline register. Any changes in the data in the pipeline register will appear on the data output pins.

DC Programming Parameters $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Description	Min.	Max.	Units
$V_{\text {PP }}$	Programming Voltage	12.0	13.0	V
$\mathrm{V}_{\text {CCP }}$	Power Supply Voltage During Programming	4.75	5.25	V
I_{PP}	$\mathrm{V}_{\text {PP }}$ Supply Current		50	mA
$\mathrm{V}_{\text {IHP }}$	Input High Voltage During Programming	3.0		V
$V_{\text {ILP }}$	Input Low Voltage During Programming	-3.0	0.4	V
V_{OH}	Output High Voltage	2.4		V
V_{OL}	Output Low Voltage		0.4	V

AC Programming Parameters $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Description	Min.	Max.	Units
tPP	Program Pulse Width (Per Byte)		10.0	ms
t_{AS}	Address Set-up Time	1.0		$\mu \mathrm{s}$
$\mathrm{t}_{\text {AH }}$	Address Hold Time	1.0		$\mu \mathrm{s}$
$\mathrm{t}_{\text {DH }}$	Data Hold Time	1.0		$\mu \mathrm{s}$
t_{D} S	Data Set-up Time	1.0		$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{R}, \mathrm{F}}$	$\mathrm{V}_{\text {PP }}$ Rise and Fall Time	1.0		$\mu \mathrm{s}$
tDV	Delay to Verify	1.0		$\mu \mathrm{s}$
tvD	Verify to Data Out		1.0	$\mu \mathrm{s}$
tVH	Data Hold Time from Verify		1.0	$\mu \mathrm{s}$
tVP	Verify Pulse Width	2.0		$\mu \mathrm{s}$
${ }^{\text {t }}$ Z	Verify to High Z		1.0	$\mu \mathrm{s}$

Erasure Characteristics

Wavelengths of light less than 4000 Angstroms begin to erase the 7C268 and 7C269 in the windowed package. For this reason, an opaque label should be placed over the window if the PROM is exposed to sunlight or fluorescent lighting for extended periods of time.
The recommended dose of ultraviolet light for erasure is a wavelength of 2537 Angstroms for a minimum dose (UV
intensity \times exposure time) or $25 \mathrm{Wsec} / \mathrm{cm}^{2}$. For an ultraviolet lamp with a $12 \mathrm{~mW} / \mathrm{cm}^{2}$ power rating the exposure time would be approximately 45 minutes. The 7C268 or 7 C 269 needs to be within 1 inch of the lamp during erasure. Permanent damage may result if the PROM is exposed to high intensity UV light for an extended period of time. $7258 \mathrm{Wsec} / \mathrm{cm}^{2}$ is the recommended maximum dosage.

Bit Map Data

Programmer Address		RAM Data
Decimal	Hex	Contents
0	0	DATA
\bullet	\bullet	\bullet
\bullet	\bullet	\bullet
\bullet	\bullet	\bullet
8191	1FFF	DATA
8193	2000	INIT BYTE
	2001	CONTROL BYTE

Control Byte
00 Asynchronous output enable (default condition)
01 Synchronous output enable
02 Asynchronous initialize (CY7C269 only)

Figure 4. Programming Flowchart

Figure 5. Programming Waveforms (Memory)
Note:
Power, V_{PP} and V_{CC} should not be cycled for each program verify cycle but remain static during programming.

0112-17
*7C268-pin 26 7C269-pin 22
**7C268-pins 3, 11 7C269-pins 3, 9
***Data required on I/O's only during initial byte programming

Figure 6. Programming Waveforms for the Architecture CY7C268 and CY7C269

Typical DC and AC Characteristics

Ordering Information

Speed (ns)	$\begin{gathered} \mathbf{I}_{\mathbf{C C}} \\ (\mathbf{m A}) \end{gathered}$	Ordering Code	Package Type	Operating Range
40	100	CY7C268-40DC	D20	Commercial
		CY7C268-40WC	W20	
		CY7C269-40PC	P21	
		CY7C269-40DC	D22	
		CY7C269-40WC	W22	
50	80	CY7C268-50DC	D20	
		CY7C268-50WC	W20	
		CY7C269-50PC	P21	
		CY7C269-50DC	D22	
		CY7C269-50WC	W22	
	120	CY7C268-50DMB	D20	Military
		CY7C268-50WMB	W20	
		CY7C268-50LMB	L55	
		CY7C268-50QMB	Q55	
		CY7C269-50DMB	D22	
		CY7C269-50WMB	W22	
		CY7C269-50LMB	L64	
		CY7C269-50QMB	Q64	

Speed (ns)	$\begin{gathered} \mathbf{I}_{\mathbf{C C}} \\ (\mathrm{mA}) \end{gathered}$	Ordering Code	Package Type	Operating Range
60	80	CY7C268-60DC	D20	Commercial
		CY7C268-60WC	W20	
		CY7C269-60PC	P21	
		CY7C269-60DC	D22	
		CY7C269-60WC	W22	
	100	CY7C268-60DMB	D20	Military
		CY7C268-60WMB	W20	
		CY7C268-60LMB	L55	
		CY7C268-60QMB	Q55	
		CY7C269-60DMB	D22	
		CY7C269-60WMB	W22	
		CY7C269-60LMB	L64	
		CY7C269-60QMB	Q64	

SEMICONDUCTOR
R
MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
I_{SB}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
$t_{\text {AS }}$	$7,8,9,10,11$
$t_{H A}$	$7,8,9,10,11$
t_{CO}	$7,8,9,10,11$
$t_{\text {PW }}$	$7,8,9,10,11$
$t_{\text {SES }}$	$7,8,9,10,11$
$t_{\text {HES }}$	$7,8,9,10,11$
t_{COS}	$7,8,9,10,11$

Diagnostic Mode Switching

 Characteristics| Parameters | Subgroups |
| :--- | :--- |
| $\mathrm{t}_{\text {SSDI }}$ | $7,8,9,10,11$ |
| $\mathrm{t}_{\text {HSDI }}$ | $7,8,9,10,11$ |
| $\mathrm{t}_{\text {DSDO }}$ | $7,8,9,10,11$ |
| $\mathrm{t}_{\mathrm{DCL}}$ | $7,8,9,10,11$ |
| $\mathrm{t}_{\mathrm{DCH}}$ | $7,8,9,10,11$ |
| $\mathrm{t}_{\mathrm{HM}}[1]$ | $7,8,9,10,11$ |
| t_{MS} | $7,8,9,10,11$ |
| t_{SS} | $7,8,9,10,11$ |

Note:

1. 7C269 only.

Document \#: 38-00069

32,768 x 8 PROM Power Switched and Reprogrammable

Features

- CMOS for optimum speed/power
- Windowed for reprogrammability
- High speed
- 45 ns (commercial)
- 55 ns (military)
- Low power
- 660 mW (commercial)
- 715 mW (military)
- Super low standby power
- Less than 165 mW when deselected
- EPROM technology 100% programmable
- $\mathbf{5 V} \pm \mathbf{1 0 \%} \mathbf{V}_{\mathrm{CC}}$, commercial and military
- TTL compatible I/O
- Slim 300 mil package
- Direct replacement for bipolar PROMs
- Capable of withstanding

$$
>2001 \mathrm{~V} \text { static discharge }
$$

Product Characteristics

The CY7C271 is a high performance 32,768 word by 8 bit CMOS PROM. When deselected, the 7C271 automatically powers down into a low power standby mode. It is packaged in the 300 mil slim package. The 7C271 reprogrammable CERDIP package is equipped with an erasure window; when exposed to UV light, the PROM is erased and can then be reprogrammed. The memory cells utilize proven EPROM floating gate technology and byte-wide intelligent programming algorithms.

The CY7C271 is a plug-in replacement for bipolar devices and offers the advantages of lower power, superior performance and programming yield. The EPROM cell requires only 12.5 V for the supervoltage and low current requirements allow for gang programming. The EPROM cells allow for each memory location to be tested 100%, as each location is written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming the product will meet DC and AC specification limits.
Reading is accomplished by placing active LOW signals on $\overline{\mathrm{CS}}_{1}$, and $\overline{\mathrm{CE}}$ and an active HIGH on CS_{2}. The contents of the memory location addressed by the address lines $\left(\mathrm{A}_{0}-\mathrm{A}_{14}\right)$ will become available on the output lines $\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$.

Logic Block Diagram

Pin Configurations

0102-2

0102-3

Selection Guide

		7C271-45	7C271-55	7C271-65
Maximum Access Time (ns)			$\mathbf{4 5}$	55
Maximum Operating Current (mA)	Commercial	120	120	65
Standby Current (mA)	Military		130	120

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Static Discharge Voltage . $>2001 \mathrm{~V}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (per MIL-STD-883, Method 3015)
Latchup Current $>200 \mathrm{~mA}$
Supply Voltage to Ground Potential $\ldots .-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage
-3.0 V to +7.0 V
DC Program Voltage .14.0V

UV Exposure . 7258 Wsec/cm²

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[4]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[5]}$

Parameters	Description	Test Conditions		7C271-45		7C271-55		7C271-65		Units
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-2.0$	mA	2.4		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=12.0 \mathrm{~m}$	A^{*}		0.5		0.5		0.5	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Level ${ }^{[1]}$			2.0	V_{CC}	2.0	V_{CC}	2.0	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Level ${ }^{[1]}$				0.8		0.8		0.8	V
$\underline{\mathrm{I}_{\text {I }}}$	Input Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	$+10$	-10	$+10$	$\mu \mathrm{A}$
V_{CD}	Input Diode Clamp Voltage			Not	te 2		e 2		2	
I_{OZ}	Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \leq \mathrm{V}_{\mathrm{OUT}} \leq \mathrm{V}_{\mathrm{OH}}, \\ & \text { Output Disabled } \end{aligned}$		-40	$+40$	-40	$+40$	-40	$+40$	$\mu \mathrm{A}$
Ios	Output Short Circuit Current ${ }^{[3]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathbf{G N}$		-20	-90	-20	-90	-20	-90	mA
I_{CC}	Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max.}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V} \\ & \mathrm{IOUT}=0 \mathrm{~mA} \end{aligned}$	Commercial		120		120		120	mA
			Military				130		130	mA
ISB	Standby Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA} \end{aligned}$	Commercial		30		30		30	mA
			Military				40		40	mA

8.0 mA military

Japacitance ${ }^{[6]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	8	pF
	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	8		

Jotes:

. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
The CMOS process does not provide a clamp diode. However, the CY7C271 is insensitive to -3 V dc input levels and -5 V undershoot pulses of less than 10 ns (measured at 50% point).
3. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
4. T_{A} is the "instant on" case temperature.
5. See the last page of this specification for Group A subgroup testing information.
6. Tested initially and after any design or process changes that may affect these parameters.

Switching Characteristics Over the Operating Range ${ }^{[5,7]}$

Parameters	Description	7C271-45		7C271-55		7C271-65		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
t_{AA}	Address to Output Valid		45		55		65	ns
${ }^{\text {t }} \mathrm{HZCS}$	Chip Select Inactive to High Z[8] ($\overline{\mathrm{CS}}_{1}$ and CS_{2} Only)		30		35		40	ns
$\mathrm{taCs}^{\text {a }}$	Chip Select Active to Output Valid ($\overline{\mathrm{CS}}_{1}$ and CS_{2} Only)		30		35		40	ns
${ }^{\text {t HZCE }}$	Chip Enable Inactive to High $Z^{[8]}$ ($\overline{\mathrm{CE}}$ Only)		50		60		70	ns
$\mathrm{t}_{\mathrm{ACE}}$	Chip Enable Active to Output Valid ($\overline{\mathrm{CE}}$ Only)		50		60		70	ns
tpu	Chip Enable Active to Power Up	0		0		0		ns
tPD	Chip Enable Inactive to Power Down		50		60		70	ns

AC Test Loads and Waveforms

0102-4

Figure 2. Input Pulses

Figure 1a

Figure 1b

Equivalent to: THÉVENIN EQUIVALENT

OUTPUT O-	2.13 COMMERCIA
OUTPUT O-~~~	2.02 MILITARY

Notes:

7. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and loads shown in Figure 1a, 1 b.

Erasure Characteristics

Wavelengths of light less than 4000 Angstroms begin to erase the 7C271 in the windowed package. For this reason, an opaque label should be placed over the window if the PROM is exposed to sunlight or fluorescent lighting for extended periods of time.
The recommended dose of ultraviolet light for erasure is a wavelength of 2537 Angstroms for a minimum dose (UV
8. $\mathrm{t}_{\mathrm{HZCS}}^{(\mathrm{E})}$ is tested with load shown in Figure $1 b$. Transition is measured at steady state High level -500 mV or steady state Low level +500 mV on the output from the 1.5 level on the input.

CYPRESS
SEMICONDUCTOR
Table 2. DC Programming Parameters $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Parameters	Description	Min.	Max.	Units
$\mathbf{V}_{\mathbf{P P}}$	Programming Voltage	12.0	13.0	V
$\mathrm{~V}_{\mathrm{CCP}}$	Power Supply Voltage During Programming	4.75	5.25	V
I_{PP}	V_{PP} Supply Current		50	mA
$\mathrm{~V}_{\mathrm{IHP}}$	Input High Voltage During Programming	3.0	$\mathrm{~V}_{\mathrm{CCP}}$	V
$\mathrm{V}_{\mathrm{ILP}}$	Input Low Voltage During Programming		0.4	V
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	2.4		V
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage		0.4	V

Table 3. AC Programming Parameters $\mathbf{T}_{\mathbf{A}}=25^{\circ} \mathbf{C}$

Parameters	Description	Min.	Max.	Units
\mathbf{T}_{AS}	Address Setup Time to $\overline{\text { PGM }} / \overline{\mathrm{VFY}}$	1.0		$\mu \mathrm{~s}$
\mathbf{T}_{AH}	Address Hold Time from $\overline{\text { PGM }} / \overline{\mathrm{VFY}}$	1.0		$\mu \mathrm{~s}$
\mathbf{T}_{DS}	Data Setup Time to $\overline{\text { PGM }}$	1.0		$\mu \mathrm{~s}$
\mathbf{T}_{DH}	Data Hold Time $\overline{\text { PGM }}$	1.0		$\mu \mathrm{~s}$
$\mathbf{T P P}$	Program Pulse Width	0.1	10	ms
$\mathbf{T}_{\mathbf{R}, \mathbf{F}}$	VPP Rise and Fall Time	100		$\mu \mathrm{~s}$
\mathbf{T}_{DV}	Delay to Verify	1.0		$\mu \mathrm{~s}$
\mathbf{T}_{VD}	Verify to Data Out		1.0	$\mu \mathrm{~s}$
\mathbf{T}_{VH}	Data Hold Time from Verify		1.0	$\mu \mathrm{~s}$
\mathbf{T}_{VP}	Verify Pulse Width	2.0		$\mu \mathrm{~s}$
\mathbf{T}_{DZ}	Verify to High Z		1.0	$\mu \mathrm{~s}$
$\mathbf{T}_{\mathbf{P}}$	Power Up/Down	20.0		ms

7C271 Programming Pin-Out

$=$

SEMICONDUCTOR

Figure 3. PROM Programming Waveforms

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
45	CY7C271-45PC	P21	Commercial
	CY7C271-45WC	W22	
55	CY7C271-55PC	P21	Commercial
	CY7C271-55WC	W22	
	CY7C271-55DMB	D22	Military
	CY7C271-55WMB	W22	
	CY7C271-55LMB	L55	
	CY7C271-55QMB	Q55	
65	CY7C271-65PC	P21	Commercial
	CY7C271-65WC	W22	
	CY7C271-65DMB	D22	
	CY7C271-65WMB	W22	
	CY7C271-65LMB	L55	
	CY7C271-65QMB	Q55	

\qquad
MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
I_{SB}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$

Document \#: 38-00068-B

Features

- CMOS for optimum speed/ power
- High speed
- 30 ns (commercial)
- 45 ns (military)
- Low power
- 495 mW (commercial)
- 660 mW (military)
- EPROM technology $\mathbf{1 0 0 \%}$ programmable
- Slim $\mathbf{3 0 0}$ or standard $\mathbf{6 0 0}$ mil DIP or 28 pin LCC
- $\mathbf{5 V} \pm \mathbf{1 0 \%} \mathrm{V}_{\mathrm{CC}}$, commercial and military
- TTL compatible I/O
- Direct replacement for bipolar PROMs
- Capable of withstanding $>1500 \mathrm{~V}$ static discharge

Product Characteristics

The CY7C281 and CY7C282 are high performance 1024 word by 8 bit CMOS PROMs. They are functionally identical, but are packaged in 300 mil and 600 mil wide packages respectively.
The CY7C281 is also available in a 28 pin leadless chip carrier. The memory cells utilize proven EPROM floating gate technology and byte-wide intelligent programming algorithms.
The CY7C281 and CY7C282 are plugin replacements for bipolar devices and offer the advantages of lower power, superior performance and programming yield. The EPROM cell requires only 13.5 V for the supervoltage and
low current requirements allow for gang programming. The EPROM cells allow for each memory location to be tested 100%, as each location is written into, erased, and repeatedly exercized prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming the product will meet DC and AC specification limits.
Reading is accomplished by placing an active LOW signal on $\overline{\mathrm{CS}}_{1}$ and $\overline{\mathrm{CS}}_{2}$, and active HIGH signals on CS_{3} and CS_{4}. The contents of the memory location addressed by the address lines ($\mathrm{A}_{0}-\mathrm{A}_{9}$) will become available on the output lines $\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$.

Logic Block Diagram

Pin Configurations

Selection Guide

		7C281-30 7C282-30	7C281-45 7C282-45
Maximum Access Time (ns)		30	45
Maximum Operating Current (mA)	Commercial	100	90

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
mbient Temperature with	
Power Applied	- to $+125^{\circ}$
upply Voltage to Ground Potenti Pin 24 to Pin 12).	0.5 V to +7.0 V
DC Voltage Applied to Outputs in High Z State.	$-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}$
DC Input Voltage	-3.0 V to +7.0 V
(tage (Pins 18, 20)	

Static Discharge Voltage . $>1500 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-up Current . $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	VCC
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[1]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	Test Conditions		$\begin{aligned} & \hline \text { 7C281-30 } \\ & \text { 7C282-30 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 7C281-45 } \\ & \text { 7C282-45 } \\ & \hline \end{aligned}$		Units
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min.,	0 mA	2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min.,	mA		0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Level [3]			2.0		2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Level 3 [0.8		0.8	V
$\mathrm{I}_{\text {IX }}$	Input Current	$\mathrm{GND} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CD }}$	Input Diode Clamp Voltage			Note 4		Note 4		
I_{OZ}	Output Leakage Current	$\mathrm{V}_{\mathrm{OL}} \leq \mathrm{V}_{\mathrm{OUT}} \leq \mathrm{V}_{\mathrm{OH}}$, Output Disabled		-40	$+40$	-40	$+40$	$\mu \mathrm{A}$
IOS	Output Short Circuit Current ${ }^{[5]}$	$\mathbf{V}_{\text {CC }}=$ Max., $\mathbf{V}_{\text {OUT }}=\mathbf{G N D}$		-20	-90	-20	-90	mA
I_{CC}	Power Supply Current	$\begin{aligned} & \mathbf{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \text { IOUT }=0 \mathrm{~mA} \end{aligned}$	Commercial		100		90	mA
			Military				120	mA

Capacitance ${ }^{[6]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	5	pF
			8	

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
4. The CMOS process does not provide a clamp diode.

However, the CY7C281 \& CY7C282 are insensitive to $-3 V$ dc input levels and -5 V undershoot pulses of less than 10 ns (measured at 50% point).
5. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
6. Tested initially and after any design or process changes that may affect these parameters.

Switching Characteristics Over the Operating Rangee ${ }^{[2,7]}$

Parameters	Description	$\begin{aligned} & \text { CY7C281-30 } \\ & \text { CY7C282-30 } \end{aligned}$		$\begin{aligned} & \text { CY7C281-45 } \\ & \text { CY7C282-45 } \end{aligned}$		Units
		Min.	Max.	Min.	Max.	
t_{AA}	Address to Output Valid		30		45	ns
$\mathrm{t}_{\mathrm{HZCS}}$	Chip Select Inactive to High $\mathrm{Z}^{\text {[8] }}$		20		25	ns
$\mathrm{t}_{\text {ACS }}$	Chip Select Active to Output Valid		20		25	ns

AC Test Loads and Waveforms

Figure 1a

Figure 1b

Equivalent to: THÉVENIN EQUIVALENT

0009-5

Notes:

7. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and loads shown in Figure 1a, $1 b$.

0009-6
Figure 2. Input Pulses
OUTPUT O——

8. $\mathrm{t}_{\mathrm{HZCS}}$ is tested with load shown in Figure 1b. Transition is measured at steady state High level +500 mV or steady state Low level +500 mV on the output from the 1.5 V level on the input.

Typical DC and AC Characteristics

TYPICAL ACCESS TIME CHANGE
vs, OUTPUT LOADING

0009-9

Figure 3. Programming Pinout

Programming Algorithm

The CY7C281 and CY7C282 programming algorithm allows significantly faster programming than the "worst case" specification of 10 msec .
Typical programming time for a byte is less than 2.5 msec . The use of EPROM cells allows factory testing of programmed cells, measurement of data retention and erasure to ensure reliable data retention and functional performance. A flowchart of the algorithm is shown in Figure 4.
The algorithm utilizes two different pulse types: initial and overprogram. The duration of the PGM pulse (tpp) is 0.1 msec which will then be followed by a longer overprogram pulse of $24(0.1)(\mathrm{X}) \mathrm{msec}$. X is an iteration counter and is equal to the NUMBER of the initial 0.1 msec pulses applied before verification occurs. Up to four 0.1 msec pulses are provided before the overprogram pulse is applied.
The entire sequence of program pulses and byte verification is performed at $\mathrm{V}_{\mathrm{CC}}=5.0$. When all bytes have been programmed all bytes should be compared (Read mode) to original data with $\mathbf{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.

Figure 4. Programming Flowchart

CY7C281
CY7C282

Programming Information

The 7C281 and 7C282 1K x 8 CMOS PROMs are implemented with a differential EPROM memory cell. The PROMS are delivered in an erased state, containing neither " 1 s " nor " $O s$ ". This erased condition of the array may be assessed using the "BLANK CHECK ONES" and "BLANK CHECK ZEROS" function, see below.

Blank Check

A virgin device contains neither ones nor zeros because of the differential cell used for high speed. To verify that a PROM is unprogrammed, use the two blank check modes provided in Table 3. In both of these modes, address and read locations 0 thru 1023. A device is considered virgin if all locations are respectively " 1 s " and " 0 s " when addressed in the "BLANK ONES AND ZEROS" modes.
Because a virgin device contains neither ones nor zeros, it is neccessary to program both ones and zeros. It is recommended that all locations be programmed to ensure that ambiguous states do not exist.

DC Programming Parameters $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Table 1

Parameter	Description	Min.	Max.	Units
V $_{\text {PP }}$	Programming Voltage ${ }^{[1]}$	13.0	14.0	V
$\mathrm{~V}_{\mathrm{CCP}}$	Supply Voltage	4.75	5.25	V
$\mathrm{~V}_{\text {IHP }}$	Input HIGH Voltage	3.0		V
$\mathrm{~V}_{\text {ILP }}$	Input LOW Voltage		0.4	V
$\mathrm{~V}_{\text {OH }}$	Output HIGH Voltage ${ }^{[2]}$	2.4		V
$\mathrm{~V}_{\text {OL }}$	Output LOW Voltage ${ }^{[2]}$		0.4	V
$\mathrm{I}_{\text {PP }}$	Programming Supply Current		50	mA

AC Programming Parameters $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Table 2

Parameter	Description	Min.	Max.	Units
$\mathrm{t}_{\text {PP }}$	Programming Pulse Width ${ }^{3]}$	100	10,000	$\mu \mathrm{~s}$
t_{AS}	Address Setup Time	1.0		$\mu \mathrm{~s}$
t_{DS}	Data Setup Time	1.0		$\mu \mathrm{~s}$
t_{AH}	Address Hold Time	1.0		$\mu \mathrm{~s}$
t_{DH}	Data Hold Time	1.0		$\mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$	VPP Rise and Fall Time ${ }^{[3]}$	1.0		$\mu \mathrm{~s}$
t_{VD}	Delay to Verify	1.0		$\mu \mathrm{~s}$
t_{VP}	Verify Pulse Width	2.0		$\mu \mathrm{~s}$
t_{DV}	Verify Data Valid			$\mu \mathrm{s}$
t_{DZ}	Verify to High Z		1.0	$\mu \mathrm{~s}$

Notes:

1. $\mathrm{V}_{\mathrm{CCP}}$ must be applied prior to V_{PP}.
2. Measured 10% and 90% points.
3. During verify operation.

Table 3

Mode		Pin Function				$\begin{gathered} \text { Outputs } \\ (9-11,13-17) \end{gathered}$
	Read or Output Disable	CS_{4}	CS_{3}	$\mathbf{C S}_{2}$	$\mathbf{C S}_{1}$	
	Other	$\stackrel{\text { PGM }}{ }$	$\overline{\text { VFY }}$	$\mathbf{V}_{\mathbf{P P}}$	$\overline{C S}_{1}$	
	Pin Number	(18)	(19)	(20)	(21)	
Read		$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	$V_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	Data Out
Output Disable ${ }^{[4]}$		X	X	$\mathrm{V}_{\text {IH }}$	X	High Z
Output Disable ${ }^{[4]}$		X	$\mathrm{V}_{\text {IL }}$	X	X	High Z
Output Disable ${ }^{[4]}$		$\mathrm{V}_{\text {IL }}$	X	X	X	High Z
Output Disable ${ }^{[4]}$		X	X	X	V_{IH}	High Z
Program		$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{P P}$	$\mathrm{V}_{\text {ILP }}$	Data In
Program Verify		$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{P P}$	$V_{\text {ILP }}$	Data Out
Program Inhibit		$\mathrm{V}_{\text {IHP }}$	$V_{\text {IHP }}$	$V_{P P}$	$V_{\text {ILP }}$	High Z
Intelligent Program		$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {PP }}$	$\mathrm{V}_{\text {ILP }}$	Data In
Blank Check Ones		$V_{P P}$	$\mathrm{V}_{\text {ILP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	Ones
Blank Check Zeros		$V_{\text {PP }}$	$V_{\text {IHP }}$	VILP	$V_{\text {ILP }}$	Zeros

Notes:

4. $X=$ Don't care but not to exceed $V_{C C}+5 \%$.

Programming Sequence 1K x 8

Power the device for normal read mode operation with pin 18, 19, 20, and 21 at VIH. Per Figure 5 take pin 20 to VPP. The device is now in the program inhibit mode of operation with the output lines in a high impedance state; see Tables 3 and 4. Again per Figure 5 address program and verify one byte of data. Repeat this for each location to be programmed.
If the brute force programming method is used, the pulse width of the program pulse should be 10 ms , and each
5. During programming and verification, all unspecified pins to be at $\mathrm{V}_{\text {ILP }}$.
location is programmed with a single pulse. Any location that fails to verify causes the device to be rejected.
If the intelligent programming technique is used, the program pulse width should be $100 \mu \mathrm{~s}$. Each location is ultimately programmed and verified until it verifies correctly up to and including 4 times. When the location verifies, one additional programming pulse should be applied of duration $24 \times$ the sum of the previous programming pulses before advancing to the next address to repeat the process.

0009-11
Figure 5. Programming Waveforms

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
30 ns	CY7C281-30PC	P13	Commercial
	CY7C282-30PC	P11	
	CY7C281-30DC	D14	
	CY7C281-30LC	L64	
45 ns	CY7C282-30DC	D12	
	CY7C281-45PC	P13	Commercial
	CY7C282-45PC	P11	
	CY7C281-45DC	D14	
	CY7C281-45LC	L64	
	CY7C282-45DC	D12	
	CY7C281-45DMB	D14	Military
	CY7C281-45LMB	L64	
	CY7C282-45DMB	D12	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS}}$	$7,8,9,10,11$

Document \#: 38-00006-B

Reprogrammable 2048×8 PROM

Features

- Windowed for reprogrammability
- CMOS for optimum speed/power
- High speed
- 35 ns (commercial)
- 35 ns (military)
- Low power
- 330 mW (commercial)
- 413 mW (military)
- EPROM technology $\mathbf{1 0 0 \%}$ programmable
- Slim $\mathbf{3 0 0} \mathbf{~ m i l}$ or standard 600 mil packaging available
- $\mathbf{5 V} \pm \mathbf{1 0 \%} \mathrm{V}_{\mathrm{CC}}$, commercial and military
- TTL compatible I/O
- Direct replacement for bipolar PROMs
- Capable of withstanding $>\mathbf{2 0 0 0 V}$ static discharge

Product Characteristics

The CY7C291 and CY7C292 are high performance 2048 word by 8 bit CMOS PROMs. They are functionally identical, but are packaged in 300 mil and 600 mil wide plastic and hermetic DIP packages respectively. The 300 mil ceramic DIP package is equipped with an erasure window; when exposed to UV light the PROM is erased and can then be reprogrammed. The memory cells utilize proven EPROM floating gate technology and byte-wide intelligent programming algorithms.
The CY7C291 and CY7C292 are plugin replacements for bipolar devices and offer the advantages of lower power,
reprogrammability, superior performance and programming yield. The EPROM cell requires only 13.5 V for the supervoltage and low current requirements allow for gang programming. The EPROM cells allow for each memory location to be tested 100%, as each location is written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming the product will meet DC and AC specification limits.
Reading is accomplished by placing an active LOW signal on $\overline{\mathrm{CS}}_{1}$, and active HIGH signals on CS_{2} and CS_{3}. The contents of the memory location addressed by the address lines ($\mathrm{A}_{0}-\mathrm{A}_{10}$) will become available on the output lines $\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$.

Logic Block Diagram

Pin Configurations

Selection Guide

		7C291-35 7C292-35	7C291-50 7C292-50	
Maximum Access Time (ns)			35	50
Maximum Operating Current (mA)	STD	Commercial	90	90
		Military	120^{*}	120
	L	Commercial	60	60

[^10]
Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature \qquad . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential $\ldots .-0.5 \mathrm{~V}$ to +7.0 V (Pin 24 to Pin 12)
DC Voltage Applied to Outputs
in High Z State. -0.5 V to +7.0 V

DC Program Voltage (Pins 18, 20) . . 14.0 V
UV Exposure $7258 \mathrm{Wsec} / \mathrm{cm}^{2}$

Static Discharge Voltage . > 2001 V
(per MIL-STD-883, Method 3015)
Latchup Current
. $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[6]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[5]}$

Parameters	Description	Test Conditions		$\begin{aligned} & \text { 7C291L-35, } 50 \\ & \text { 7C292L-35, } 50 \end{aligned}$		$\begin{aligned} & \text { 7C291-35, } 50 \\ & \text { 7C292-35, } 50 \end{aligned}$		Units
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=-16.0 \mathrm{~mA}$			0.4		0.4	V
$\mathrm{V}_{\mathrm{IH}}{ }^{[1]}$	Input HIGH Voltage			2.0	V_{CC}		V_{CC}	V
$\mathrm{V}_{\text {IL }}{ }^{[1]}$	Input LOW Voltage				0.8		0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	GND $\leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$		-10	+10	-10	+10	$\mu \mathrm{A}$
V_{CD}	Input Diode Clamp Voltage			Note 2		Note 2		
$\mathrm{I}_{0 Z}$	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{OUT}} \leq \mathrm{V}_{\mathrm{CC}}$ Output Disabled		-40	+40	-40	+40	$\mu \mathrm{A}$
Ios	Output Short Circuit Current ${ }^{[1]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{V}_{\mathrm{OUT}}=\mathrm{GND} \end{aligned}$		-20	-90	-20	-90	mA
$\mathrm{I}_{\mathbf{C C}}$	$\mathrm{V}_{\text {CC }}$ Operating	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Commercial		60		90	mA
	Supply Current		Military*				120	mA

Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	5	pF
			8	

Notes:

1. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
2. The CMOS process does not provide a clamp diode. However, the CY7C291 and CY7C292 are insensitive to - 3 V dc input levels and -5 V undershoot pulses of less than 10 ns (measured at 50% point).
3. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
4. Tested initially and after any design or process changes that may affect these parameters.
5. See the last page of this specification for Group A subgroup testing information.
6. T_{A} is the "instant on" case temperature.

Switching Characteristics Over the Operating Range ${ }^{[5,7]}$

Parameters	Description	$\begin{aligned} & \text { 7C291-35 } \\ & \text { 7C292-35 } \end{aligned}$		$\begin{aligned} & \text { 7C291-50 } \\ & \text { 7C292-50 } \end{aligned}$		Units
		Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {AA }}$	Address to Output Valid		35		50	ns
tHZCS	Chip Select Inactive to High ${ }^{\text {[8] }}$ [${ }^{\text {a }}$		25		25	ns
$\mathrm{t}_{\mathrm{ACS}}$	Chip Select Active to Output Valid		25		25	ns

AC Test Loads and Waveforms

Figure 1a

0008-4

0008-6
Figure 2. Input Pulses

Equivalent to: THÉVENIN EQUIVALENT

0008-7

Notes:

7. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and loads shown in Figures 1a, Ib.
8. $\mathbf{t}_{\mathrm{HZCS}}$ is tested with load shown in Figure 1b. Transition is measured at steady state High level -500 mV or steady state Low level +500 mV on the output from the 1.5 V level on the input.

Typical DC and AC Characteristics

OUTPUT SOURCE CURRENT vs. VOLTAGE

TYPICAL ACCESS TIME CHANGE vs. OUTPUT LOADING

0008-8

0008-9

Figure 3. Programming Pinout

Programming Algorithm

The CY7C291 and CY7C292 programming algorithm allows significantly faster programming than the "worst case" specification of 10 msec.
Typical programming time for a byte is less than 2.5 msec . The use of EPROM cells allows factory testing of programmed cells, measurement of data retention and erasure to ensure reliable data retention and functional performance. A flowchart of the algorithm is shown in Figure 4.
The algorithm utilizes two different pulse types: initial and overprogram. The duration of the PGM pulse (tpp) is 0.1 msec which will then be followed by a longer overprogram pulse of $24(0.1)(X) \mathrm{msec}$. X is an iteration counter and is equal to the NUMBER of the initial 0.1 msec pulses applied before verification occurs. Up to four 0.1 msec pulses are provided before the overprogram pulse is applied.
The entire sequence of program pulses and byte verification is performed at $\mathrm{V}_{\mathrm{CCP}}=5.0 \mathrm{~V}$. When all bytes have been programmed all bytes should be compared (Read mode) to original data with $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.

Figure 4. Programming Flowchart

CY7C292

Programming Information

The 7C291 and 7C292 2K x 8 CMOS PROMs are implemented with a differential EPROM memory cell. The PROMs are delivered in an erased state, containing neither " 1 s " nor " 0 s ". This erased condition of the array may be assessed using the "BLANK CHECK ONES" and
"BLANK CHECK ZEROS" function, see below.

Erasure Characteristics

Wavelengths of light less than 4000 Angstroms begin to erase the 7C291. For this reason, an opaque label should be placed over the window if the PROM is exposed to sunlight or fluorescent lighting for extended periods of time.
The recommended dose of ultraviolet light for erasure is a wavelength of 2537 Angstroms for a minimum dose (UV intensity \times exposure time) of $25 \mathrm{Wsec} / \mathrm{cm}^{2}$. For an ultraviolet lamp with a $12 \mathrm{~mW} / \mathrm{cm}^{2}$ power rating the exposure time would be approximately $30-35$ minutes.

The 7C291 needs to be within 1 inch of the lamp during erasure. Permanent damage may result if the PROM is exposed to high intensity UV light for an extended period of time. $7258 \mathrm{~W} \times \mathrm{sec} / \mathrm{cm}^{2}$ is the recommended maximum dosage.

Blank Check

A virgin device contains neither ones nor zeros because of the differential cell used for high speed. To verify that a PROM is unprogrammed, use the two blank check modes provided in Table 3. In each of these modes, the locations 0 thru 2047 should be addressed and read. A device is considered virgin if all locations are respectively " 1 s " and " 0 s " when addressed in the "BLANK ONES AND ZEROS" modes.
Because a virgin device contains neither ones nor zeros, it is necessary to program both ones and zeros. It is recommended that all locations be programmed to ensure that ambiguous states do not exist.

DC Programming Parameters $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Table 1

Parameter	Description	Min.	Max.	Units
V_{PP}	Programming Voltage ${ }^{[1]}$	13.0	14.0	V
$\mathrm{~V}_{\mathrm{CCP}}$	Supply Voltage	4.75	5.25	V
$\mathrm{~V}_{\text {IHP }}$	Input HIGH Voltage	3.0		V
$\mathrm{~V}_{\mathrm{ILP}}$	Input LOW Voltage		0.4	V
$\mathrm{~V}_{\mathrm{OH}}$	Output HIGH Voltage ${ }^{[2]}$	2.4		V
$\mathrm{~V}_{\mathrm{OL}}$	Output LOW Voltage $[2]$		0.4	V
$\mathrm{I}_{\mathrm{IPP}}$	Programming Supply Current		50	mA

AC Programming Parameters $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Table 2

Parameter	Description	Min.	Max.	Units
$\mathrm{t}_{\mathbf{P} P}$	Programming Pulse Width ${ }^{[3]}$	100	10,000	$\mu \mathrm{s}$
$t_{\text {AS }}$	Address Setup Time	1.0		$\mu \mathrm{s}$
$t_{\text {ds }}$	Data Setup Time	1.0		$\mu \mathrm{s}$
t_{AH}	Address Hold Time	1.0		$\mu \mathrm{s}$
$\mathrm{t}_{\text {DH }}$	Data Hold Time	1.0		$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$	$\mathrm{V}_{\text {PP }}$ Rise and Fall Time ${ }^{\text {[3] }}$	1.0		$\mu \mathrm{s}$
tVD	Delay to Verify	1.0		$\mu \mathrm{s}$
tVP	Verify Pulse Width	2.0		$\mu \mathrm{s}$
$t_{\text {DV }}$	Verify Data Valid		1.0	$\mu \mathrm{s}$
$t_{\text {D }}$	Verify to High Z		1.0	$\mu \mathrm{s}$

Notes:

1. $\mathrm{V}_{\mathrm{CCP}}$ must be applied prior to V_{PP}.
2. Measured 10% and 90% points.

Mode Selection

Table 3

Mode	Read or Output Disable	Pin Function			$\begin{gathered} \text { Outputs } \\ (9-11,13-17) \end{gathered}$
		CS_{3}	CS_{2}	CS_{1}	
	Other	PGM	$\overline{\text { VFY }}$	$\mathbf{V P P}^{\text {P }}$	
	Pin Number	(18)	(19)	(20)	
Read		$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IL }}$	Data Out
Output Disable ${ }^{[4]}$		X	X	$\mathrm{V}_{\text {IH }}$	High Z
Output Disable ${ }^{[4]}$		X	$V_{\text {IL }}$	X	High Z
Output Disable ${ }^{[4]}$		$V_{\text {IL }}$	X	X	High Z
Program		$\mathrm{V}_{\text {ILP }}$	$V_{\text {IHP }}$	$\mathrm{V}_{\mathbf{P P}}$	Data In
Program Verify		$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\mathbf{P P}}$	Data Out
Program Inhibit		$V_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {PP }}$	High Z
Intelligent Program		$V_{\text {ILP }}$	$V_{\text {IHP }}$	$V_{\text {PP }}$	Data In
Blank Check Ones		$V_{P P}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	Ones
Blank Check Zeros		$V_{P P}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	Zeros

Notes:

5. During programming and verification, all unspecified pins to be at $\mathrm{V}_{\mathrm{ILP}}$.

Programming Sequence 2K x 8

Power the device for normal read mode operation with pin 18, 19 and 20 at VIH. Per Figure 5 take pin 20 to $V_{\text {Pp }}$. The device is now in the program inhibit mode of operation with the output lines in a high impedance state; see Table 3. Again per Figure 5 address, program, and verify one byte of data. Repeat this for each location to be programmed. If the brute force programming method is used, the pulse width of the program pulse should be 10 ms , and each
location is programmed with a single pulse. Any location that fails to verify causes the device to be rejected.
If the intelligent programming technique is used, the program pulse width should be $100 \mu \mathrm{~s}$. Each location is ultimately programmed and verified until it verifies correctly up to and including 4 times. When the location verifies, one additional programming pulse should be applied of duration $24 x$ the sum of the previous programming pulses before advancing to the next address to repeat the process.

0008-11
Figure 5. Programming Waveforms

Ordering Information

Speed (ns)	$\begin{gathered} \mathbf{I}_{\mathbf{C C}} \\ (\mathbf{m A}) \end{gathered}$	Ordering Code	Package Type	Operating Range
35	60	CY7C291L-35PC	P13	Commercial
		CY7C291L-35WC	W14	
	90	CY7C291-35PC	P13	
		CY7C291-35SC	S13	
		CY7C291-35WC	W14	
		CY7C291-35LC	L64	
	120	CY7C291-35WMB	W14	Military
50	60	CY7C291L-50PC	P13	Commercial
		CY7C291L-50WC	W14	
	90	CY7C291-50PC	P13	
		CY7C291-50SC	S13	
		CY7C291-50WC	W14	
		CY7C291-50LC	L64	
	120	CY7C291-50WMB	W14	Military
		CY7C291-50DMB	D14	
		CY7C291-50LMB	L64	
		CY7C291-50QMB	Q64	

Speed (ns)	ICC (mA)	Ordering Code	Package Type	Operating Range
	60	CY7C292L-35PC	P11	Commercial
		CY7C292L-35DC	D12	
	90	CY7C292-35PC	P11	
		CY7C292-35DC	D12	
50	60	CY7C292L-50PC	P11	Commercial
		CY7C292L-50DC	D12	
	90	CY7C292-50PC	P11	
		CY7C292-50DC	D12	
	120	CY7C292-50DMB	D12	Military

SEMICONDUCTOR
MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS}}$	$7,8,9,10,11$

Document \#: 38-00007-B

Features

- Windowed for reprogrammability
- CMOS for optimum speed/power
- High speed
- 25 ns (commercial)
- $\mathbf{3 0} \mathrm{ns}$ (military)
- Low power
- 330 mW (commercial)
- 660 mW (military)
- Low standby power
-165 mW (commercial)
- 220 mW (military)
- EPROM technology $\mathbf{1 0 0 \%}$ programmable
- Slim $\mathbf{3 0 0} \mathbf{~ m i l}$ or standard 600 mil packaging available
- $5 \mathrm{~V} \pm 10 \% \mathrm{~V}_{\mathrm{CC}}$, commercial and military
- TTL compatible I/O
- Direct replacement for bipolar PROMs
- Capable of withstanding $>2001 \mathrm{~V}$ static discharge

Product Characteristics

The CY7C291A, CY7C292A, and CY7C293A are high performance 2048 word by 8 bit CMOS PROMs. They are functionally identical, but are packaged in 300 mil (7C291A, 7C293A) and 600 mil wide plastic and hermetic DIP packages (7C292A). The CY7C293A has an automatic power down feature which reduces the power consumption by over 70% when deselected. The 300 mil ceramic DIP package is equipped with an erasure window; when exposed to UV light the PROM is erased and can then be reprogrammed. The memory cells utilize proven EPROM floating gate technology and byte-wide intelligent programming algorithms.
for bipolar devices and offer the advantages of lower power, reprogrammability, superior performance and programming yield. The EPROM cell requires only 12.5 V for the supervoltage and low current requirements allow for gang programming. The EPROM cells allow for each memory location to be tested 100%, as each location is written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming the product will meet DC and AC specification limits.
Reading is accomplished by placing an active LOW signal on $\overline{\mathrm{CS}}_{1}$, and active HIGH signals on CS_{2} and CS_{3}. The contents of the memory location addressed by the address lines $\left(\mathrm{A}_{0}-\mathrm{A}_{10}\right)$ will become available on the output lines $\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$.

The CY7C291A, CY7C292A, and CY7C293A are plug-in replacements

Logic Block Diagram

Pin Configurations

0120-3
Window available on 7C291A and 7C293A only.

Selection Guide

			$\begin{aligned} & \hline \text { 7C291A-25 } \\ & \text { 7C292A-25 } \\ & \text { 7C293A-25 } \end{aligned}$	$\begin{aligned} & 7 \mathrm{C} 291 \mathrm{~A}-30 \\ & 7 \mathrm{C} 292 \mathrm{~A}-30 \\ & 7 \mathrm{C} 293 \mathrm{~A}-30 \end{aligned}$	$\begin{aligned} & \text { 7C291A-35 } \\ & \text { 7C292A-35 } \\ & \text { 7C293A-35 } \end{aligned}$	$\begin{aligned} & \text { 7C291A-50 } \\ & \text { 7C292A-50 } \\ & \text { 7C293A-50 } \end{aligned}$
Maximum Access Time (ns)			25	30	35	50
Maximum Operating Current (mA)	STD	Commercial	120		90	90
		Military		120	120	120
	L	Commercial			60	60
$\begin{aligned} & \text { Standby Current (mA) } \\ & \text { 7C293A Only } \end{aligned}$		Commercial	30		30	30
		Military		40	40	40

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Static Discharge Voltage
$>2001 \mathrm{~V}$
Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
(per MIL-STD-883, Method 3015)
Latchup Current
$>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[5]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Rangel ${ }^{[6]}$

Parameters	Description	Test Conditions		$\begin{array}{\|l\|} \hline \text { 7C291 } \\ \hline \text { 7C292 } \\ \hline 7 \mathrm{C} 293 \\ \hline \end{array}$	$\begin{aligned} & \text { 1A-25 } \\ & \text { 2A-25 } \\ & 3 \mathrm{~A}-25 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 7C291 } \\ \hline \text { 7C292 } \\ \hline \text { 7C293 } \\ \hline \end{array}$	$\begin{aligned} & 1 \mathrm{~A}-30 \\ & 2 \mathrm{~A}-30 \\ & 3 \mathrm{~A}-30 \end{aligned}$	7C291AL-35, 50 7C292AL-35, 50 7C293AL-35, 50		$\begin{array}{r} \text { 7C291A-35,50 } \\ \text { 7C292A-35,50 } \\ \text { 7C293A-35,50 } \\ \hline \end{array}$		Units
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{n} \end{aligned}$		2.4		2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \\ & \mathrm{I}_{\mathrm{OL}}=-16.0 \end{aligned}$			0.4		0.4		0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.0	V_{CC}	2.0	V_{CC}	2.0	V_{CC}	2.0	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8		0.8		0.8		0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	GND $\leq \mathrm{V}_{\text {IN }}$	$\leq \mathrm{V}_{\mathrm{CC}}$	-10	+10	-10	+ 10	-10	+ 10	-10	+ 10	$\mu \mathrm{A}$
V_{CD}	Input Diode Clamp Voltage			Note 2		Note 2		Note 2		Note 2		
I_{OZ}	Output Leakage Current	$\begin{aligned} & \text { GND } \leq \text { V OUT } \\ & \text { Output Disable } \end{aligned}$	$\mathrm{T} \leq \mathrm{V}_{\mathrm{CC}},$	-40	$+40$	-40	$+40$	-40	+40	-40	$+40$	$\mu \mathrm{A}$
IOS	Output Short Circuit Current ${ }^{[1]}$	$\begin{aligned} & \mathbf{v}_{\mathrm{CC}}=\text { Max. } \\ & \mathrm{v}_{\mathrm{OUT}}=\mathrm{GND} \end{aligned}$		-20	-90	-20	-90	-20	-90	-20	-90	mA
I_{CC}	V_{CC} Operating Supply Current	$\mathbf{v}_{\mathrm{CC}}=\mathrm{Max} .$	Commercial		120				60		90	mA
			Military				120				120	mA
ISB	Standby Supply Current (7C293A Only)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max. } \\ & \mathrm{CS}_{1} \geq \mathrm{V}_{\mathrm{IH}} \end{aligned}$	Commercial		30				30		30	mA
			Military				40				40	mA

Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	5	pF
			8	

Notes:

1. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
2. The CMOS process does not provide a clamp diode. However, the CY7C291A, CY7C292A and CY7C293A are insensitive to -3V dc input levels and -5 V undershoot pulses of less than 10 ns (measured at 50% point).
3. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
4. Tested initially and after any design or process changes that may affect these parameters.
5. T_{A} is the "instant on" case temperature.
6. See the last page of this specification for Group A subgroup testing information.

Switching Characteristics Over the Operating Range ${ }^{[6,7]}$

Parameters	Description	$\begin{aligned} & \text { 7C291A-25 } \\ & \text { 7C292A-25 } \\ & \text { 7C293A-25 } \end{aligned}$		$\begin{aligned} & \text { 7C291A-30 } \\ & \text { 7C292A-30 } \\ & \text { 7C293A-30 } \end{aligned}$		$\begin{aligned} & \text { 7C291A-35 } \\ & \text { 7C292A-35 } \\ & \text { 7C293A-35 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 7C291A-50 } \\ & \text { 7C292A-50 } \\ & \text { 7C293A-50 } \\ & \hline \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {AA }}$	Address to Output Valid		25		30		35		50	ns
$\mathrm{t}_{\mathrm{HZCS}}^{1}$	Chip Select Inactive to High ${ }^{\text {[8] }}$		20		20		25		25	ns
taCs_{1}	Chip Select Active to Output Valid		20		20		25		25	ns
$\mathbf{t}_{\mathbf{H Z C S}}^{2}$	Chip Select Inactive to High $\mathrm{Z}^{[9]}$ (7C293A $\overline{\mathrm{CS}}_{1}$ Only)		27		32		35		45	ns
$\mathrm{t}_{\mathrm{ACS}}^{2}$	Chip Select Active to Output Valid (7C293A $\overline{\mathrm{CS}}_{1}$ Only) ${ }^{[9]}$		27		32		35		45	ns
t_{PU}	Chip Select Active to Power Up (7C293A $\overline{\mathrm{CS}}_{1}$ Only)	0		0		0		0		ns
${ }^{\text {tPD }}$	Chip Select Inactive to Power Down (7C293A $\overline{\mathrm{CS}}_{1}$ Only)		27		32		35		45	ns

AC Test Loads and Waveforms

Figure 1a

0120-4

Figure 1b
Equivalent to: THÉVENIN EQUIVALENT

0120-6

Notes:

7. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and loads shown in Figures 1a, Ib.
8. $\mathrm{t}_{\mathrm{HZCS}}$ is tested with load shown in Figure 1b. Transition is measured at steady state High level -500 mV or steady state Low level +500 mV on the output from the 1.5 V level on the input.
9. $\mathrm{t}_{\mathrm{HZCS}}^{2}$ and $\mathrm{t}_{\mathrm{ACS}_{2}}$ refer to $7 \mathrm{C} 293 \mathrm{~A} \overline{\mathrm{CS}}_{1}$ only.

Typical DC and AC Characteristics

NORMALIZED ACCESS TIME vs. SUPPLY VOLTAGE

NORMALIZED ACCESS TIME vs. TEMPERATURE

AMBIENT TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right)$

OUTPUT SINK CURRENT
vs. OUTPUT VOLTAGE

0120-9

0120-10

Figure 3. Programming Pinout

Programming Algorithm

0120-8
The CY7C291A, CY7C292A and CY7C293A programming algorithm allows significantly faster programming than the "worst case" specification of 10 ms.
Typical programming time for a byte is less than 2.5 ms . The use of EPROM cells allows factory testing of programmed cells, measurement of data retention and erasure to ensure reliable data retention and functional performance. A flowchart of the algorithm is shown in Figure 4.
The algorithm utilizes two different pulse types: initial and overprogram. The duration of the PGM pulse (tpp) is 0.1 ms which will then be followed by a longer overprogram pulse of $24(0.1)(X) \mathrm{ms}$. X is an iteration counter and is equal to the NUMBER of the initial 0.1 ms pulses applied before verification occurs. Up to four 0.1 ms pulses are provided before the overprogram pulse is applied.
The entire sequence of program pulses and byte verification is performed at $\mathrm{V}_{\mathrm{CCP}}=5.0 \mathrm{~V}$. When all bytes have been programmed all bytes should be compared (Read mode) to original data with $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Figure 4. Programming Flowchart SEMICONDUCTOR

Programming Information

The 7C291A, 7C292A and 7C293A 2K $\times 8$ CMOS PROMs are implemented with a single ended EPROM memory cell. The PROMs are delivered in an erased state, containing " Os ". To verify that a PROM is unprogrammed, use the verify mode provided in Table 3. The locations 0 thru 2047 should be addressed and read.

Erasure Characteristics

Wavelengths of light less than 4000 Angstroms begin to erase these PROMs. For this reason, an opaque label should be placed over the window if the PROM is exposed
to sunlight or fluorescent lighting for extended periods of time.
The recommended dose of ultraviolet light for erasure is a wavelength of 2537 Angstroms for a minimum dose (UV intensity \times exposure time) of $25 \mathrm{Wsec} / \mathrm{cm}^{2}$. For an ultraviolet lamp with a $12 \mathrm{~mW} / \mathrm{cm}^{2}$ power rating the exposure time would be approximately $30-35$ minutes.
These PROMs need to be within 1 inch of the lamp during erasure. Permanent damage may result if the PROM is exposed to high intensity UV light for an extended period of time. $7258 \mathrm{~W} \times \mathrm{sec} / \mathrm{cm}^{2}$ is the recommended maximum dosage.

DC Programming Parameters $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Table 1

Parameter	Description	Min.	Max.	Units
V_{PP}	Programming Voltage $[1]$	12.0	13.0	V
$\mathrm{~V}_{\mathrm{CCP}}$	Supply Voltage	4.75	5.25	V
$\mathrm{~V}_{\mathrm{IHP}}$	Input HIGH Voltage	3.0		V
$\mathrm{~V}_{\mathrm{ILP}}$	Input LOW Voltage		0.4	V
$\mathrm{~V}_{\mathrm{OH}}$	Output HIGH Voltage ${ }^{[2]}$	2.4		V
$\mathrm{~V}_{\mathrm{OL}}$	Output LOW Voltage $[2]$		0.4	V
I_{PP}	Programming Supply Current		50	mA

AC Programming Parameters $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Table 2

Parameter	Description	Min.	Max.	Units
$\mathrm{t}_{\text {PP }}$	Programming Pulse Width ${ }^{3]}$	100	10,000	$\mu \mathrm{~s}$
$\mathrm{t}_{\text {AS }}$	Address Setup Time	1.0		$\mu \mathrm{~s}$
t_{DS}	Data Setup Time	1.0		$\mu \mathrm{~s}$
t_{AH}	Address Hold Time	1.0		$\mu \mathrm{~s}$
t_{DH}	Data Hold Time	1.0		$\mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$	VPp Rise and Fall Time $^{[3]}$	1.0		$\mu \mathrm{~s}$
t_{VD}	Delay to Verify	1.0		$\mu \mathrm{~s}$
t_{VP}	Verify Pulse Width	2.0		$\mu \mathrm{~s}$
t_{DV}	Verify Data Valid		1.0	$\mu \mathrm{~s}$
t_{DZ}	Verify to High Z		1.0	

Notes:

1. VCCP must be applied prior to VPp.
2. Measured 10% and 90% points.
3. During verify operation.

SEMICONDUCIOR

Mode Selection

Table 3

Mode	Read or Output Disable	Pin Function			Outputs$(9-11,13-17)$
		CS_{3}	CS_{2}	CS_{1}	
	Other	PGM	$\overline{\mathbf{V F Y}}$	$\mathbf{V P P}$	
	Pin Number	(18)	(19)	(20)	
Read		$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IL }}$	Data Out
Output Disable ${ }^{[4]}$		X	\mathbf{X}	$\mathrm{V}_{\text {IH }}$	High Z
Output Disable ${ }^{[4]}$		X	$\mathrm{V}_{\text {IL }}$	X	High Z
Output Disable ${ }^{[4]}$		$\mathrm{V}_{\text {IL }}$	X	X	High Z
Program		$\mathrm{V}_{\text {ILP }}$	$V_{\text {IHP }}$	$\mathrm{V}_{\text {PP }}$	Data In
Program Verify		$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	V_{PP}	Data Out
Program Inhibit		$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{P P}$	High Z
Intelligent Program		$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {PP }}$	Data In

Notes:
4. $\mathrm{X}=$ Don't care but not to exceed $\mathrm{V}_{\mathrm{CC}}+5 \%$.

Programming Sequence 2K x 8

Power the device for normal read mode operation with pin 18, 19 and 20 at V $_{\text {IH. }}$. Per Figure 5 take pin 20 to $\mathrm{V}_{\text {Pp. }}$. The device is now in the program inhibit mode of operation with the output lines in a high impedance state; see Table 3. Again per Figure 5 address, program, and verify one byte of data. Repeat this for each location to be programmed.
If the brute force programming method is used, the pulse width of the program pulse should be 10 ms , and each
5. During programming and verification, all unspecified pins to be at $\mathrm{V}_{\text {ILP }}$.
location is programmed with a single pulse. Any location that fails to verify causes the device to be rejected.
If the intelligent programming technique is used, the program pulse width should be $200 \mu \mathrm{~s}$. Each location is ultimately programmed and verified until it verifies correctly up to and including 10 times. When the location verifies, one additional programming pulse should be applied of duration $4 x$ the sum of the previous programming pulses before advancing to the next address to repeat the process.

0120-11
Figure 5. Programming Waveforms

CY7C291A SEMICONDUCTOR

Ordering Information

$\begin{array}{\|c} \text { Speed } \\ \text { (ns) } \end{array}$	$\underset{(\mathbf{m A})}{\mathbf{I}_{\mathbf{C C}}}$	Ordering Code	Package Type	Operating Range
25	120	CY7C291A-25PC	P13	Commercial
		CY7C291A-25WC	W14	
		CY7C292A-25PC	P11	
		CY7C292A-25DC	D12	
		CY7C293A-25PC	P13	
		CY7C293A-25WC	W14	
30	120	CY7C291A-30DMB	D14	Military
		CY7C291A-30WMB	W14	
		CY7C291A-30LMB	L64	
		CY7C291A-30QMB	Q64	
		CY7C292A-30DMB	D12	
		CY7C293A-30DMB	D14	
		CY7C293A-30WMB	W14	
		CY7C293A-30LMB	L64	
		CY7C293A-30QMB	Q64	
35	60	CY7C291AL-35PC	P13	Commercial
		CY7C291AL-35WC	W14	
		CY7C292AL-35PC	P11	
		CY7C293AL-35PC	P13	
		CY7C293AL-35WC	W14	
	90	CY7C291A-35PC	P13	Commercial
		CY7C291A-35DC	D14	
		CY7C291A-35WC	W14	
		CY7C291A-35LC	L64	
		CY7C292A-35PC	P11	
		CY7C292A-35DC	D12	
		CY7C293A-35PC	P13	
		CY7C293A-35DC	D14	
		CY7C293A-35WC	W14	
		CY7C293A-35LC	L64	
	120	CY7C291A-35DMB	D14	Military
		CY7C291A-35WMB	W14	
		CY7C291A-35LMB	L64	
		CY7C291A-35QMB	Q64	
		CY7C292A-35DMB	D12	
		CY7C293A-35DMB	D14	
		CY7C293A-35WMB	W14	
		CY7C293A-35LMB	L64	
		CY7C293A-35QMB	Q64	

Speed (ns)	$\begin{aligned} & \mathbf{I}_{\mathbf{C C}} \\ & (\mathbf{m A}) \end{aligned}$	Ordering Code	Package Type	Operating Range
50	60	CY7C291AL-50PC	P13	Commercial
		CY7C291AL-50WC	W14	
		CY7C292AL-50PC	P11	
		CY7C293AL-50PC	P13	
		CY7C293AL-50WC	W14	
	90	CY7C291A-50PC	P13	Commercial
		CY7C291A-50DC	D14	
		CY7C291A-50WC	W14	
		CY7C291A-50LC	L64	
		CY7C292A-50PC	P11	
		CY7C292A-50DC	D12	
		CY7C293A-50PC	P13	
		CY7C293A-50DC	D14	
		CY7C293A-50WC	W14	
		CY7C293A-50LC	L64	
	120	CY7C291A-50DMB	D14	Military
		CY7C291A-50WMB	W14	
		CY7C291A-50LMB	L64	
		CY7C291A-50QMB	Q64	
		CY7C292A-50DMB	D12	
		CY7C293A-50DMB	D14	
		CY7C293A-50WMB	W14	
		CY7C293A-50LMB	L64	
		CY7C293A-50QMB	Q64	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB}}{ }^{[2]}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS} 1}[1]$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS} 2}[2]$	$7,8,9,10,11$

Notes:

1. 7C291A and 7C292A only.
2. 7C293A only.

Document \#: 38-00075-B

Introduction

PROMs or Programmable Read Only Memories have existed since the early 1970's and continue to provide the highest speed non-volatile form of semiconductor memory available. Until the introduction of CMOS PROMs from Cypress, all PROMs were produced in bipolar technology, because bipolar technology provided the highest possible performance at an acceptable cost level. All bipolar PROMs use a fuse for the programming element. The fuses are in tact when the product is delivered to the user, and may be programmed or written once with a pattern and used or read infinitely. The fuses are literally blown using a high current supplied by a Programming System. Since the fuses may only be blown or programmed once, they may not be programmed during test. In addition, since they may not be programmed until the user determines the pattern, they may not be completely tested prior to shipment from the supplier. This inability to completely test, results in less than 100% yield during programming and use by the customer for two reasons. First, some percentage of the product fails to program. These devices fall out during the programming operation, and although a nuisance are easily identified. Additional yield is lost because the device fails to perform even though it programs correctly. This failure is normally due to the device being too slow. This is a more subtle failure, and can only be found by 100% post program AC testing, or even worse by trouble shooting an assembled board or system.
Cypress CMOS PROMs use an EPROM programming mechanism. This technology has been in use in MOS technologies since the early 1970s. However, as with most MOS technologies the emphasis has been on density, not performance. CMOS at Cypress is as fast as or faster than Bipolar and coupled with EPROM, becomes a viable alternative to bipolar PROMs from a performance point-ofview. In the arena of programming, EPROM has some significant advantages over fuse technology. EPROM cells are programmed by injecting charge on an isolated gate which permanently turns off the transistor. This mechanism can be reversed by irradiating the device with ultraviolet light. The fact that programming can be erased, totally changes the testing and programming situation and philosophy. All cells can be programmed during the manufacturing process and then erased prior to packaging and subsequent shipment. While these cells are programmed, the performance of each cell in the memory can be tested allowing the shipment of devices that program every time, and will perform as specified when programmed. In addition when these devices are supplied in a windowed package they can be programmed and erased indefinitely providing the designer a RE-PROGRAMMABLE PROM for development.

Programmable Technology

EPROM Process Technology

EPROM technology employs a floating or isolated gate between the normal control gate and the source/drain region of a transistor. This gate may be charged with electrons during the programming operation and when sharged with electrons, the transistor is permanently curned off. When uncharged (the transistor is unproyrammed) the device may be turned on and off normally
with the control gate. The state of the floating gate, charged or uncharged, is permanent because the gate is isolated in an extremely pure oxide. The charge may be removed if the device is irradiated with ultraviolet energy in the form of light. This ultraviolet light allows the electrons on the gate to recombine and discharge the gate. This process is repeatable and therefore can be used during the processing of the device repeatedly if necessary to assure programming function and performance.

Two Transistor Cells

In order to provide an EPROM cell that is as fast as the fuse technology employed in bipolar processes, Cypress uses a two transistor EPROM cell. One transistor is optimized for reliable programming, and one transistor is optimized for high speed. The floating gates are connected such that charge injected on the floating gate of the programming transistor is conducted to the read transistor, biasing it off.

Differential Memory Cells

In the 4 K (CY7C225); 8K (CY7C235, CY7C281, CY7C282); and 16 K (CY7C245, CY7C291, CY7C292) CMOS PROMs, Cypress employs a differential memory cell and sense amplifier technique. Higher density devices such as the 7C261, 7C263, 7C264 or 7C269 64K PROMs employ a single ended Cell and sense amplifier technique similar to the approach used in more conventional EPROMs.
In a conventional high density EPROM a single EPROM transistor is used to switch the input to one side of a differential sense amplifier. The other side of the sense amplifier is biased at an intermediate level with a dummy cell. An unprogrammed EPROM transistor will conduct and drive the sense amplifier to a logic " 0 ". A programmed EPROM transistor will not conduct, and consequently drives the sense amplifier to a logic " 1 ". A conventional EPROM cell therefore is delivered with a specific state " 0 " or " 1 " in it depending on the number of inversions after the sense amplifier and can always be programmed to the opposite state. Access time in this conventional approach is heavily dependent on the time the selected EPROM transistor takes to move the input of the sense amplifier from a quiescent condition to the threshold that the dummy cell is biasing the second input to the sense amplifier. This bias is several volts, and requires a significant delay before the sense amplifier begins to react.
Cypress PROMs employ a true differential cell approach, with EPROM cells attached to both inputs of the sense amplifier. As indicated above, the read transistor which is optimized for speed is actually the transistor attached to the sense amplifier. In the erased state, both EPROM transistors conduct when selected eccentrically biasing the input of the sense amplifier at the same level. If the inputs were at identical levels, the output of the sense amplifier would be in a mestastable condition or, neither a " 1 " nor " 0 ". In actual practice the natural bias and high gain of the sense amplifier combine to cause the output to favor one or the other stable conditions. The difference between the two conditions is however only a few millivolts and the memory cell should be considered to contain neither a " 1 " nor a " 0 ". As a result of this design approach, the memory cell must be programmed to either a " 1 " or a " 0 " depending on the desired condition and the conventional BLANK

CHECK mechanism is invalid. The benefit of the approach however is that only a small differential signal from the cell begins the sense amplifier switching and the access time of the memory is extremely fast.

Single Ended Memory Cells

Although a more conventional approach, single ended memory cells and sensing techniques offer a superior tradeoff between die size and performance than the differential cell for devices of 64 K densities and above. The Single ended technique employed by Cypress uses a dummy cell for the reference voltage thus providing a reference that tracks the programmed cell in process related parameters, power supply and temperature induced variations. The Memory cell used is a second generation two transistor cell derived from earlier work at the 16 K density level. It has an optimized READ transistor that is matched to the sense amplifier, and a second transistor optimized for programming. The floating gates of the two transistors that make up a memory cell are connected electrically so that the charge programmed onto one device controls the threshold of the second transistor.
Unlike the differential memory approach, the erased single ended device contains all " 0 "'s and on the the ones are programmed. Therefore a " 1 " on the data pins during programming causes a " 1 " to be programmed into the addressed location.

Programming Algorithm

Byte Addressing and Programming

All Cypress CMOS PROMs are addressed and programmed on a byte basis unlike the bipolar products that they replace. The address lines used to access the memory in a read mode are the same for programming, and the address map is identical. The information to be programmed into each byte is presented on the data out pins during the programming operation and the data is read from these same pins for verification that the byte has been programmed.

Blank Check for Differential Cells

Since a differential cell contains neither a " 1 " nor a " 0 " before it is programmed, the conventional BLANK CHECK is not valid. For this reason, all Cypress CMOS PROMs contain a special BLANK CHECK mode of operation. Blank check is performed by separately examining the " 0 " and " 1 " sides of the differential memory cell to determine whether either side has been independently programmed. This is accomplished in two passes one comparing the " 0 " side of the differential cell against a reference voltage applied to the opposite side of the sense amplifier and then repeating this operation for the " 1 "s side of the cell. The modes are called BLANK CHECK ONES, and BLANK CHECK ZEROS. These modes are entered by the application of a supervoltage to the device.

Blank Check for Single Ended Cells

Single ended cells BLANK CHECK in a conventional manner. An erased device contains all " 0 "s and a programmed call will contain a " 1 ". Cypress PROMs that use the single ended approach provide a specific mode to perform the BLANK CHECK which also provides the verify
function. This makes the need to switch high voltages unnecessary during the program verify operation. See specific data sheets for details.

Programming the Data Array

Programming is accomplished by applying a supervoltage to one pin of the device causing it to enter the programming mode of operation. This also provides the programming voltage for the cells to be programmed. In this mode of operation, the address lines of the device are used to address each location to be programmed, and the data is presented on the pins normally used for reading the contents of the device. Each device has a READ and a WRITE pin in the programming mode. These are active low signals and cause the data on the output pins to be written into the addressed memory location in the case of the WRITE signal or read out of the device in the case of the READ signal. When both the READ and WRITE signals are high, the outputs are disabled and in a high impedance state. Programming therefore is accomplished by placing data on the output pins, and writing it into the addressed location with the WRITE signal. Verification of data is accomplished by reading the information on the output pins while the READ signal is active.
The timing for actual programming is supplied in the unique programming specification for each device.

Special Features

Depending on the specific CMOS PROM in question, additional features that require programming may be available to the designer. Two of these features are a Programmable INITIAL BYTE and Programmable SYNCHRONOUS/ASYNCHRONOUS ENABLE available in some of the registered devices. Like programming the array, these features make use of EPROM cells and are programmed in a similar manner, using supervoltages. The specific timing and programming requirements are specified in the data sheet of the device employing the feature.

Programming Support

Programming support for Cypress CMOS PROMs is available from a number of programmer manufacturers, some of which are listed below.

Data I/O Corporation
10525 Willows Rd. N.E.
P.O. Box 97046

Redmond, WA
98073-9746
(206) 881-6444

Data I/O 29B Unipak II				
Cypress Part Number	Generic Part Number	Family Code and Pinout	Revision	
CY7C225	27 2525	F0	B6	V12
CY7C235	27 S35	F0	B5	V09
CY7C245	$27 S 45 A$	F0	B0	V09
CY7C261/3/4	$27 S 49$	EF	31	V11
CY7C281/2	27 S281/181	EE	B4	V09
CY7C291/2	$27 S 291 / 191$	EE	AF	V09

Stag Microsystems
1600 Wyatt Dr.
Santa Clara, CA 95054
(408) 988-1118

Stag PPZ Zm2000			
Cypress Part Number	Generic Part Number	Family Code and Pinout	Revision
CY7C225	275 S25		Rev 21
CY7C235	27535	Menu	Rev21
CY7C245	27S45A	Driven	Rev 24
CY7C281/2	27S281/181		Rev21
CY7C291/2	27S291/191		Rev 21

Cypress Semiconductor, Inc.
3901 North First St.
San Jose, CA 95134
(408) 943-2600

Cypress CY3000 QuickPro Rev. PROM 2.10			
Cypress Part Number	Generic Part Number	Family Code and Pinout	
CY7C225			
CY7C235			
CY7C245			
CY7C261/3/4	Menu	Menu	
CY7C268	Driven	Driven	
CY7C269			
CY7C281/2			
CY7C291/2			

PRODUCT INFORMATION
STATIC RAMS 2
PROMS 3
LOGIC 5
RISC 6
BRIDGEMOS 7
QUICKPRO

QUALITY AND RELIABILITYAPPLICATION BRIEFS10
PACKAGES 11

Section Contents

EPLDs (Eraseable Programmable Logic Devices)Introduction to EPLDs4-1
Device Number Description
PAL C 20 Series 16L8, 16R8, 16R6, 16R4 Reprogrammable CMOS PAL ${ }^{\circledR}$ Device 4-7
PLD C 20G10 CMOS Generic 24 Pin Reprogrammable PLD 4-25
PLD C 20RA10 Reprogrammable Asynchronous CMOS Programmable Logic Device 4-44
PAL C 22V10 Reprogrammable CMOS PAL Device 4-53
CY7C330 Synchronous State Machine 4-70
CY7C331 Asynchronous Registered EPLD 4-79
CY7C332 Combinatorial Registered EPLD 4-87
PLD Programming Information 4-92

Cypress EPLD Family Features

Cypress Semiconductor's EPLD family offers the user the next generation in Erasable Programmable Logic Devices (EPLD) based on our high performance 0.8μ CMOS process. These devices offer the user the power saving of a CMOS-based process, with delay times equivalent to those previously found only in bipolar devices. No fuses are used in Cypress' EPLD family, rather all devices are based on an EPROM cell to facilitate programming. By using an EPROM cell instead of fuses, programming yields of 100% can be expected since all devices are functionally tested and erased prior to packaging. Therefore, no programming yield loss can be expected by the user.
The EPROM cell used by Cypress serves the same purpose as the fuse used in most bipolar PLD devices. Before programming, the AND gates or Product Terms are connected via the EPROM cells to both the true and complement inputs. When the EPROM cell is programmed, the inputs from a gate or Product Term are disconnected. Programming alters the transistor threshold of each cell so that no conduction can occur, which is equivalent to disconnecting the input from the gate or Product Terms. This is similar to "blowing" the fuses of a bipolar device which disconnects the input gate from the Product Term. Selective programming of each of these EPROM cells enables the specific logic function to be implemented by the user.
The programmability of Cypress' EPLDs allows the users to customize every device in a number of ways to implement their unique logic requirements. Using EPLDs in place of SSI or MSI components results in more effective utilization of boardspace, reduced cost and increased reli-
ability. The flexibility afforded by these EPLDs allows the designer to quickly and effectively implement a number of logic functions ranging from random logic gate replacement to complex combinatorial logic functions.
The EPLD family implements the familiar "sum of products" logic by using a programmable AND array whose output terms feed a fixed OR array. The sum of these can be expressed in a Boolean transfer function and is limited only by the number of product terms available in the AND-OR array. A variety of different sizes and architectures are available. This allows for more efficient logic optimization by matching input, output and product terms to the desired application.

EPLD Notation

To reduce confusion and to have an orderly way of representing the complex logic networks, logic diagrams are provided for the various part types. In order to be useful, Cypress logic diagrams employ a common logic convention that is easy to use. Figure 1 shows the adopted convention. In Figure 1, an "x" represents an unprogrammed EPROM cell that is used to perform the logical AND operation upon the input terms. The convention adopted does not imply that the input terms are connected on the common line that is indicated. A further extension of this convention is shown in Figure 2 which shows the implementation of a simple transfer function. The normal logic representation of the transfer function logic convention is shown in Figure 3.

Figure 1

Figure 2

0024-3
Figure 3

PLD Circuit Configurations

Cypress EPLDs have several different output configurations that cover a wide spectrum of applications. The available output configurations offer the user the benefits of both lower package counts and reduced costs when used. This approach allows the designer to select a PLD that best fits the needs of his application. An example of some of the configurations that are available are listed below.

Programmable I/O

Figure 4 illustrates the programmable I/O offered in the Cypress EPLD family which allows product terms to directly control the outputs of the device. One product term is used to directly control the three-state output buffer, which then gates the summation of the remaining terms to the output pin. The output of this summation can be fed back into the PLD as an input to the array. This programmable I/O feature allows the PLD to drive the output pin when the three-state output is enabled or, the I/O pin can be used as an input to the array when the three-state output is disabled.

Registered Outputs with Feedback

Figure 5 illustrates the registered output offered on a number of the Cypress EPLDs allows this circuit to function as a state sequencer. The summation of the product terms is stored in the D-type output flip-flop on the rising edge of the system clock. The Q output of the flip-flop can then be gated to the output pin by enabling the three-state output buffer. The output of the flip-flop can also be fed back into the array as an input term. The output feedback feature allows the PLD to remember and then alter its function based upon that state. This circuit can be used to execute such functions as counting, skip, shift and branch.

Buried Register Feedback

A number of Cypress EPLDs provide registers which may be "buried" or "hidden" to create registers for state machine implementation without sacrificing the use of the associated device pin. The device pin normally associated with the register may still be used as a device input. The proprietary CY7C330 Reprogrammable Synchronous State Machine macrocell illustrates, in Figure 6, the use of buried registers with provision for saving the I/O pin for use as an input. If the feedback path is selected by the feedback multiplexer, the $\overline{\mathrm{Q}}$ of the register is fed back to the array as an input. The I/O pin can still be routed to the array as an external input by use of a special multiplexer shown in Figure 7 provided for that purpose for each of the six macrocell pairs. A special configuration bit, C 3 , selects the input register output from one of the I/O pins of the pair of macrocell I/O pins which is to be fed to the array as an external input. By proper placement of the buried registers adjacent to I/O macrocells used as normal registered out-
puts without feedback, maximum use of the buried macrocell I/O pins for inputs can be achieved. The CY7C330 also contains four dedicated buried or hidden registers with no external output, illustrated in Figure 8, which are used as additional state register resources for creation of high performance state machines.

Asynchronous Register Control

Cypress also offers EPLDs which may be used in asynchronous systems in which register clock, set and reset are controlled by the outputs of the product term array. The clock is created by the processing of external inputs and/or internal feedback by the logic of the product term array and is then routed to the register clock. The register set and reset are similarly controlled by product term outputs and can be triggered at any time independent of the clock in response to external and/or feedback inputs processed by the logic array. The proprietary CY7C331 Asynchronous Registered EPLD, for which the I/O macrocell is illustrated in Figure 9, is an example of such a device. The register clock, set and reset functions of the CY7C331 are all controlled by product terms and enable their respective functions dependent only on input signal timing and combinatorial delay through the device logic array.

Programmable Macro Cell

The Programmable Macro Cell, illustrated in Figure 10, provides the capability of defining the architecture of each output individually. Each of the potential outputs may be specified to be "REGISTERED" or "COMBINATORIAL". Polarity of each output may also be individually selected allowing complete flexibility of output configuration. Further configurability is provided through "ARRAY" configurable "OUTPUT ENABLE" for each potential output. This feature allows the outputs to be reconfigured as inputs on an individual basis or alternately used as a bidirectional I/O controlled by the programmable array.

Input Register Cell

Other Cypress EPLDs provide input register cells which allow capture for processing of short duration inputs which would not otherwise be present at the inputs for sufficient time to allow the device to respond. Both the proprietary CY7C330 Reprogrammable Synchronous State Machine and the proprietary CY7C332 Combinatorial EPLD provide these input register cells which are shown in Figure 11. The clock for the input register may be provided from one of two external clock input pins selectable by a configuration bit, C4, dedicated for this purpose for each input register. This choice of input register clock allows signals to be captured and processed from two independent system sources each controlled by its own independent clock. These input register cells are provided within I/O macrocells, as well as, for dedicated input pins.

Introduction to CMOS EPLDs ${ }_{(\text {Coninuace })}$

Figure 4. Programmable I/O

0024-5
Figure 5. Registered Outputs with Feedback

0024-7
Figure 6. CY7C330 I/O Macro Cell

Figure 7. CY7C330 I/O Macro Cell Pair Shared Input MUX

Figure 8. CY7C330 Hidden State Register Macro Cell

Introduction to CMOS EPLDs ${ }_{\text {(Continued) }}$

Figure 9. CY7C331 Registered Asynchronous Macrocell

Figure 10. Programmable Macro Cell

Introduction to CMOS EPLDs ${ }_{\text {(Continued) }}$

0024-11
Figure 11. CY7C330 Dedicated Input Cell

PAL ${ }^{\circledR}$ C 20 Series

Features

- CMOS EPROM technology for reprogrammability
- High performance at quarter power
$-\mathbf{t P D}^{2}=25 \mathrm{~ns}$
$-\mathrm{ts}=20 \mathrm{~ns}$
$-\mathrm{t} \mathbf{C O}=15 \mathrm{~ns}$
$-\mathrm{I}_{\mathrm{CC}}=45 \mathrm{~mA}$
- High performance at military temperature
- tpD $=20 \mathrm{~ns}$
$-\mathrm{ts}_{\mathrm{S}}=20 \mathrm{~ns}$
$-\mathrm{t}_{\mathrm{CO}}=15 \mathrm{~ns}$
$-\mathrm{I}_{\mathrm{CC}}=70 \mathrm{~mA}$
- Commercial and military temperature range
- High reliability
- Proven EPROM technology
- $>1500 \mathrm{~V}$ input protection from electrostatic discharge
- 100\% AC/DC tested
- 10% power supply tolerances
- High noise immunity
- Security feature prevents pattern duplication
$-\mathbf{1 0 0 \%}$ programming and functional testing

Functional Description

Cypress PAL C Series 20 devices are high speed electrically programmable and UV erasable logic devices produced in a proprietary " N " well CMOS EPROM process. These devices utilize the sum of products (AND-OR) structure providing users the ability to pro-
gram custom logic functions serving unique requirements.
PALs are offered in 20-pin plastic and ceramic DIP, Plastic SOJ, and ceramic LCC packages. The ceramic package can be equipped with an erasure window; when exposed to UV light, the PAL is erased and can then be reprogrammed.
Before programming, AND gates or PRODUCT TERMS are connected via EPROM cells to both TRUE and COMPLEMENT inputs. Programming an EPROM cell disconnects an INPUT TERM from a PRODUCT TERM. Selective programming of these cells allows a specific logic function to be implemented in a PAL C device. PAL C devices are supplied in four functional configurations, desig-

Logic Symbols and DIP and SOJ Pinouts

0038-1

16R6

0038-2

16R4

0038-3

16L8

0038-4

LCC Pinouts

PAL ${ }^{\text {® }}$ is a registered trademark of Monolithic Memories Inc.
CYPRESS SEMICONDUCTOR is a trademark of Cypress Semiconductor Corporation.

Functional Description (Continued)

nated 16R8, 16R6, 16R4 and 16L8. These eight devices have potentially 16 inputs and 8 outputs configurable by the user. Output configurations of 8 registers, 8 combinatorial, 6 registers and 2 combinatorial as well as 4 registers and 4 combinatorial are provided by the four functional variations of the product family. All combinatorial outputs on the 16R6 and 16R4 as well as 6 of the combinatorial outputs on the 16 L 8 may be used as optional inputs. All registered outputs have the $\overline{\mathrm{Q}}$ bar side of the register fed back into the main array. The registers are automatically initialized on power up to Q output LOW and \bar{Q} output HIGH. All unused inputs should be tied to ground.
All PAL C devices feature a SECURITY function which provides the user protection for the implementation of proprietary logic. When invoked, the contents of the normal array may no longer be accessed in the verify mode. Because EPROM technology is used as a storage mechanism, the content of the array is not visible under a microscope. The PAL C device also contains a PHANTOM ARRAY used for functional and performance testing. The content of this array is always accessible, even when security is invoked.
Cypress PAL C products are produced in an advanced 1.2 micron "N" well CMOS EPROM technology. The use of this proven EPROM technology is the basis for a superior product with inherent advantages in reliability, testability, programming and functional yield. EPROM technology has the inherent advantage that all programmable elements may be programmed, tested and erased during the manufacturing process. This also allows the device to be 100%
functionally tested during manufacturing. An ability to preload the registers of registered devices during the testing operation makes the testing easier and more efficient. The PHANTOM ARRAY and PHANTOM operating mode allow the device to be tested for functionality and performance after it has been packaged. Combining these inherent and designed-in features, an extremely high degree of functionality, programmability and assured AC performance are provided and testing becomes an easy task.
The REGISTER PRELOAD allows the user to initialize the registered devices to a known state prior to testing the device, significantly simplifying and shortening the testing procedure.
The PHANTOM MODE of operation provides a completely separate operating mode where the functionality of the device along with its AC performance may be ascertained. The user need not be encumbered by programmed cells in the normal operating mode. This PHANTOM MODE of operation allows additional input lines to be programmed to operate the PAL C device, exercising the device functionally and allowing AC performance measurements to be made. The PHANTOM MODE of operation acknowledges only the INPUT TERMS shown shaded in the functional block diagrams. Likewise, the normal PHANTOM INPUT TERMS do not exist in the normal mode of operation. During the final stages of manufacturing, some cells in the PHANTOM ARRAY are programmed for final AC and functional testing. These cells remain programmed, and may be used at incoming inspection to verify both functional and AC performance.

Commercial Selection Guide

GenericPartNumber	Logic	Output Enable	Outputs	$\mathrm{I}_{\mathbf{C C}}(\mathrm{mA})$		tPD (ns)		$\mathrm{tS}_{S}(\mathrm{~ns})$		tco (ns)	
				L	STD	-25	-35	-25	-35	-25	-35
16L8	(8) 7 -wide AND-OR-Invert	Programmable	(6) Bidirectional (2) Dedicated	45	70	25	35	-	-	-	-
16R8	(8) 8-wide AND-OR	Dedicated	Registered Inverting	45	70	-	-	20	30	15	25
16R6	(6) 8-wide AND-OR	Dedicated	Registered Inverting	45	70	25	35	20	30	15	25
	(2) 7-wide AND-OR-Invert	Programmable	Bidirectional								
16R4	(4) 8-wide AND-OR	Dedicated	Registered Inverting	45	70	25	35	20	30	15	25
	(4) 7-wide AND-OR-Invert	Programmable	Bidirectional								

Military Selection Guide

Generic Part Number	Logic	Output Enable	Outputs	$\underset{(\mathbf{m A})}{\mathbf{I} \mathbf{C C}}$	tPD (ns)			$\mathbf{t S}_{\text {(}} \mathbf{n s}$)			tco (ns)		
					-20	-30	-40	-20	-30	-40	-20	-30	-40
16L8	(8) 7 -wide AND-OR-Invert	Programmable	(6) Bidirectional (2) Dedicated	70	20	30	40	-	-	-	-	-	-
16R8	(8) 8-wide AND-OR	Dedicated	Registered Inverting	70	-	-	-	20	25	35	15	20	25
16R6	(6) 8-wide AND-OR	Dedicated	Registered Inverting	70	20	30	40	20	25	35	15	20	25
	(2) 7 -wide AND-OR-Invert	Programmable	Bidirectional										
16R4	(4) 8-wide AND-OR	Dedicated	Registered Inverting	70	20	30	40	20					
	(4) 7-wide AND-OR-Invert	Programmable	Bidirectional						25	35	15	20	25

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	UV Exposure . 7258 Wsec/cm²		
Ambient Temperature with Power Applied . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Static Discharge Voltage . > 1500 V (per MIL-STD-883 Method 3015)		
Supply Voltage to Ground Potential (Pin 20 to Pin 10) -0.5 V to +7.0 V DC Voltage Applied to Outputs	Latchup Current \qquad $>200 \mathrm{~mA}$ Operating Range		
in High Z State . $-0.5 \mathrm{-}$ - 3.0 V to to +7.0 V DC Input Voltage +7.0 V	Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Output Current into Outputs (Low) 24 mA	Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
DC Programming Voltage . 14.0 V	Military ${ }^{\text {[}}$]	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range (Unless Otherwise Noted)[7]

Parameters	Description	Test Conditions			Min.	Max.	Units
$\mathrm{VOH}^{\text {OH}}$	Output HIGH Voltage	$\begin{aligned} & \mathbf{V}_{\mathbf{C C}}=\mathbf{M i n} . \\ & \mathbf{V}_{\mathbf{I N}}=\mathrm{V}_{\mathbf{I H}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA}$	Commercial	2.4		V
			$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	Military			
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathbf{V}_{\mathrm{CC}}=\text { Min. } \\ & \mathbf{V}_{\mathbf{I N}}=\mathrm{V}_{\mathbf{I H}} \text { or } \mathbf{V}_{\mathbf{I L}} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$	Commercial		0.4	V
			$\mathrm{IOL}=12 \mathrm{~mA}$	Military			
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed Input Logic HIGH ${ }^{[2]}$ Voltage for all Inputs			2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed Input Logical LOW ${ }^{[2]}$ Voltage for all Inputs				0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	$\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}}{ }^{[1]}$			-10	10	$\mu \mathrm{A}$
$V_{\text {PP }}$	Programming Voltage	$\mathrm{I}_{\mathrm{PP}}=50 \mathrm{~mA} \mathrm{Max}$.			13.0	14.0	V
ISC	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ [3]				-300	mA
I_{CC}	Power Supply Current	$\begin{aligned} & \text { All Inputs }=\text { GND, } \\ & \text { V }_{\text {CC }}=\text { Max., } \\ & \text { IOUT }^{\text {O }} 00 \mathrm{~mA}[6] \end{aligned}$		"L"		45	mA
				STD		70	mA
				MIL		70	mA
IOZ	Output Leakage Current	$\mathrm{V}_{\mathrm{CC}}=\mathbf{M a x} ., \mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$			-100	100	$\mu \mathrm{A}$

Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	7	pF
COUT	Output Capacitance	$\mathrm{V}_{\mathrm{IN}}=0, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	7	

Switching Characteristics PAL C 20 Series Over Operating Range [5, 7]

Parameters	Description	Commercial				Military						Units
		-25		-35		-20		-30		-40		
		Min.	Max.									
tPD	Input or Feedback to Non-Registered Output 16L8, 16R6, 16R4		25		35		20		30		40	ns
tea	Input to Output Enable 16L8, 16R6, 16R4		25		35		20		30		40	ns
ter	Input to Output Disable 16L8, 16R6, 16R4		25		35		20		30		40	ns
tPZX	Pin 11 to Output Enable 16R8, 16R6, 16R4		20		25		20		25		25	ns
$\mathrm{t}_{\mathbf{P X Z}}$	Pin 11 to Output Disable 16R8, 16R6, 16R4		20		25		20		25		25	ns
$\mathrm{t}_{\mathrm{C} 0}$	Clock to Output 16R8, 16R6, 16R4		15		25		15		20		25	ns
ts	Input or Feedback Setup Time 16R8, 16R6, 16R4	20		30		20		25		35		ns
t_{H}	Hold Time 16R8, 16R6, 16R4	0		0		0		0		0		ns
tP	Clock Period	35		55		35		45		60		ns
tw	Clock Width	15		20		12		20		25		ns
$\mathrm{f}_{\mathrm{MAX}}$	Maximum Frequency		28.5		18		28.5		22		16.5	MHz

Notes:

1. $\mathrm{IIX}(\operatorname{Pin} 1)=25 \mu \mathrm{~A}$ Max., $\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{IN}} \leq 2.7 \mathrm{~V}$. $\mathrm{I}_{\mathrm{IX}}(\operatorname{Pin} 1)=1 \mathrm{~mA}$ Max., $2.7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}}$.
2. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
3. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
4. Figure $1 a$ test load used for all parameters except $t_{E A}, t_{E R} t_{P Z X}$ and $t_{\text {tXZ }}$. Figure $1 b$ test load used for teA, ter, tpZX and tPXZ.
5. $\mathrm{ICC}_{(\mathrm{AC})}=(0.6 \mathrm{~mA} / \mathrm{MHz}) \times($ Operating Frequency in MHz$)+$ $\mathrm{I}_{\mathrm{CC}(\mathrm{DC})} \mathrm{I}_{\mathrm{CC}(\mathrm{DC})}$ is measured with an unprogrammed device.
6. See the last page of this specification for Group A subgroup testing information.
7. T_{A} is the "instant on" case temperature.
8. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Figure 1a. Commercial

Figure 1c. Military

Figure 1b. Commercial

Figure 1d. Military

0038-13
Figure 2

ms
 Switching Waveforms

Figure 3

Erasure Characteristics

Wavelengths of light less than 4000 Angstroms begin to erase the PAL C device. For this reason, an opaque label should be placed over the window if the device is exposed to sunlight or fluorescent lighting for extended periods of time. In addition, high ambient light levels can create holeelectron pairs which may cause "blank" check failures or "verify errors" when programming "windowed" parts. This phenomenon can be avoided by use of an opaque label over the window during programming in high ambient light environments.
The recommended dose for erasure is ultraviolet light with a wavelength of 2537 Angstroms for a minimum dose (UV intensity x exposure time) of $25 \mathrm{Wsec} / \mathrm{cm}^{2}$. For an ultraviolet lamp with a $12 \mathrm{~mW} / \mathrm{cm}^{2}$ power rating, the exposure would be approximately 35 minutes. The PAL C device needs to be placed within 1 inch of the lamp during erasure. Permanent damage may result if the device is exposed to high intensity UV light for an extended period of time. $7258 \mathrm{Wsec} / \mathrm{cm}^{2}$ is the recommended maximum dosage.

Programming

PAL C devices are programmed a BYTE at a time using a voltage to transfer electrons to a floating gate. The array programmed is addressed as memory of 256 bytes, using address Tables 4 and 5. These addresses are supplied to the device over Pins 2 through 9 . The data to be programmed is supplied on data inputs D0 through D7 (Pins 19 through

12 inclusive). In the unprogrammed state, all inputs are connected to product terms. A " 1 " on a data line causes a cell to be programmed, disconnecting an INPUT TERM from a PRODUCT TERM. During verify, an unprogrammed cell causes a " 1 " to appear on the output, while a programmed cell will appear as a " 0 ". Table 3 describes the operating modes of the device and the programming waveforms are described in Figures 6 through 9. The actual sequence required to program a cell is described in Figure 5 and applies for programming either standard or phantom portions of the array. The security bit should be programmed using a single 10 ms pulse, and verified per Figure 9 .

0038-15
Figure 4. Programming Pin Configuration

DC Programming Parameters Ambient Temperature $=25^{\circ} \mathrm{C}$
Table 1

Parameter	Description	Min.	Max.	Units	Notes
V_{PP}	Programming Voltage	13.0	14.0	V	
$\mathrm{~V}_{\mathrm{CCP}}$	Supply Voltage During Programming	4.75	5.25	V	
$\mathrm{~V}_{\mathrm{IHP}}$	Programming Input High Voltage	3.0		V	
$\mathrm{~V}_{\mathrm{ILP}}$	Programming Input Low Voltage		0.4	V	
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	2.4		V	1
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage		0.4	V	1
I_{PP}	Programming Supply Current		50	mA	

AC Programming Parameters Ambient Temperature $=25^{\circ} \mathrm{C}$
Table 2

Parameter	Description	Min.	Max.	Units	Notes
$\mathrm{t}_{\mathbf{P P}}$	Programming Pulse Width	100	10,000	$\mu \mathrm{~s}$	2
$\mathrm{t}_{\mathbf{S}}$	Setup Time	1.0		$\mu \mathrm{~s}$	
t_{H}	Hold Time	1.0		$\mu \mathrm{~s}$	
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	VPP Rise and Fall Time	1.0		$\mu \mathrm{~s}$	
t_{VD}	Delay to Verify	1.0		2	
t_{VP}	Verify Pulse Width	2.0		$\mu \mathrm{~s}$	
t_{DV}	Verify to Data Valid	20.0		$\mu \mathrm{~s}$	
t_{DZ}	Verify to High Z		$\mu \mathrm{~s}$		

Table 3

Pin Name	VPP	PGM/ $\overline{\mathbf{O E}}$	A1	A2	A3	A4	A5	D7-D0	Notes
Pin Number	(1)	(11)	(3)	(4)	(5)	(6)	(7)	(12-19)	
Operating Modes									
PAL	X	X	X	X	X	X	X	Programmed Function	3,4
Program PAL	V_{PP}	V_{PP}	X	X	X	X	X	Data In	3, 5
Program Inhibit	$V_{P P}$	$V_{\text {IHP }}$	X	X	X	X	X	High Z	3,5
Program Verify/Blank Check	$\mathrm{V}_{\text {PP }}$	$V_{\text {ILP }}$	X	X	X	X	X	Data Out	3,5,11
Phantom PAL	X	X	X	X	X	$V_{P P}$	X	Programmed Function	3, 6
Program Phantom PAL	$\mathbf{V}_{\mathbf{P P}}$	V_{PP}	X	X	X	X	$V_{P P}$	Data In	3,7
Phantom Program Inhibit	$V_{P P}$	$\mathrm{V}_{\text {IHP }}$	X	X	X	X	$V_{P P}$	High Z	3,7
Phantom Program Verify	V_{PP}	$V_{\text {ILP }}$	X	X	X	X	$\mathrm{V}_{\text {PP }}$	Data Out	3,7
Program Security Bit	V_{PP}	$\mathrm{V}_{\text {PP }}$	$\mathrm{V}_{\mathbf{P P}}$	X	X	X	X	High Z	3, 8
Verify Security Bit	X	X	Note 9	$\mathrm{V}_{\text {PP }}$	X	X	X	High Z	3
Register Preload	X	X	X	X	$V_{\text {PP }}$	X	X	Data In	3,10

Notes:

1. During verify operation
2. Measured at 10% and 90% points
3. $\mathrm{V}_{\mathrm{SS}}<\mathrm{X}<\mathrm{V}_{\mathrm{CCP}}$
4. All " X " inputs operational per normal PAL function.
5. Address inputs occupy Pins 2 thru 9 inclusive, for both programming and verification see programming address Tables 4 and 5 .
6. All " X " inputs operational per normal PAL function except that they operate on the function that occupies the phantom array.
7. Address inputs occupy Pins 2 thru 9 inclusive, for both programming and verification see programming address Tables 4 and 5. Pin 7

The programmable array is addressed as a basic 256 by 8 memory structure with a duplication of the phantom array located at the same addresses as columns 0,1,2 and 3. The ability to address the phantom array as differentiated from the first 4 columns of the normal array is accomplished by taking Pin 7 to $\mathrm{V}_{\text {PP }}$ and entering the phantom mode of operation as shown in Tables 3 and 5. In either case, phantom or normal, product terms are addressed in groups of 8 per Table 4. Notice that this is accomplished by modulo 8
is used to select the phantom mode of operation and must be taken to V_{PP} before selecting phantom program operation with V_{PP} on Pin 1.
8. See Figure 8 for security programming sequence.
9. The state of Pin 3 indicates if the security function has been invoked or not. If Pin $3=V_{\text {OL }}$ security is in effect, if Pin $3=V^{\text {OH }}$, the data is unsecured and may be directly accessed.
10. For testing purposes, the output latch on the 16R8, 16R6 and 16R4 may be preloaded with data from the appropriate associated output line.
11. It is necessary to toggle Pin $11(\overline{\mathrm{OE}})$ HIGH during all address transitions while in the Program Verify or Blank Check mode.
selecting every eighth product term starting with $0,8,16$, 24, 32, 40, 48 and 56 corresponding to PROGRAMMED DATA INPUT on D0 through D7 respectively and incrementing each product term by one until all 64 PRODUCT TERMS are addressed. Each of the INPUT TERMS is addressed 8 times corresponding to the 8 groups of individual product terms addressed before being incremented.

Table 4

Product Term Addresses

Table 5

Input Term Addresses					
Input Term Numbers	Binary Addresses				
	Pin Numbers				
	(9)	(8)	(7)	(6)	(5)
0	VILP	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$V_{\text {ILP }}$	VILP
1	$V_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$
2	V ILP	$V_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$V_{\text {IHP }}$	$V_{\text {ILP }}$
3	$V_{\text {ILP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {IHP }}$
4	$V_{\text {ILP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$
5	$\mathrm{V}_{\text {ILP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {IHP }}$
6	$V_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$
7	$V_{\text {ILP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {IHP }}$
8	$V_{\text {ILP }}$	$V_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$
9	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$
10	$V_{\text {ILP }}$	$V_{\text {IHP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$
11	$V_{\text {ILP }}$	$V_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$
12	VILP	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	VILP	$V_{\text {ILP }}$
13	$V_{\text {ILP }}$	$V_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {IHP }}$
14	$V_{\text {ILP }}$	$V_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$
15	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$
16	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$
17	VIHP	VILP	VILP	VILP	VIHP

Input Term Addresses					
Input Term Numbers	Binary Addresses				
	Pin Numbers				
	(9)	(8)	(7)	(6)	(5)
18	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$
19	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$
20	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$
21	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	VIHP	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$
22	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {IHP }}$	VIHP	$\mathrm{V}_{\text {ILP }}$
23	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {IHP }}$
24	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$
25	VIHP	$V_{\text {IHP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$V_{\text {IHP }}$
26	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$
27	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$
28	$\mathrm{V}_{\text {IHP }}$	$V_{\text {IHP }}$	$V_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$
29	$\mathrm{V}_{\mathrm{IHP}}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$
30	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$
31	VIHP	$V_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	VIHP	$\mathrm{V}_{\text {IHP }}$
P0	$V_{\text {ILP }}$	$V_{\text {ILP }}$	$V_{\text {PP }}$	X	X
P1	$V_{\text {ILP }}$	$V_{\text {IHP }}$	VPP	X	X
P2	$V_{\text {IHP }}$	$V_{\text {ILP }}$	VPP	X	X
P3	$\mathrm{V}_{\text {IHP }}$	VIHP	$V_{\text {PP }}$	X	X

Figure 5. Programming Flowchart

Figure 6. Programming Waveforms Normal Array

Figure 7. Program Waveforms Phantom Array

Figure 8. Activating Program Security

Figure 9. Verify Program Security

Functional Logic Diagram PAL C 16L8

Functional Logic Diagram PAL C 16R4

Functional Logic Diagram PAL C 16R6

Functional Logic Diagram PAL C 16R8

Typical DC and AC Characteristics

NORMALIZED PROPAGATION DELAY vs. TEMPERATURE

NORMALIZED SETUP TIME vs. TEMPERATURE

NORMALIZED SUPPLY CURRENT
vs. AMBIENT TEMPERATURE

DELTA PROPAGATION TIME vs. OUTPUT LOADING

NORMALIZED CLOCK TO OUTPUT TIME vs. SUPPLY VOLTAGE

OUTPUT SINK CURRENT vs. OUTPUT VOLTAGE

NORMALIZED PROPAGATION DELAY vs. SUPPLY VOLTAGE

NORMALIZED SETUP TIME vs. SUPPLY VOLTAGE

NORMALIZED CLOCK TO OUTPUT
TIME vs. TEMPERATURE

OUTPUT SOURCE CURRENT vs. VOLTAGE

Ordering Information

$\begin{aligned} & \text { tPD } \\ & \text { (ns) } \end{aligned}$	$\underset{(\mathrm{ns})}{\mathbf{t} \mathbf{S}}$	$\begin{aligned} & \mathrm{t} \mathrm{CO} \\ & \text { (ns) } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{CC}} \\ & (\mathrm{~mA}) \end{aligned}$	Ordering Code	Package	Operating Range Range
20	-	-	70	PAL C 16L8-20DMB	D6	Military
				PAL C 16L8-20LMB	L61	
				PAL C 16L8-20WMB	W6	
25	-	-	45	PAL C 16L8L-25PC		Commercial
				PAL C 16L8L-25VC	P5 V5	
				PAL C 16L8L-25LC	L61	
				PAL C 16L8L-25WC	W6	
			70	PAL C 16L8-25PC	P5	
				PAL C 16L8-25VC	V5	
				PAL C 16L8-25LC	L61	
30	-	-	70	PAL C 16L8-30DMB	D6	Military
				PAL C 16L8-30LMB	L61	
				PAL C 16L8-30WMB	W6	
35	-	-	45	PAL C 16L8L-35PC	P5	Commercial
				PAL C 16L8L-35VC	V5	
				PAL C 16L8L-35LC	L61	
				PAL C 16L8L-35WC	W6	
			70	PAL C 16L8-35PC	P5	
				PAL C 16L8-35VC	V5	
				PAL C 16L8-35LC	L61	
				PAL C 16L8-35WC	W6	
40	-	-	70	PAL C 16L8-40DMB	D6	Military
				PAL C 16L8-40LMB	L61	
				PAL C 16L8-40WMB	W6	
20	20	15	70	PAL C 16R4-20DMB	D6	Military
				PAL C 16R4-20LMB	L61	
				PAL C 16R4-20WMB	W6	
25	20	15	45	PAL C 16R4L-25PC	P5	Commercial
				PAL C 16R4L-25VC	V5	
				PAL C 16R4L-25LC	L61	
				PAL C 16R4L-25WC	W6	
			70	PAL C 16R4-25PC	P5	
				PAL C 16R4-25VC	V5	
				PAL C 16R4-25LC	L61	
				PAL C 16R4-25WC	W6	
30	25	20	70	PAL C 16R4-30DMB	D6	Military
				PAL C 16R4-30LMB	L61	
				PAL C 16R4-30WMB	W6	
35	30	25	45	PAL C 16R4L-35PC	P5	Commercial
				PAL C 16R4L-35VC	V5	
				PAL C 16R4L-35LC	L61	
				PAL C 16R4L-35WC	W6	
			70	PAL C 16R4-35PC	P5	
				PAL C 16R4-35VC	V5	
				PAL C 16R4-35LC	L61	
				PAL C 16R4-35WC	W6	
40	35	25	70	PAL C 16R4-40DMB	D6	Military
				PAL C 16R4-40LMB	L61	
				PAL C 16R4-40WMB	W6	

Ordering Information (Continued)

$\begin{aligned} & \text { trd } \\ & (\mathbf{n s}) \end{aligned}$	$\underset{(\mathrm{ns})}{\mathrm{ts}_{\mathbf{S}}}$	$\begin{aligned} & \hline \text { tco } \\ & \text { (ns) } \end{aligned}$	$\begin{aligned} & \mathbf{I}_{\mathbf{C C}} \\ & (\mathbf{m A}) \end{aligned}$	Ordering Code	Package	Operating Range
20	20	15	70	PAL C 16R6-20DMB	D6	Military
				PAL C 16R6-20LMB	L61	
				PAL C 16R6-20WMB	W6	
25	20	15	45	PAL C 16R6L-25PC	P5	Commercial
				PAL C 16R6L-25VC	V5	
				PAL C 16R6L-25LC	L61	
				PAL C 16R6L-25WC	W6	
			70	PAL C 16R6-25PC	P5	
				PAL C 16R6-25VC	V5	
				PAL C 16R6-25LC	L61	
				PAL C 16R6-25WC	W6	
30	25	20	70	PAL C 16R6-30DMB	D6	Military
				PAL C 16R6-30LMB	L61	
				PAL C 16R6-30WMB	W6	
35	30	25	45	PALC 16R6L-35PC	P5	Commercial
				PAL C 16R6L-35VC	V5	
				PAL C 16R6L-35LC	L61	
				PAL C 16R6L-35WC	W6	
			70	PAL C 16R6-35PC	P5	
				PAL C 16R6-35VC	V5	
				PAL C 16R6-35LC	L61	
				PAL C 16R6-35WC	W6	
40	35	25	70	PAL C 16R6-40DMB	D6	Military
				PAL C 16R6-40LMB	L61	
				PAL C 16R6-40WMB	W6	
-	20	15	70	PAL C 16R8-20DMB	D6	Military
				PAL C 16R8-20LMB	L61	
				PAL C 16R8-20WMB	W6	
-	20	15	45	PAL C 16R8L-25PC	P5	Commercial
				PALC 16R8L-25VC	V5	
				PAL C 16R8L-25LC	L61	
				PAL C 16R8L-25WC	W6	
			70	PAL C 16R8-25PC	P5	
				PAL C 16R8-25VC	V5	
				PAL C 16R8-25LC	L61	
				PAL C 16R8-25WC	W6	
-	25	20	70	PAL C 16R8-30DMB	D6	Military
				PAL C 16R8-30LMB	L61	
				PAL C 16R8-30WMB	W6	
-	30	25	45	PALC 16R8L-35PC	P5	Commercial
				PALC 16R8L-35VC	V5	
				PAL C 16R8L-35LC	L61	
				PAL C 16R8L-35WC	W6	
			70	PAL C 16R8-35PC	P5	
				PAL C 16R8-35VC	V5	
				PAL C 16R8-35LC	L61	
				PAL C 16R8-35WC	W6	
-	35	25	70	PAL C 16R8-40DMB	D6	Military
				PAL C 16R8-40LMB	L61	
				PAL C 16R8-40WMB	W6	

MILITARY SPECIFICATIONS
Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
$\mathrm{~V}_{\mathrm{PP}}$	$1,2,3$
I_{CC}	$1,2,3$
I_{OZ}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
$t_{\text {PD }}$	$9,10,11$
$t_{\text {PZX }}$	$9,10,11$
$t_{\text {CO }}$	$9,10,11$
t_{S}	$9,10,11$
t_{H}	$9,10,11$

Document \#: 38-00001-A

Features

- Fast
- Commercial: tPD $=15 \mathrm{~ns}$, $\mathbf{t}_{\mathbf{C O}}=10 \mathrm{~ns}, \mathrm{ts}_{\mathrm{S}}=12 \mathrm{~ns}$
- Military: $\mathbf{t P D}^{=} \mathbf{2 0} \mathrm{ns}$, $\mathbf{t}_{\mathbf{C O}}=15 \mathrm{~ns}, \mathbf{t s}_{\mathbf{S}}=17 \mathrm{~ns}$
- Low power
- ICC max.: 70 mA , Commercial
- ICC max.: 100 mA , Military
- Commercial and military
temperature range
- User-programmable output cells
- Selectable for registered or combinatorial operation
- Output polarity control
- Output enable source selectable from pin 13 or product term
- Generic architecture to replace standard logic functions including: 20L10, 20L8, 20R8, 20R6, 20R4, 12L10, 14L8, 16L6, 18L4, 20L2 and 20V8
- Eight product terms and one OE product term per output
- CMOS EPROM technology for reprogrammability
- Highly reliable
- Uses proven EPROM technology
- Fully AC and DC tested
- Security feature prevents logic pattern duplication
- $>2000 \mathrm{~V}$ input protection for electrostatic discharge
$- \pm 10 \%$ power supply voltage and higher noise immunity

CMOS Generic 24 Pin Logic Device

Functional Description

Cypress PLD devices are high speed electrically programmable Logic Devices. These devices utilize the sum of products (AND-OR) structure providing users the ability to program custom logic functions for unique requirements.
In an unprogrammed state the AND gates are connected via EPROM cells to both the true and complement of every input. By selectively programming the EPROM cells, AND gates may be connected to either the true or complement or disconnected from both true and complement inputs.
Cypress PLD C 20G10 uses an advanced 0.8 micron CMOS technology and a proven EPROM cell as the pro-

Logic Symbol

20G10

LCC Pinout

PLCC Pinout

Selection Guide

Generic Part Number	ICC			tPD		ts		tco	
	L	Com	Mil	Com	Mil	Com	Mil	Com	Mil
20G10-15[5]	-	70	-	15	-	12	-	10	-
20G10-20 ${ }^{\text {[5] }}$	-	-	100	-	20	-	17	-	15
20G10-25	-	55	-	25	-	15	-	15	-
20G10-30	-	-	80	-	30	-	20	-	20
20G10-35	-	55	-	35	-	30	-	25	-
20G10-40	-	-	80	-	40	-	35	-	25

Functional Description (Continued)

grammable element. This technology and the inherent advantage of being able to program and erase each cell enhances the reliability and testability of the circuit. This reduces the burden on the customer to test and to handle rejects.
A preload function allows the registered outputs to be preset to any pattern during testing. Preload is important for testing the functionality of the Cypress PLD device.

20G10 Functional Description

The PLD C 20 G 10 is a generic 24 pin device that can be programmed to logic functions which include but are not limited to: 20L10, 20L8, 20R8, 20R6, 20R4, 12L10, 14L8, 16L6, 18L4, 20L2 and 20V8. Thus, the PLD C 20G10 provides significant design, inventory and programming flexibility over dedicated 24 pin devices. It is executed in a 24 pin 300 mil molded DIP and a 300 mil windowed Cerdip. It provides up to 22 inputs and 10 outputs. When the windowed CERDIP is exposed to UV light, the 20G10 is erased and then can be reprogrammed.
The Programmable Output Cell provides the capability of defining the architecture of each output individually. Each of the 10 output cells may be configured with "REGISTERED" or "COMBINATORIAL" outputs, "ACTIVE HIGH" or "ACTIVE LOW" outputs, and "PRODUCT TERM" or "PIN 13" generated output enables. Three Architecture Bits determine the configurations as shown in Table 1 and in Figures 2 through 9. A total of eight different configurations are possible, with the two most common shown in Figure 4 and Figure 6. The default or unprogrammed state is REGISTERED/ACTIVE LOW/ PRODUCT TERM OE as shown in Figure 2. The entire Programmable Output Cell is shown in Figure 1.
The architecture bit ' C 1 ' controls the REGISTERED/ COMBINATORIAL option. In the "COMBINATORIAL" configuration, the output can serve as an I/O pin, or if the output is disabled, as an input only. Any unused inputs should be tied to ground. In the "REGISTERED" configuration, the output of the register is fed back to the array. This allows the creation of control-state machines by providing the next state. The register is clocked by the
signal from Pin 1. The register is initialized on power up to Q output LOW and \bar{Q} output HIGH.
In both the Combinatorial and Registered configurations, the source of the "OUTPUT ENABLE" signal can be individually chosen with architecture bit ' C 2 '. The OE signal may be generated within the array, or from the external $\overline{\mathrm{OE}}$ pin (Pin 13). The Pin 13 allows direct control of the outputs, hence having faster enable/disable times.
Each output cell can be configured for "OUTPUT POLARITY". The output can be either Active HIGH or Active LOW. This option is controlled by architecture bit 'CO'.

Along with this increase in functional density, the Cypress PLD C 20G10 provides lower power operation through the use of CMOS technology, increased testability with a register preload feature and guaranteed AC performance through the use of a phantom array. The phantom array allows the 20G10 to be programmed with a test pattern and tested prior to shipment for full AC specifications without using any of the functionality of the device specified for the product application. In addition, this same phantom array may be used to test the PLD C 20G10 at incoming inspection before committing the device to a specific function through programming.

Programmable Output Cell

Figure 1

Configuration Table

Table 1

Figure	$\mathbf{C}_{\mathbf{2}}$	$\mathbf{C}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{0}}$	Configuration
2	0	0	0	Product Term OE/Registered/Active LOW
3	0	0	1	Product Term OE/Registered/Active HIGH
6	0	1	0	Product Term OE/Combinatorial/Active LOW
7	0	1	1	Product Term OE/Combinatorial/Active HIGH
4	1	0	0	Pin 13 OE/Registered/Active LOW
5	1	0	1	Pin 13 OE/Registered/Active HIGH
8	1	1	0	Pin 13 OE/Combinatorial/Active LOW
9	1	1	1	Pin 13 OE/Combinatorial/Active HIGH

Registered Output Configurations

Figure 2. Product Term OE/Active LOW

$C_{2}=1$
$C_{1}=0$
$C_{0}=0$
0053-39
Figure 4. Pin 13 OE/Active LOW

0053-38
Figure 3. Product Term OE/Active HIGH

0053-40
Figure 5. Pin 13 OE/Active HIGH

Combinatorial Output Configurations[6]

Figure 6. Product Term OE/Active LOW

Figure 8. Pin 13 OE/Active LOW

Figure 7. Product Term OE/Active HIGH

Figure 9. Pin 13 OE/Active HIGH

SEMICONDUCTOR
Maximum Ratings
(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $\ldots \ldots \ldots \ldots . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $\ldots \ldots-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential $\ldots .-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State. -0.5 V to +7.0 V

Output Current into Outputs (Low) 16 mA
DC Programming Voltage14.0V

Static Discharge Voltage . $>2001 \mathrm{~V}$
(per MIL-STD-883 Method 3015)
Latchup Current
. $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[8]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range (Unless Otherwise Noted) ${ }^{[7]}$

Parameters	Description	Test Conditions			Min.	Max.	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{IOH}=-3.2 \mathrm{~mA}$	Commercial	2.4		v
			$\mathrm{IOH}=-2 \mathrm{~mA}$	Military			
VoL	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{IOL}=16 \mathrm{~mA}$	Commercial		0.5	V
			$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$	Military			
V_{IH}	Input HIGH Level	Guaranteed Input Logical HIGH ${ }^{[1]}$ Voltage for all Inputs			2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed Input Logical LOW ${ }^{[1]}$ Voltage for all Inputs				0.8	V
IIX	Input Leakage Current	$\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$			-10	10	$\mu \mathrm{A}$
$V_{\text {PP }}$		Programming Voltage @ IPP $=50 \mathrm{~mA}$ Max.			13.0	14.0	V
Isc	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}^{[2]}$				-90	mA
I_{CC}	Power Supply Current	$\begin{aligned} & 0 \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{v}_{\mathrm{CC}}=\text { Max., IOUT }=0 \mathrm{~mA} \end{aligned}$	Commercial -15[5]			70	mA
			Commercial -25, -35			55	
			Military -20 ${ }^{\text {[5] }}$			100	
			Military -30, -40			80	
I_{O}	Output Leakage Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$			-100	100	$\mu \mathrm{A}$

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	4	pF
COUT	Output Capacitance	$\mathrm{V}_{\mathrm{IN}}=0, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	7	

Switching Characteristics PLD C 20G10 Over Operating Range ${ }^{[4, ~ 7] ~}$

Parameters	Description	Commercial						Military						Units
		-15[5]		-25		-35		$-20^{[5]}$		-30		. 40		
		Min.	Max.	Min.	Max									
tPD	Input or Feedback to Non-Registered Output		15		25		35		20		30		40	ns
tEA	Input to Output Enable		15		25		35		20		30		40	ns
ter	Input to Output Disable		15		25		35		20		30		40	ns
tPZX	Pin 13 to Output Enable		12		20		25		17		25		25	ns
$t_{P X Z}$	Pin 13 to Output Disable		12		20		25		17		25		25	ns
t_{CO}	Clock to Output		10		15		25		15		20		25	ns
ts	Input or Feedback Setup Time	12		15		30		17		20		35		ns
t_{H}	Hold Time	0		0		0		0		0		0		ns
t_{P}	Clock Period	22		35		55		32		45		60		ns
tw	Clock Width	11		15		20		16		20		25		ns
$\mathrm{f}_{\text {MAX }}$	Maximum Frequency	45.5		33.3		18		31.3		25		16.5		MHz

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
2. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. VOUT $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
3. Tested initially and after any design or process changes that may affect these parameters.
4. Figure 10a test load used for all parameters except tER, tPZX and $\mathrm{t}_{\mathrm{PXZ}}$. Figure $10 b$ test load used for $\mathrm{t}_{\mathrm{ER}}, \mathrm{t}_{\text {PZX }}$ and $\mathrm{t}_{\mathrm{PXZ}}$.
5. Preliminary specifications.
6. Bidirectional I/O configurations are possible only when the combinatorial output option is selected.
7. See the last page of this specification for Group A subgroup testing information.
8. T_{A} is the "instant on" case temperature.

AC Test Loads and Waveforms (Commercial)

Figure 10a

0053-6 Figure 10b

Equivalent to
THEVENIN EQUIVALENT (Commercial)

Equivalent to:
THEVENIN EQUIVALENT (Military)

Switching Waveforms

Note:
For more information regarding PLD devices, refer to the Application Brief in the Appendix.

PLD C 20G10
SEMICONDUCTOR
Functional Logic Diagram PLD C 20G10

Erasure Characteristics

Wavelengths of light less than 4000 Angstroms begin to erase the PLD C 20G10. For this reason, an opaque label should be placed over the window if the device is exposed to sunlight or fluorescent lighting for extended periods of time. In addition, high ambient light levels can create holeelectron pairs which may cause "blank" check failures or "verify errors" when programming "windowed" parts. This phenomenon can be avoided by use of an opaque label over the window during programming in high ambient light environments.
The recommended dose for erasure is ultraviolet light with a wavelength of 2537 Angstroms for a minimum dose (UV intensity \times exposure time) of $25 \mathrm{Wsec} / \mathrm{cm}^{2}$. For an ultraviolet lamp with a $12 \mathrm{~mW} / \mathrm{cm}^{2}$ power rating, the exposure would be approximately 35 minutes. The PLD C 20G10 needs to be placed within 1 inch of the lamp during erasure. Permanent damage may result if the device is exposed to high intensity UV light for an extended period of time. $7258 \mathrm{Wsec} / \mathrm{cm}^{2}$ is the recommended maximum dosage.

Device Programming

The PLD C 20G10 can be programmed on inexpensive conventional PROM/EPROM programmers with appropriate personality or socket adapters and the CY3000 QuickPro programmer. Once the PLD device is programmed, one additional location can be programmed to prohibit logic pattern verification. This security feature gives the user additional protection to safeguard his proprietary logic. This feature is highly reliable and due to EPROM technology it is impossible to visually read the programmed cell locations.
The PLD C 20G10 has multiple programmable functions. In addition to the normal array, a "PHANTOM" array, "TOP and BOTTOM TEST" and a "SECURITY" feature are programmable. The PLD C 20G10 security mechanism, when invoked, prevents access to the "NORMAL" and "TOP/BOTTOM TEST" array. The "PHANTOM" array feature is still accessible, allowing programming and verification of the pattern in the "PHANTOM" array. Functional operation of all other features is allowed regardless of the state of the "SECURITY BIT". In addition, the device contains 10 programmable output cells which are programmed to configure the device functionality for each specific application.
The logic array is divided into a "NORMAL" array and a "PHANTOM" array. The normal array is used to configure the device to perform a specific function as required by the user, and the phantom array is provided as a test array for Cypress' testing the device prior to user programming thus assuring a reliable, thoroughly tested product. The "PHANTOM" array contains four additional columns connected to input pins 2 (TRUE), 7 (INVERTING), 10 (TRUE) and 11 (TRUE). These inputs may be programmed to be connected to all normal product terms. This allows all sense amplifiers and programmable output cells to be exercised for both functionality and performance after assembly and prior to shipment. These features are in addition to the normal array. They do not affect normal operation, allowing the user full programming of the normal array, while allowing the device to be fully tested.

The "TOP TEST" and "BOTTOM TEST" feature, allow connection of all input terms to either pin 23 or 13 . These locations may be programmed and subsequently exercised in the "TOP TEST" and "BOTTOM TEST" mode. Like the Phantom array above, this feature has no effect in the normal mode of operation. Cells in the PHANTOM ARRAY, TOP TEST, and BOTTOM TEST areas are programmed at Cypress during the manufacturing operation, and they therefore will be programmed when received in a non-windowed package by the user. Consequently, the user will normally have no need to program these cells.
The architecture bits C_{0}, C_{1} and C_{2} are used to configure each programmable output cell individually. C_{0} selects output polarity, C_{1} selects the combinatorial or registered mode of operation and C_{2} selects the source of output enable. If the registered mode of operation is selected, the feedback path is automatically selected to be from the register. In the combinatorial mode the feedback path is automatically selected to be from the I/O pin. In this combinatorial mode, the output from the array may be fed into the array or if the output is deselected using the output enable product term the pin may be used as an external input. There is not a mode where the I/O pin may be used as a combinatorial output or an input pin, while the register is used as a state register. The architecture bits are programmed as a separate item during normal programming. An I/O pin is configured to be an input by programming the output cell into a combinatorial mode and disabling the ouput with the output enable product term.

Pinout

The PLD C 20G10 PROGRAMMING pinout is shown in Figure 12. In the Programming pinout configuration, the device may be programmed and verified for the NORMAL mode of operation and also programmed, verified and operated in PHANTOM and TEST modes. These special modes of operation are achieved through the use of supervoltages applied to certain pins. Care should be exercised when entering and exiting these modes, paying specific attention to both the operating modes as specified in Table 1 and the sequencing of the supervoltages as shown in the timing diagrams.

Programming Pinout

0053-27
Figure 12

Programming Algorithm

With the exception of the Security bit, all arrays are programmed in a similar manner. The data to be programmed is represented by a " 1 " or " 0 " on the I/O pins. A " 1 " indicates that an unprogrammed location is to be programmed and a " 0 " indicates that an unprogrammed location is to remain unprogrammed. All locations to be programmed are addressed as row and column locations. Table 2 "Operating Modes" along with Tables 3 through 6 provide the specific address for each addressed location to be programmed along with mode selection information for both programming and operation in the "PHANTOM" and "TEST" modes.

When programming the security bit, a supervoltage on pin 3 is used as data with a programming pulse on pin 13. Verification is controlled with a supervoltage on pins 4 and the data out on pin 3.

20G10 JEDEC Map

The 20G10 JEDEC Map is organized as follows: the EPROM fuses for the product terms and input lines are located between 0000 and 3959 (decimal). The architecture bits are located between locations 3960 and 3989. Location 3960 is the Polarity Bit (CO), location 3961 is the Registered/Combinatorial Bit (C1), and location 3962 is the Output Enable Bit (C2) for output pin 23. Locations 3963, 3964, and 3965 are the architecture bit locations for output pin 22. This pattern repeats for output pins $21,20,19,18$, $17,16,15$, and 14.

Operating Modes

Table 2 describes the operating and programming modes of the PLD C 20G10. The majority of the programming modes function with a PROGRAM, PROGRAM INHIBIT and PROGRAM VERIFY sequence. The exception is the Security Program operation, which shows no program inhibit function. Two timing diagrams are provided for these two different methodologies of programming in Figures $14 \& 15$. Tables 3 through 6 are used as indicated to provide the individual addresses of the various arrays and cells to be programmed. There are 5 operating modes in addition to the programming modes for the PAL C 22 V 10.

These provide NORMAL operation, PHANTOM operation, TOP TEST, BOTTOM TEST and a register preload feature for testing.
In the normal operating mode, all signals are TTL levels and the device functions as it is internally programmed in the NORMAL array. In the PHANTOM mode of operation, the device operates logically as a function of the contents of the PHANTOM array. In this mode pins 2,10 \& 11 are non-inverting inputs and pin 7 is an inverting input. The programmable output cells function as they are programmed for normal operation. If the programmable output cells have not yet been programmed, they are in a registered inverting configuration. The PHANTOM mode is invoked by placing a supervoltage $V_{P P}$ on pin 6 . Care should be exercised when entering and leaving this mode that the supervoltage is applied no sooner than 20 ms after the V_{CC} is stable, and removed a minimum of 20 ms before V_{CC} is removed.

TOP and BOTTOM TEST

The TOP TEST and BOTTOM TEST modes are entered and exited in the same manner, with the same concern for power sequencing, but the supervoltage is applied to pins 9 \& 10 respectively. In these modes an extra product term controls an output pin. TOP TEST controls pin 23, and BOTTOM TEST controls pin 14. These product terms are controlled by the normal device inputs, and allow testing of all input structures.

Preload

Finally for testing of programmed functions, a preload feature allows any or all of the registers to be loaded with an initial value for testing. This is accomplished by raising pin 8 to a supervoltage $V_{P P}$, which puts the output drivers in a high impedance state. The data to be loaded is then placed on the I/O pins of the device and is loaded into the registers on the positive edge of the clock on pin 1 . A ' 0 " on the I/O pin preloads the register with a " 0 " and a " 1 " preloads the register with a " 1 ". The actual signal on the output pin will be the inversion of the input data. The data on the I/O pins is then removed, and pin 8 returned to a normal TTL voltage. Again care should be exercised to power sequence the device properly.

Operating Modes

Table 2

Operating Modes		$\begin{gathered} \text { Pin } \\ 1 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 2 \end{gathered}$	$\begin{gathered} \text { Pin } \\ \mathbf{3} \end{gathered}$	$\begin{gathered} \text { Pin } \\ 4 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 5 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 6 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 7 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 8 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 9 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 10 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 11 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 13 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 14 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 17 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 20 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Pins } \\ 15,16,18, \\ 19,21 \& 22 \end{array}$	$\begin{gathered} \text { Pin } \\ 23 \end{gathered}$				
Feature	Function																					
Main Array Product	Program	V_{PP}	Table 3						Table 4				$\mathrm{V}_{\mathbf{P P}}$	Data In								
	Program Inhibit	V_{PP}							$\mathrm{V}_{\text {IHP }}$	High Z												
	Program Verify ${ }^{[3]}$	V_{PP}							$\mathrm{V}_{\text {ILP }}$	Data Out												
Output	Program	V_{PP}	Table 3										$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {PP }}$	$\mathrm{V}_{\text {PP }}$	Data In				
Enable Product	Program Inhibit	$\mathrm{V}_{\mathbf{P P}}$							$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{P P}$	$\mathrm{V}_{\text {IHP }}$	High Z								
Terms	Program Verify	$\mathrm{V}_{\text {PP }}$							$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {PP }}$	$\mathrm{V}_{\text {ILP }}$	Data Out								
Top Test, Bottom Test Notes	Program	$V_{\text {PP }}$	Table 3										$\mathrm{V}_{\text {IHP }}$	$V_{\text {IHP }}$	VIHP	VIHP	VPP	$\begin{array}{\|c} \text { Data } \\ \text { In } \end{array}$	$\begin{gathered} \text { Data } \\ \text { In } \end{gathered}$	$\begin{array}{c\|} \hline \text { Data } \\ \text { In } \\ \hline \end{array}$	$V_{\text {ILP }}$	$\begin{gathered} \text { Data } \\ \text { In } \end{gathered}$
	Program Inhibit	V_{PP}							$\mathrm{V}_{\text {IHP }}$	High Z												
	Program Verify	$V_{\text {PP }}$							$\mathrm{V}_{\text {IHP }}$	VIHP	VIHP	$\mathrm{V}_{\text {IHP }}$	VILP	Data Out	Data Out	Data Out	Driven	Data Out				
Architecture Bits	Program	$V_{\text {PP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	Table 5		V_{PP}	$V_{\text {PP }}$	Data In												
	Program Inhibit	$\mathrm{V}_{\text {PP }}$	$V_{\text {lHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$			$\mathrm{V}_{\text {PP }}$	$\mathrm{V}_{\text {IHP }}$	High Z								
	Program Verify	$\mathrm{V}_{\text {PP }}$	$V_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {IHP }}$	$V_{\text {ILP }}$			$\mathrm{V}_{\text {PP }}$	$\mathrm{V}_{\text {ILP }}$	Data Out								
$\begin{aligned} & \text { Security } \\ & \text { Bit } \end{aligned}$	Program	V_{PP}	$\mathrm{V}_{\text {ILP }}$	V_{PP}	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {PP }}$	$\mathrm{V}_{\text {ILP }}$															
	Verify	VILP	$\mathrm{V}_{\text {ILP }}$	$\begin{array}{\|c} \text { Data } \\ \text { Out } \\ \hline \end{array}$	VPP	$\mathrm{V}_{\text {ILP }}$	VILP	VILP	$\mathrm{V}_{\text {ILP }}$	VILP	VILP	VILP	VILP	Driven Outputs								
PAL Mode Operation	Normal	CP/I	I	1	I	I	I	I	1	I	I	1	I	I/O								
	Phantom	CP/I	I	NA	NA	NA	$\mathrm{V}_{\text {PP }}$	I	NA	NA	I	1	NA	Output								
	Top Test	1	I	I	I	I	I	1	I	$\mathrm{V}_{\text {PP }}$	I	I	I	NA				Out				
	Bottom Test	I	I	1	I	1	I	I	I	1	VPP	1	I	Out	NA							
	Reg Preload	Notes	NA	NA	NA	NA	NA	NA	V_{PP}	NA	NA	NA	$\mathrm{V}_{\text {ILP }}$	Data In								
$\begin{array}{\|l} \hline \text { Phantom } \\ \text { Array } \\ \text { Product } \\ \text { Terms } \\ \hline \end{array}$	Program	$\mathrm{V}_{\text {PP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	Table 6		$V_{\text {ILP }}$	V_{PP}	Table 4				$\mathrm{V}_{\text {PP }}$	Data In								
	Program Inhibit	$V_{P P}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$			$\mathrm{V}_{\text {ILP }}$	$V_{P P}$					$\mathrm{V}_{\text {IHP }}$	High Z								
	Program Verify	V_{PP}	$\mathrm{V}_{\text {ILP }}$	$V_{\text {ILP }}$			$V_{\text {ILP }}$	$V_{P P}$					$\mathrm{V}_{\text {ILP }}$	Data Out								
Phantom Output	Program	$V_{P P}$	VILP	$\mathrm{V}_{\text {ILP }}$	Table 6		$\mathrm{V}_{\text {ILP }}$	$V_{\text {PP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\mathrm{IHP}}$	$\mathrm{V}_{\text {IHP }}$	$V_{P P}$	VPP	Data In								
Enable	Program Inhibit	V_{PP}	$V_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$			$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {PP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {PP }}$	$\mathrm{V}_{\text {IHP }}$	High Z								
Product Terms	Program Verify	$V_{\text {PP }}$	VILP	$\mathrm{V}_{\text {IL }}$			$\mathrm{V}_{\text {ILP }}$	$V_{\text {PP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\mathrm{IHP}}$	$\mathrm{V}_{\text {IHP }}$	$V_{P P}$	$V_{\text {ILP }}$	Data Out								

Notes:

1. DATA IN and DATA OUT for programming Synchronous Set, Asynchronous Reset, TOP TEST and BOTTOM TEST is programmed and verified on the following pins.
$\operatorname{Pin} 14=$ BOTTOM TEST
Pin $17=$ Synchronous Set
Pin $20=$ Asynchronous Reset
$\operatorname{Pin} 23=$ TOP TEST
2. The preload clock on pin 1 loads the Registers on a LOW going HIGH transition.
3. It is necessary to toggle $\overline{\mathrm{OE}}$ (Pin 13) HIGH during all address transitions while in the program verify/blank check mode.

Input Term Addresses

Table 3 is used during the programming and verification of the main array, output enable, asynchronous reset, synchronous preset, TOP and BOTTOM TEST as shown in Table 2.

It provides the addressing for the 44 normal input term columns which are connected with an EPROM transistor to the product terms.

Input Term Addresses
Table 3

Input Term	$\begin{gathered} \text { Pin } \\ \mathbf{2} \end{gathered}$	$\begin{gathered} \text { Pin } \\ \mathbf{3} \end{gathered}$	$\begin{gathered} \text { Pin } \\ 4 \end{gathered}$	$\begin{gathered} \text { Pin } \\ \mathbf{5} \end{gathered}$	$\begin{gathered} \text { Pin } \\ 6 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 7 \end{gathered}$
0	$\mathrm{V}_{\text {ILP }}$					
1	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$				
2	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$
3	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$
4	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$V_{\text {ILP }}$
5	$\mathrm{V}_{\text {IHP }}$	VILP	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$
6	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$
7	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$
8	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$
9	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$
10	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$V_{\text {ILP }}$
11	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$
12	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$V_{\text {ILP }}$
13	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$
14	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$
15	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$
16	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$
17	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$
18	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$
19	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$
20	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$
21	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$
22	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$
23	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$
24	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$
25	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$
26	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$
27	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$
28	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$
29	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$
30	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$
31	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$				
32	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$				
33	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$
34	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$
35	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$
36	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$
37	$V_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$
38	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$
39	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$
40	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$
41	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$
42	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$
43	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$

Product Term Addresses

Table 4 is used for the programming of the "PHANTOM" and normal array. It provides the addressing for the 8 product terms associated with each input.
Product Term Addresses
Table 4

Product Term	Pin $\mathbf{8}$	Pin 9	Pin $\mathbf{1 0}$	Pin $\mathbf{1 1}$
0	$\mathrm{~V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$
1	$\mathrm{~V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$
2	$\mathrm{~V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$
3	$\mathrm{~V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$
4	$\mathrm{~V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$
5	$\mathrm{~V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$
6	$\mathrm{~V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$
7	$\mathrm{~V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$

Architecture Bit Addressing

Table 5 provides the addressing for the architecture bits used to control the configuration of the individual Programmable Output Cells. In the unprogrammed state, the Programmable Output Cells are in a registered, active low or inverting configuration with output enable controlled from the product term. They are programmed with a " 1 " on the pin associated with the Programmable Output Cells and the appropriate address as shown in Table 5. Each architecture bit that is not to be programmed, requires a " 0 " on the I/O pin associated with the Programmable Output Cells.

Architecture Bit Addressing

Table 5

Architecture Bit	Pin $\mathbf{9}$	Pin $\mathbf{1 0}$
Output Polarity C 0	$\mathrm{~V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$
Register/ Combinatorial Output C1	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$
Product Term/ Pin 13 Output Enable C2	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$

Phantom Input Term Addressing

Phantom input terms are addressed as columns P0 thru P3 and represent inputs from pins $2,7,10$ and 11 respectively.

Pin 7 is inverted, and the remaining 3 are normal non-inverting. This PHANTOM array allows the output structures to be tested. They are only present in PHANTOM modes of operation.

Phantom Input Term Addresses
 Table 6

Phantom Input Term	Pin $\mathbf{4}$	Pin $\mathbf{5}$
P0	V ILP	$\mathrm{V}_{\text {ILP }}$
P1	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$
P2	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$
P3	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$

Programming Flow Chart

The programming flow chart describes the sequence of operations for programming the NORMAL and PHANTOM arrays, the NORMAL and PHANTOM output enable product terms, the set and preset product terms, the Top Test product term, the Bottom Test product term, and the architecture bits. The exact sequencing and timing of the signals is shown in the "Array Programming Timing Diagram".
The logical sequence to program the device is described in detail in the flow chart below, and should be followed exactly for optimum intelligent programming that both minimizes programming time and realizes reliable programming. Particular attention should be paid to the application of V_{CC} prior to $\mathrm{V}_{\text {PP }}$, and removal of $\mathrm{V}_{\text {PP }}$ prior to V_{CC}. See Figure 14 and Table 8 for specific timing and AC requirements. Notice that all programming is accomplished without switching $V_{P P}$ on pin 1 and that after programming and verifying all locations individually, the programmed locations should be verified one final time.
The normal word programming cycle, programs and verifies a word at a time as shown in the programming flowchart, Figure 13 and timing diagram Figure 14. After all locations are programmed, the flowchart requires a verify of all words. There is no independent timing diagram for this operation, rather Figure 14 also provides the correct timing information for this operation. When performing this verify only operation, eliminate the program portion of the cycle but maintain the setup and hold timing relative to the verify pulse. Under no circumstances should the verify signal be held low and the addresses toggled.
Note that the overprogram pulse in step 10 of the programming flowchart is a variable, " 4 " times the initial value when programming the NORMAL, PHANTOM, TOP TEST, BOTTOM TEST and OUTPUT ENABLE product terms and " 8 " times the initial value when programming the ARCHITECTURE BITS.

Programming Flowchart

Timing Diagrams

Programming timing diagrams are provided for two cases, programming of all cells except the SECURITY BIT and programming the SECURITY BIT.

Array

Programming the NORMAL and PHANTOM arrays and output enables, reset, preset, architecture bits and the top/ bottom test features uses the timing diagram in Figure 14. ADDRESS refers to all applicable information in Tables 2 through 6 that is not specifically referenced in the timing diagram. DATA IN is provided on the I/O pins and

DATA OUT is verified on the same pins. A " 1 " $\left(\mathrm{V}_{\text {IHP }}\right)$ on an I/O pin causes the addressed location to be programmed. A " 0 " on the I/O pin leaves the addressed location to be unprogrammed. All setup hold and delay times must be met, and in particular the sequence of operations should be strictly followed. During verify only operation it is not acceptable to hold PGM/VFY low and sequence addresses, as it violates address setup and hold times. Proper sequencing of all power and supervoltages is essential, to reliable programming of the device as improper sequencing could result in device damage.

Programming Waveforms

Notes:

1. Power, $\mathrm{V}_{\text {PP }} \& \mathrm{~V}_{\mathrm{CC}}$ should not be cycled for each program/verify cycle, but may remain static during programming.
2. For programming $\overline{\mathrm{OE}}$ Product Terms \& Architecture bits, Pin 11 (A9) must go to V_{PP} and satisfy T_{AS} and T_{AN}.

Figure 14

Security Cell

The security cell is programmed independently per the timing diagram in Figure 15, and the information in Table 2.
Note again that proper sequencing of power and programming signals is required. Data in is represented as a supervoltage on pin 3 and verified as a TTL signal output on the
same pin. A " 0 " on pin 3 indicates that the security bit has been programmed, and a " 1 " indicates that security bit has not been programmed. Security is programmed with a single 50 ms pulse on pin 13. A supervoltage on pin 4 is used to verify security after $V_{P P}$ has been removed from pin 1 .

Programming Waveforms Security Cell

Figure 15

DC Programming Parameters $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Table 7

Parameter	Description	Min.	Max.	Units
$\mathrm{V}_{\mathbf{P P}}$	Programming Voltage	13.0	14.0	Volts
$\mathbf{V}_{\mathbf{C C P}}$	Supply Voltage During Programming	4.75	5.25	Volts
$\mathbf{V}_{\text {IHP }}$	Input HIGH Voltage During Programming	3.0	$\mathrm{V}_{\text {CCP }}$	Volts
$V_{\text {ILP }}$	Input LOW Voltage During Programming	-3.0	0.4	Volts
V_{OH}	Output HIGH Voltage	2.4		Volts
V_{OL}	Output LOW Voltage		0.4	Volts
IPP	Programming Supply Current		40	mA

AC Programming Parameters

Table 8

Parameter	Description	Min.	Max.	Units
$\mathrm{T}_{\mathbf{P}}$	Delay to Programming Voltage	20		ms
T_{DP}	Delay to Program	1		$\mu \mathrm{s}$
THP	Hold from Program or Verify	1		$\mu \mathrm{S}$
$\mathrm{T}_{\mathrm{R}, \mathrm{F}}$	Vpp Rise \& Fall Time	50		ns
T_{AS}	Address Setup Time	1		$\mu \mathrm{s}$
$\mathrm{T}_{\text {AH }}$	Address Hold Time	1		$\mu \mathrm{s}$
TDS	Data Setup Time	1		$\mu \mathrm{s}$
T_{DH}	Data Hold Time	1		$\mu \mathrm{s}$
T_{PP}	Programming Pulsewidth	0.2	10	ms
$\mathrm{T}_{\text {SPP }}$	Programming Pulsewidth for Security	50		ms
$\mathrm{T}_{\text {DV }}$	Delay from Program to Verify	2		$\mu \mathrm{s}$
TVD	Delay to Data Out		1	$\mu \mathrm{s}$
TVP	Verify Pulse Width	2		$\mu \mathrm{S}$
T_{DZ}	Verify to High Z		1	$\mu \mathrm{s}$

Typical DC and AC Characteristics

NORMALIZED PROPAGATION DELAY vs. TEMPERATURE

NORMALIZED SETUP TIME vs. TEMPERATURE

AMBIENT TEMPERATURE ($\left.{ }^{\circ} \mathrm{C}\right)$
DELTA CLOCK TO OUTPUT TIME vs. OUTPUT LOADING

NORMALIZED SUPPLY CURRENT vs. AMBIENT TEMPERATURE

DELTA PROPAGATION TIME vs. OUTPUT LOADING

NORMALIZED CLOCK TO OUTPUT TIME vs. SUPPLY VOLTAGE

OUTPUT SINK CURRENT vs. OUTPUT VOLTAGE

NORMALIZED PROPAGATION DELAY vs. SUPPLY VOLTAGE

NORMALIZED SETUP TIME vs. SUPPLY VOLTAGE

NORMALIZED CLOCK TO OUTPUT
TIME vs. TEMPERATURE

AMBIENT TEMPERATURE ('C)

OUTPUT SOURCE CURRENT vs. VOLTAGE

Ordering Information

tPD (ns)	$\begin{gathered} \mathbf{t s}_{\mathbf{S}} \\ (\mathrm{ns}) \end{gathered}$	$\begin{aligned} & \mathrm{t} \mathbf{\mathrm { CO }} \\ & \text { (ns) } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathbf{C C}} \\ & (\mathrm{mA}) \end{aligned}$	Ordering Code	Package	Operating Range
15	12	10	70	PLD C 20G10-15PC	P13	Commercial
				PLD C 20G10-15WC	W14	
				PLD C 20G10-15JC	J64	
20	17	15	100	PLD C 20G10-20DMB	D14	Military
				PLD C 20G10-20WMB	W14	
				PLD C 20G10-20LMB	L64	
25	15	15	55	PLD C 20G10-25PC	P13	Commercial
				PLD C 20G10-25WC	W14	
				PLD C 20G10-25JC	J64	
30	20	20	80	PLD C 20G10-30DMB	D14	Military
				PLD C 20G10-30WMB	W14	
				PLD C 20G10-30LMB	L64	
35	30	25	55	PLD C 20G10-35PC	P13	Commercial
				PLD C 20G10-35WC	W14	
				PLD C 20G10-35JC	J64	
40	35	25	80	PLD C 20G10-40DMB	D14	Military
				PLD C 20G10-40WMB	W14	
				PLD C 20G10-40LMB	L64	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
$\mathrm{~V}_{\mathrm{PP}}$	$1,2,3$
I_{IC}	$1,2,3$
I_{OZ}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
$\mathrm{t}_{\text {PD }}$	$7,8,9,10,11$
$\mathrm{t}_{\text {PZX }}$	$7,8,9,10,11$
t_{CO}	$7,8,9,10,11$
t_{S}	$7,8,9,10,11$
t_{H}	$7,8,9,10,11$

Document \# : 38-00019-C

Reprogrammable Asynchronous CMOS Programmable Logic Device

Features

- Advanced user programmable macro cell
- CMOS EPROM technology for reprogrammability
- Up to 20 input terms
- 10 programmable $1 / O$ macro cells
- Output macro cell programmable as combinatorial or asynchronous D-type registered output
- Product term control of register clock, reset and set and output enable
- Register preload and power up reset
- Four uncommitted product terms per output macro cell
- Fast
- Commercial $\mathrm{t}_{\mathrm{PD}}=20 \mathrm{~ns}$ $\mathrm{t}_{\mathrm{CO}}=20 \mathrm{~ns}$ $\mathrm{t}_{\mathrm{SU}}=10 \mathrm{~ns}$
- Military $\mathbf{t P D}^{2}=25 \mathrm{~ns}$ $t_{\mathrm{CO}}=25 \mathrm{~ns}$ $\mathbf{t}_{\mathbf{S U}}=15 \mathrm{~ns}$
- Low power
$-I_{\text {CC }} \max =80 \mathrm{~mA}$ Commercial
- ICC max $=100 \mathrm{~mA}$ Military
- High reliability
- Proven EPROM technology
- >2001V input protection
- $\mathbf{1 0 0 \%}$ programming and functional testing
- Windowed DIP, windowed LCC, DIP, LCC, PLCC available

Functional Description

The Cypress PLD C 20RA10 is a high performance, second generation programmable logic device employing a flexible macro cell structure which allows any individual output to be configured independently as a combinatorial output or as a fully asynchronous D-type registered output.
The Cypress PLD C 20RA10 provides lower power operation with superior speed performance than functionally equivalent bipolar devices through the use of high performance 0.8 micron CMOS manufacturing technology.
The PLD C 20RA10 is packaged in a 24 pin 300 mil molded DIP, a 300 mil windowed cerdip, and a 28 lead square leadless chip carrier and provides up to 20 inputs and 10 outputs. When the windowed cerdip is exposed UV light, the 20RA10 is erased and then can be reprogrammed.

Block Diagram and DIP Pinout

Macro Cell Architecture

Figure 1 illustrates the architecture of the 20RA 10 macro cell. The cell dedicates three product terms for fully asynchronous control of the register set, reset and clock functions, as well as, one term for control of the output enable function.
The output enable product term output is "and'ed" with the input from pin 13 to allow either product term or hard wired external control of the output or a combination of control from both sources. If product term only control is selected, it is automatically chosen for all outputs since, for this case, the external output enable pin must be tied low. The active polarity of each output may be programmed independently for each output cell and is subsequently fixed. Figure 2 illustrates the output enable options available.
When an I/O cell is configured as an output, combinatorial only capability may be selected by forcing the set and reset product term outputs to be high under all input conditions. This is achieved by programming all input term programming cells for these two product terms. Note that the output cell may be changed "on the fly" from a combinatorial to a D type registered output, or the reverse, under the control of the set and reset product terms. Figure 3 illustrates the available output configuration options.
An additional four uncommitted product terms are provided in each output macro cell as resources for creation of user defined logic functions.

Programmable I/O

Because any of the $10 \mathrm{I} / \mathrm{O}$ pins may be selected as a input, the device input configuration programmed by the user may vary from a total of nine programmable plus ten dedicated inputs (a total of nineteen inputs) and one output down to a ten input, ten output configuration with all ten programmable I/O cells configured as outputs. Each input pin available in a given configuration is available as an
input to the four control product terms and four uncommitted product terms of each programmable I/O macro cell that has been configured as an output.
An I/O cell is programmed as an input by tying the output enable pin, pin 13, low and by programming the output enable product to provide a high output, thereby "threestate" the output, for all possible input combinations. This is achieved by programming all input term programmable cells for this output enable product term.
When utilizing the I/O macro cell as an output, the input path functions as a feedback path allowing the output signal to be fed back as an input to the product term input array. When the output cell is configured as a registered output, this feed back path may be used to feed back the current output state to the device inputs to provide current state control of the next output state as required for state machine implementation.

Preload and Power-up Reset

Functional testability of programmed devices is enhanced by inclusion of register preload capability which allows the state of each register to be set by loading each register from an external source prior to exercising the device. Testing of complex state machine designs is simplified by the ability to load an arbitrary state without cycling through long test vector sequences to reach the desired state. Recovery from illegal states can be verified by loading illegal states and observing recovery. Preload of a particular register is accomplished by impressing the desired state on the register output pin and lowering the signal level on the preload control pin (pin 1) to a logic low level. If the specified preload set up, hold and pulse width minimums have been observed, the desired state is loaded into the register. To insure predictable system initialization, all registers are preset to a logic low state upon power up, thereby setting the active low outputs to a logic high.

0118-4
Figure 1. PLD C 20RA10 Macro Cell

Programmable
Output Always Enabled

0118-13

0118-15

0118-14
Combination of Programmable and Hard-Wired

0118-16

Figure 2. Four Possible Output Enable Alternatives for the PLD C 20RA10

Figure 3. Four Possible Macro Cell Configurations for the PLD C 20RA10

Selection Guide

Generic Part Number	$\mathrm{t}_{\text {PD }} \mathrm{ns}$		tsu ns		$\mathrm{tcO}^{\text {ns }}$		$\mathrm{I}_{\mathbf{C C}} \mathrm{mA}$	
	Com	Mil	Com	Mil	Com	Mil	Com	Mil
20RA10-20	20	-	10	-	20	-	80	-
20RA10-25	-	25	-	15	-	25	-	100
20RA10-30	30	-	15	-	30	-	80	-
20RA10-35	-	35	-	20	-	35	-	100

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	C to $+150^{\circ} \mathrm{C}$	Static Discharge Voltage (per MIL-STD-883 Method 3015)
ient Temperature with		
Power Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Latchup Current >20

Supply Voltage to Ground Potential

DC Voltage Applied to Outputs
in High Z State.
-0.5 V to +7.0 V
DC Input Voltage.................-3.0 V to +7.0 V
Output Current into Outputs (Low)
.16 mA

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[5]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range[6]

Parameters	Description	Test Conditions			Min.	Max.	Units
VOH	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}^{\prime} \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA}$	COM'L	2.4		V
			$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	MIL			
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Min. } \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$			0.5	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed Input Logical HIGH Voltage for All Inputs[1]			2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed Input Logical LOW Voltage for All Inputs[1]				0.8	V
IIX	Input Leakage Current	$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=$ Max.			-10	10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$			-40	40	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SC }}$	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ [2]			-30	-90	mA
$\mathrm{I}_{\text {CC }}$	Power Supply Current	$\mathbf{V}_{\mathbf{C C}}=$ Max., $\mathrm{V}_{\text {IN }}=$ GND Outputs Open		COM'L		80	mA
				MIL		100	mA

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Min.	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$		5	pF
C OUT	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$		8	

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
2. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. Vout $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
3. Tested initially and after any design or process changes that may affect these parameters.
4. Figure $I a$ test load used for all parameters except $t_{E A}, t_{E R}, t_{P Z X}$ and ${ }^{t_{P X Z}}$. Figure $1 b$ test load used for $\mathrm{t}_{\mathrm{EA}}, \mathrm{t}_{\mathrm{ER}}, \mathrm{t}_{\mathrm{PZX}}$ and $\mathrm{t}_{\mathrm{PXZ}}$.
5. T_{A} is the "instant on" case temperature.
6. See the last page of this specification for Group A subgroup testing information.

Switching Characteristics PLD C 20RA10 Over Operating Range[4, 6]

Parameters	Description	Commercial				Military				Units
		-20		-30		-25		-35		
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
tPD	Input or Feedback to Non-Registered Output		20		30		25		35	ns
teA	Input to Output Enable		25		30		30		35	ns
$\mathrm{t}_{\mathrm{E} R}$	Input to Output Disable		25		30		30		35	ns
tPZX	Pin 13 to Output Enable		15		20		20		25	ns
tPXZ	Pin 13 to Output Disable		15		20		20		25	ns
t_{CO}	Clock to Output		20		30		25		35	ns
tsu	Input or Feedback Setup Time	10		15		15		20		ns
t_{H}	Hold Time	0		5		0		5		ns
t_{P}	Clock Period	30		45		40		55		ns
t_{W}	Clock Width	15		20		20		25		ns
$\mathrm{f}_{\mathrm{MAX}}$	Maximum Frequency	33.3		22.2		25.0		18.1		MHz
t_{S}	Input to Asynchronous Set		20		35		25		40	ns
t_{R}	Input to Asynchronous Reset		25		40		30		45	ns
$t_{\text {WP }}$	Preload Pulse Width	30		35		35		40		ns
${ }_{\text {tSUP }}$	Preload Setup Time	20		25		25		30		ns
t_{HP}	Preload Hold Time	20		25		25		30		ns

AC Test Loads and Waveforms (Commercial)

Figure 1a

Equivalent to: THÉVENIN EQUIVALENT (Commercial)

Equivalent to:
0118-6

Figure 2

THÉVENIN EQUIVALENT (Military)

LCC and PLCC Pinouts

0118-21

Switching Waveforms

Preload Switching Waveforms

Functional Logic Diagram PLD C 20RA10

0118-11

Ordering Information

$\mathbf{I}_{\mathbf{C C}}$	tPD (ns)	$\mathbf{t}_{\mathbf{S U}}$ (ns)	t_{CO} (ns)	Ordering Code	Package	Operating Range
80	20	10	20	PLD C 20RA10-20PC	P13	Commercial
				PLD C 20RA10-20WC	W14	
				PLD C 20RA10-20JC	J64	
100	25	15	25	PLD C 20RA10-25DMB	D14	Military
				PLD C 20RA10-25WMB	W14	
				PLD C 20RA10-25LMB	L64	
				PLD C 20RA10-25QMB	Q64	
80	30	15	30	PLD C 20RA10-30PC	P13	Commercial
				PLD C 20RA10-30WC	W14	
				PLD C 20RA10-30JC	J64	
100	35	20	35	PLD C 20RA10-35DMB	D14	Military
				PLD C 20RA10-35WMB	W14	
				PLD C 20RA10-35LMB	L64	
				PLD C 20RA10-35QMB	Q64	

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
$t_{\text {PD }}$	$9,10,11$
$t_{\text {PZX }}$	$9,10,11$
t_{CO}	$9,10,11$
t_{SU}	$9,10,11$
t_{H}	$9,10,11$

Document \#: 38-00073

Features

- Advanced second generation PAL architecture
- Low power
- 55 mA max "L"
- 90 mA max standard
- 120 mA max military
- CMOS EPROM technology for reprogrammability
- Variable product terms
$-2 \times(8$ thru 16) product terms
- User programmable macro cell
- Output polarity control
- Individually selectable for registered or combinatorial operation
- "15" commercial

10 ns tco
12 ns ts
15 ns tPD
45 MHz
_ "20" military
15 ns tco
17 ns ts
20 ns tPD
31 MHz

- Up to 22 input terms and 10 outputs
- Enhanced test features
- Phantom array
- Top Test
- Bottom Test
- Preload
- High reliability
- Proven EPROM technology
- > 2000V input protection
- $\mathbf{1 0 0 \%}$ programming and functional testing
- Windowed DIP, windowed LCC, DIP, LCC, PLCC available

Functional Description

The Cypress PAL C 22 V 10 is a CMOS second generation Programmable Logic Array device. It is implemented with the familiar sum-of-products (ANDOR) logic structure and a new concept, the "Programmable Macro Cell".
The PAL C 22 V 10 is executed in a 24 pin 300 mil molded DIP, a 300 mil windowed Cerdip, a 28 lead square leadless chip carrier, a 28 lead square plastic leadless chip carrier and provides up to 22 inputs and 10 outputs. When the windowed CERDIP is exposed to UV light, the 22V10 is erased and then can be reprogrammed. The Programmable Macro Cell provides the capability of defining the architecture of each output individually. Each of the 10 potential outputs may be specified to be "REGISTERED" or

Logic Symbol and Pinout

0023-1
LCC and PLCC Pinout

0023-10

Functional Description (Continued)

each output may also be individually selected allowing complete flexibility of output configuration. Further configurability is provided through "ARRAY" configurable "OUTPUT ENABLE" for each potential output. This feature allows the 10 outputs to be reconfigured as inputs on an individual basis or alternately used as a combination I/O controlled by the programmable array.
The PAL C 22V10 features a "VARIABLE PRODUCT TERM" architecture. There are 5 pairs of product terms beginning at 8 product terms per output and incrementing by 2 to 16 product terms per output. By providing this variable structure the PAL C 22V10 is optimized to the configurations found in a majority of applications without creating devices that burden the product term structures with unuseable product terms and lower performance.
Additional features of the Cypress PAL C 22V10 include a synchronous PRESET and an asynchronous RESET product term. These product terms are common to all MACRO CELLS eliminating the need to dedicate standard product terms for initialization functions. The device automatically resets on power-up.
The PAL C 22V10 featuring programmable macro cells and variable product terms provides a device with the flexibility to implement logic functions in the 500 to 800 gate array complexity. Since each of the 10 output pins may be individually configured as inputs on a temporary or permanent basis, functions requiring up to 21 inputs and only a single output down to 12 inputs and 10 outputs are possible. The 10 potential outputs are enabled through the use of product terms. Any output pin may be permanently selected as an output or arbitrarily enabled as an output and an input through the selective use of individual product terms associated with each output. Each of these outputs is achieved through an individual programmable macro cell. These macro cells are programmable to provide a combinatorial or registered inverting or non-inverting output. In a
registered mode of operation, the output of the register is fed back into the array providing current status information to the array. This information is available for establishing the next result in applications such as control-statemachines. In a combinatorial configuration, the combinatorial output or, if the output is disabled, the signal present on the I/O pin is made available to the array. The flexibility provided by both programmable macro cell product term control of the outputs and variable product terms allows a significant gain in functional density through the use of programmable logic.

Along with this increase in functional density, the Cypress PAL C 22V 10 provides lower power operation thru the use of CMOS technology, increased testability with a register preload feature and guaranteed AC performance through the use of a phantom array. This phantom array $\left(\mathrm{P}_{0}-\mathrm{P}_{3}\right)$ and the "TOP TEST" and "BOTTOM TEST" features allow the 22 V 10 to be programmed with a test pattern and tested prior to shipment for full AC specifications without using any of the functionality of the device specified for the product application. In addition, this same phantom array may be used to test the PAL C 22V10 at incoming inspection before committing the device to a specific function through programming. PRELOAD facilitates testing programmed devices by loading initial values into the registers.

Configuration Table 1

Registered/Combinatorial		
C_{1}	C_{0}	Configuration
0	0	Registered/Active Low
0	1	Registered/Active High
1	0	Combinatorial/Active Low
1	1	Combinatorial/Active High

Macrocell

Selection Guide

Generic Part Number	$\mathrm{I}_{\mathbf{C C}} \mathrm{mA}$			tpp ns		$\mathrm{ts}^{\text {ns }}$		tcons	
	"L"	Com	Mil	Com	Mil	Com	Mil	Com	Mil
22V10-15[5]		90	-	15	-	12	-	10	-
22V10-20 ${ }^{\text {[5] }}$		90	120	20	20	12	17	15	15
22V10-25	55	90	100	25	25	15	20	15	20
22V10-30		-	100	-	30	-	25	-	20
22V10-35	55	90	-	35	-	30	-	25	-
22V10-40		-	100	-	40	-	35	-	25

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with	
Power Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 24 to Pin 12).	$-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}$
DC Voltage Applied to Outputs in High Z State.	. -0.5 V to +7.0 V
DC Input Voltage	-3.0 V to +7.0 V
Output Current into Outputs (Low)	16 mA
UV Exposure	7258 Wsec/cm ${ }^{2}$

DC Programming Voltage . 14.0V
Static Discharge Voltage . $>2001 \mathrm{~V}$
(per MIL-STD-883 Method 3015)
Latchup Current . $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	V CC
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[7]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range[6]

Parameters	Description	Test Conditions			Min.	Max.	Units
VOH	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Min. } \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA}$	COM'L	2.4		V
			$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	MIL			
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathbf{V}_{\mathrm{CC}}=\text { Min., } \\ & \mathbf{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$	COM'L		0.5	V
			$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$	MIL			
V_{IH}	Input HIGH Level	Guaranteed Input Logical HIGH Voltage for All Inputs ${ }^{\text {[1] }}$			2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed Input Logical LOW Voltage for All Inputs ${ }^{[1]}$				0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=$ Max.			-10	10	$\mu \mathrm{A}$
$\mathrm{IOZ}^{\text {l }}$	Output Leakage Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}^{\text {, }}$, $\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$			-40	40	$\mu \mathrm{A}$
ISC	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ [2]			-30	-90	mA
I_{CC}	Power Supply Current	$\mathrm{V}_{\mathbf{C C}}=$ Max., $\mathrm{V}_{\text {IN }}=$ GND Outputs Open		"L"		55	mA
				COM'L		90	mA
				MIL		100	mA
				MIL-20[5]		120	mA

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Min.	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$		5	pF
COUT	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$		8	

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
2. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
3. Tested initially and after any design or process changes that may affect these parameters.
4. Figure $1 a$ test load used for all parameters except $t_{E A}, t_{E R}, t_{P Z X}$ and $\mathrm{t}_{\mathrm{PXZ}}$. Figure $1 b$ test load used for $\mathrm{t}_{\mathrm{EA}}, \mathrm{t}_{\mathrm{ER}}, \mathrm{t}_{\mathrm{P}} \mathrm{CX}$ and $\mathrm{t}_{\mathrm{PXZ}}$.
5. Preliminary specifications.
6. See the last page of this specification for Group A subgroup testing information.
7. T_{A} is the "instant on" case temperature.

Switching Characteristics PAL C 22V10[4, 6]

Parameters	Description	Commercial								Military								Units
		-15[5]		-20[5]		-25		. 35		-20[5]		-25		-30		-40		
		Min.	Max.															
tPD	Input or Feedback to Non-Registered Output		15		20		25		35		20		25		30		40	ns
$t_{\text {EA }}$	Input to Output Enable		15		20		25		35		20		25		25		40	ns
ter	Input to Output Disable		15		20		25		35		20		25		25		40	ns
t_{CO}	Clock to Output		10		15		15		25		15		20		20		25	ns
ts	Input or Feedback Setup Time	12		12		15		30		17		20		25		35		ns
t_{H}	Hold Time	0		0		0		0		0		0		0		0		ns
tP_{P}	Clock Period ($\mathrm{t}_{\mathrm{s}}+\mathrm{t}_{\mathrm{co}}$)	22		27		30		55		32		40		45		60		ns
tw	Clock Width	11		13		15		25		16		15		20		30		ns
$\mathrm{f}_{\text {MAX }}$	Maximum Frequency	45.4		37.0		33.3		18.1		31.2		25.0		22.2		16.6		MHz
$\mathrm{t}_{\text {AW }}$	Asynchronous Reset Width	15		20		25		35		20		25		30		40		ns
$\mathrm{taR}^{\text {a }}$	Asynchronous Reset Recovery Time	15		20		25		35		20		25		30		40		ns
t_{AP}	Asynchronous Reset to Registered Output Reset		20		25		25		35		25		25		30		40	ns

AC Test Loads and Waveforms (Commercial)

Figure 1a

Equivalent to: THÉVENIN EQUIVALENT (Commercial)

Equivalent to:

0023-12
Figure 2

THÉVENIN EQUIVALENT (Military)
OUTPUT $O-\underbrace{136 \Omega}$ 2.13V
0023-14

Switching Waveforms

Functional Logic Diagram PAL C 22V10

Typical DC and AC Characteristics

Erasure Characteristics

Wavelengths of light less than 4000 Angstroms begin to erase the PAL C 22V10. For this reason, an opaque label should be placed over the window if the device is exposed to sunlight or fluorescent lighting for extended periods of time. In addition, high ambient light levels can create holeelectron pairs which may cause "blank" check failures or "verify errors" when programming "windowed" parts. This phenomenon can be avoided by use of an opaque label over the window during programming in high ambient light environments.
The recommended dose for erasure is ultraviolet light with a wavelength of 2537 Angstroms for a minimum dose (UV intensity \times exposure time) of $25 \mathrm{Wsec} / \mathrm{cm}^{2}$. For an ultraviolet lamp with a $12 \mathrm{~mW} / \mathrm{cm}^{2}$ power rating, the exposure would be approximately 35 minutes. The PAL C 22V10 needs to be placed within 1 inch of the lamp during erasure. Permanent damage may result if the device is exposed to high intensity UV light for an extended period of time. $7258 \mathrm{Wsec} / \mathrm{cm}^{2}$ is the recommended maximum dosage.

Device Programming

The PAL C 22V10 has multiple programmable functions. In addition to the normal array, a "PHANTOM" array, "TOP and BOTTOM TEST" and a "SECURITY" feature are programmable. The PAL C 22 V 10 security mechanism, when invoked, prevents access to the "NORMAL" and "TOP/BOTTOM TEST" array. The "PHANTOM" array feature is still accessible, allowing programming and verification of the pattern in the "PHANTOM" array. Functional operation of all other features is allowed regardless of the state of the "SECURITY BIT"' In addition, the device contains 10 MACROCELLS which are programmed to configure the device functionality for each specific application.
The logic array is divided into a "NORMAL" array and a "PHANTOM" array. The normal array is used to configure the device to perform a specific function as required by the user, and the phantom array is provided as a test array for Cypress' testing the device prior to user programming thus assuring a reliable, thoroughly tested product. The "PHANTOM" array contains four additional columns connected to input pins 2 (TRUE), 7 (INVERTING), 10 (TRUE) and 11 (TRUE). These inputs may be programmed to be connected to all normal product terms. This allows all sense amplifiers and macrocells to be exercised for both functionality and performance after assembly and prior to shipment. These features are in addition to the normal array. They do not affect normal operation, allowing the user full programming of the normal array, while allowing the device to be fully tested.
The "TOP TEST" and "BOTTOM TEST" feature, allow connection of all input terms to either pin 23 or 13 . These locations may be programmed and subsequently exercised in the "TOP TEST" and "BOTTOM TEST" mode. Like the Phantom array above, this feature has no effect in the
normal mode of operation. Cells in the PHANTOM ARRAY, TOP TEST, and BOTTOM TEST areas are programmed at Cypress during the manufacturing operation, and they therefore will be programmed when received in a non-windowed package by the user. Consequently, the user will normally have no need to program these cells.
The Cypress PAL C 22 V 10 contains 10 identical MACROCELLS which may be individually configured. Each MACROCELL is associated with a single I/O pin and through the architecture bits, each associated pin may be permanently configured as an input, an output or be used as both input and output as a function of the logical function in the array. Each MACROCELL consists of a type ''D" latch, an output multiplexer, a feedback multiplexer and a tristatable output driver that is controlled by a unique product term. The clock is common to all MACROCELLS, and comes from pin 1 of the device. Each register also has an asynchronous reset and a synchronous preset. These are each driven by product terms. These product terms are common to all MACROCELLS allowing all registers to either be asynchronously reset or synchronously preset by a logical function in the array. The device is automatically reset at power up. A preload feature allows the registers to be preloaded with any state for testing.
The architecture bits $\mathrm{C0}$ and Cl are used to configure each MACROCELL individually. C0 selects the polarity of the output and C 1 selects the combinatorial or registered mode of operation. If the registered mode of operation is selected, the feedback path is automatically selected to be from the register. In the combinatorial mode the feedback path is automatically selected to be from the I/O pin. In this combinatorial mode, the output from the array may be fed into the array or if the output is deselected using the output enable product term the pin may be used as an external input. There is not a mode where the I/O pin may be used as a combinatorial output or an input pin, while the register is used as a state register. The architecture bits are programmed as a separate item during normal programming. An I/O pin is configured to be an input by programming the MACROCELL into a combinatorial mode and disabling the ouput with the output enable product term.

Pinout

The PAL C 22V10 PROGRAMMING pinout is shown in Figure 3. In the Programming pinout configuration, the device may be programmed and verified for the NORMAL mode of operation and also programmed, verified and operated in PHANTOM and TEST modes. These special modes of operation are achieved through the use of supervoltages applied to certain pins. Care should be exercised when entering and exiting these modes, paying specific attention to both the operating modes as specified in Table 1 and the sequencing of the supervoltages as shown in the timing diagrams.

Programming Pinout

0023-6
Figure 3

Programming Algorithm

With the exception of the Security bit, all arrays are programmed in a similar manner. The data to be programmed is represented by a " 1 " or " 0 " on the I/O pins. A " 1 " indicates that an unprogrammed location is to be programmed and a " 0 " indicates that an unprogrammed location is to remain unprogrammed. All locations to be programmed are addressed as row and column locations. Table 1 "Operating Modes" along with Tables 2 through 5 provide the specific address for each addressed location to be programmed along with mode selection information for both programming and operation in the "PHANTOM" and "TEST" modes.
When programming the security bit, a supervoltage on pin 3 is used as data with a programming pulse on pin 13. Verification is controlled with a supervoltage on pins 4 and the data out on pin 3.

Operating Modes

Table 1 describes the operating and programming modes of the PAL C 22V10. The majority of the programming modes function with a PROGRAM, PROGRAM INHIBIT and PROGRAM VERIFY sequence. The exception is the Security Program operation, which shows no program inhibit function. Two timing diagrams are provided for these two different methodologies of programming in Figures 5 \& 6 . Tables 2 through 5 are used as indicated to
provide the individual addresses of the various arrays and cells to be programmed. There are 5 operating modes in addition to the programming modes for the PAL C 22 V 10. These provide NORMAL operation, PHANTOM operation, TOP TEST, BOTTOM TEST and a register preload feature for testing.
In the normal operating mode, all signals are TTL levels and the device functions as it is internally programmed in the NORMAL array. In the PHANTOM mode of operation, the device operates logically as a function of the contents of the PHANTOM array. In this mode pins 2,10 \& 11 are non-inverting inputs and pin 7 is an inverting input. The MACROCELLS function as they are programmed for normal operation. If the MACROCELLS have not yet been programmed, they are in a registered inverting configuration. The PHANTOM mode is invoked by placing a supervoltage $V_{P P}$ on pin 6 . Care should be exercised when entering and leaving this mode that the supervoltage is applied no sooner than 20 ms after the V_{CC} is stable, and removed a minimum of 20 ms before V_{CC} is removed.

TOP and BOTTOM TEST

The TOP TEST and BOTTOM TEST modes are entered and exited in the same manner, with the same concern for power sequencing, but the supervoltage is applied to pins 9 \& 10 respectively. In these modes an extra product term controls an output pin. TOP TEST controls pin 23, and BOTTOM TEST controls pin 14. These product terms are controlled by the normal device inputs, and allow testing of all input structures.

Preload

Finally for testing of programmed functions, a preload feature allows any or all of the registers to be loaded with an initial value for testing. This is accomplished by raising pin 8 to a supervoltage $V_{P P}$, which puts the output drivers in a high impedance state. The data to be loaded is then placed on the I/O pins of the device and is loaded into the registers on the positive edge of the clock on pin 1 . A " 0 " on the I/O pin preloads the register with a " 0 " and a " 1 " preloads the register with a " 1 ". The actual signal on the output pin will depend on the output polarity selected when the MACROCELL is programmed. The data on the I/O pins is then removed, and pin 8 returned to a normal TTL voltage. Again care should be exercised to power sequence the device properly.

Jperating Modes

Table 1

Operating Modes		$\begin{gathered} \text { Pin } \\ 1 \end{gathered}$	$\begin{gathered} \text { Pin } \\ \mathbf{2} \end{gathered}$	$\begin{gathered} \text { Pin } \\ 3 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 4 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 5 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 6 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 7 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 8 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 9 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 10 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 11 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 13 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 14 \end{gathered}$	$\begin{gathered} \text { Pin } \\ \mathbf{1 7} \end{gathered}$	$\begin{gathered} \text { Pin } \\ 20 \end{gathered}$	$\begin{gathered} \text { Pins } \\ 15,16,18, \\ 19,21 \& 22 \end{gathered}$	Pin23				
Feature	Function																					
Sain trray 'roduct	Program	$\mathrm{V}_{\text {PP }}$	Table 2						Table 3				V_{PP}	Data In								
	Program Inhibit	V_{PP}							$\mathrm{V}_{\text {IHP }}$	High Z												
	Program Verify ${ }^{[3]}$	$V_{\text {PP }}$							$\mathrm{V}_{\text {ILP }}$	Data Out												
)utput	Program	V_{PP}	Table 2										$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	V_{PP}	$\mathrm{V}_{\text {PP }}$	Data In				
inable 'roduct	Program Inhibit	VPP							$\mathrm{V}_{\text {IHP }}$	$V_{\text {IHP }}$	$V_{\text {IHP }}$	V_{PP}	$\mathrm{V}_{\text {IHP }}$	High Z								
Cerms	Program Verify	V_{PP}							$\mathrm{V}_{\text {IHP }}$	$V_{\text {IHP }}$	$V_{\text {IHP }}$	V_{PP}	$V_{\text {ILP }}$	Data Out								
iync Set, tsync	Program	$V_{\text {PP }}$	Table 2										$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {IHP }}$	$V_{\text {PP }}$	$\begin{gathered} \text { Data } \\ \text { In } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Data } \\ & \text { In } \end{aligned}$	Data In	$\mathrm{V}_{\text {ILP }}$	$\begin{gathered} \text { Data } \\ \text { In } \\ \hline \end{gathered}$
et,	Program Inhibit	V_{PP}							$\mathrm{V}_{\text {IHP }}$	High Z												
3ottom Test Notes	Program Verify	V_{PP}							$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	Data Out	Data Out	Data Out	Driven	Data Out				
trchitecure Bits	Program	V_{PP}	$\mathrm{V}_{\text {IHP }}$	$V_{\text {IHP }}$	$V_{\text {ILP }}$	Table 4		V_{PP}	V_{PP}	Data In												
	Program Inhibit	$V_{\text {PP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$			V_{PP}	$\mathrm{V}_{\text {IHP }}$	High Z								
	Program Verify	Vpp	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {IHP }}$	$V_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$			V_{PP}	$\mathrm{V}_{\text {ILP }}$	Data Out								
jecurity 3it	Program	VPP	$V_{\text {ILP }}$	$V_{\text {PP }}$	$\mathrm{V}_{\text {ILP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {PP }}$	$\mathrm{V}_{\text {ILP }}$	$V_{\text {ILP }}$	VILP	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$								
	Verify	$\mathrm{V}_{\text {ILP }}$	$V_{\text {ILP }}$	$\begin{array}{\|c} \text { Data } \\ \text { Out } \end{array}$	VPP	$V_{\text {ILP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	Driven Outputs								
?AL Mode)peration	Normal	CP/I	I	I	I	I	I	I	I	1	I	I	I	I/O								
	Phantom	NA	I	NA	NA	NA	$V_{\text {PP }}$	I	NA	NA	I	I	NA	Output								
	Top Test	I	I	I	I	1	I	I	I	V_{PP}	I	I	I	NA				Out				
	Bottom Test	I	1	I	I	I	I	I	I	I	V_{PP}	I	1	Out	NA							
	Reg Preload	Notes	NA	NA	NA	NA	NA	NA	$\mathrm{V}_{\text {PP }}$	NA	NA	NA	$\mathrm{V}_{\text {ILP }}$	Data In								
?hantom trray ?roduct [erms	Program	$\mathrm{V}_{\text {PP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	Table 5		$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {PP }}$	Table 3				V_{PP}	Data In								
	Program Inhibit	VPP	$V_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$			$V_{\text {ILP }}$	$V_{P P}$					$\mathrm{V}_{\text {IHP }}$	High Z								
	Program Verify	$\mathrm{V}_{\text {PP }}$	$\mathrm{V}_{\text {ILP }}$	$V_{\text {ILP }}$			$\mathrm{V}_{\text {ILP }}$	$V_{\text {PP }}$					$\mathrm{V}_{\text {ILP }}$	Data Out								
?hantom Jutput	Program	$\mathrm{V}_{\text {PP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	Table 5		$\mathrm{V}_{\text {ILP }}$	VPP	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	V_{PP}	$V_{\text {PP }}$	Data In								
Enable	Program Inhibit	$\mathrm{V}_{\text {PP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$			$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {PP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {PP }}$	$\mathrm{V}_{\text {IHP }}$	High \mathbf{Z}								
?roduct Cerms	Program Verify	$V_{P P}$	$V_{\text {ILP }}$	$V_{\text {IL }}$			$V_{\text {ILP }}$	$V_{\text {PP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {IHP }}$	$V_{P P}$	$\mathrm{V}_{\text {ILP }}$	Data Out								

Jotes:

- DATA IN and DATA OUT for programming Synchronous Set, Asynchronous Reset, TOP TEST and BOTTOM TEST is programmed and verified on the following pins.
$\operatorname{Pin} 14=$ BOTTOM TEST
$\operatorname{Pin} 17=$ Synchronous Set
Pin $20=$ Asynchronous Reset
Pin $23=$ TOP TEST

2. The preload clock on pin 1 loads the Registers on a LOW going

 HIGH transition.3. It is necessary to toggle $\overline{\mathrm{OE}}$ (Pin 13) HIGH during all address transitions while in the program verify/blank check mode.

Input Term Addresses

Table 2 is used during the programming and verification of the main array, output enable, asynchronous reset, synchronous preset, TOP and BOTTOM TEST as shown in Table 1.

It provides the addressing for the 44 normal input term columns which are connected with an EPROM transistor to the product terms.

Input Term Addresses

Table 2

Input Term	$\begin{gathered} \text { Pin } \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \text { Pin } \\ 3 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 4 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 5 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 6 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 7 \end{gathered}$
0	$\mathrm{V}_{\text {ILP }}$	VILP	$V_{\text {ILP }}$	VILP	VILP	$V_{\text {ILP }}$
1	$V_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$	VILP	VILP	$V_{\text {ILP }}$
2	$V_{\text {ILP }}$	VIHP	VILP	VILP	VILP	VILP
3	$V_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$	VILP	VILP
4	$V_{\text {ILP }}$	$V_{\text {ILP }}$	$V_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$	VILP
5	VIHP	$V_{\text {ILP }}$	$V_{\text {IHP }}$	$V_{\text {ILP }}$	VILP	$V_{\text {ILP }}$
6	$V_{\text {ILP }}$	$V_{\text {IHP }}$	$V_{\text {IHP }}$	VILP	VILP	$V_{\text {ILP }}$
7	VIHP	$V_{\text {IHP }}$	$V_{\text {IHP }}$	$V_{\text {ILP }}$	VILP	$V_{\text {ILP }}$
8	$\mathrm{V}_{\text {ILP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	VILP
9	VIHP	$V_{\text {ILP }}$	VILP	$V_{\text {IHP }}$	VILP	VILP
10	VILP	$V_{\text {IHP }}$	$V_{\text {ILP }}$	VIHP	VILP	VILP
11	$V_{\text {IHP }}$	$V_{\text {IHP }}$	VILP	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$
12	$V_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	VILP	$V_{\text {ILP }}$
13	$V_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {IHP }}$	$V_{\text {IHP }}$	VILP	$V_{\text {ILP }}$
14	$V_{\text {ILP }}$	$V_{\text {IHP }}$	$V_{\text {IHP }}$	$V_{\text {IHP }}$	VILP	VILP
15	VIHP	$V_{\text {IHP }}$	$V_{\text {IHP }}$	VIHP	VILP	$V_{\text {ILP }}$
16	$V_{\text {ILP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$	VIHP	$V_{\text {ILP }}$
17	VIHP	$V_{\text {ILP }}$	$V_{\text {ILP }}$	VILP	VIHP	VILP
18	$V_{\text {ILP }}$	$V_{\text {IHP }}$	VILP	$V_{\text {ILP }}$	$V_{\text {IHP }}$	$V_{\text {ILP }}$
19	VIHP	$V_{\text {IHP }}$	$V_{\text {ILP }}$	VILP	VIHP	VILP
20	$V_{\text {ILP }}$	$V_{\text {ILP }}$	$V_{\text {IHP }}$	$V_{\text {ILP }}$	VIHP	$V_{\text {ILP }}$
21	$V_{\text {IHP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	VIHP	$V_{\text {ILP }}$
22	$V_{\text {ILP }}$	$V_{\text {IHP }}$	$V_{\text {IHP }}$	$V_{\text {ILP }}$	VIHP	VILP
23	VIHP	VIHP	VIHP	VILP	VIHP	$V_{\text {ILP }}$
24	$\mathrm{V}_{\text {ILP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$	VIHP	VIHP	$V_{\text {ILP }}$
25	$V_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$	$V_{\text {IHP }}$	VIHP	$V_{\text {ILP }}$
26	$V_{\text {ILP }}$	$V_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {IHP }}$	VIHP	$V_{\text {ILP }}$
27	VIHP	$V_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {IHP }}$	VIHP	$V_{\text {ILP }}$
28	$V_{\text {ILP }}$	$V_{\text {ILP }}$	$V_{\text {IHP }}$	$V_{\text {IHP }}$	VIHP	$V_{\text {ILP }}$
29	$V_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {IHP }}$	$V_{\text {IHP }}$	VIHP	$V_{\text {ILP }}$
30	$V_{\text {ILP }}$	$V_{\text {IHP }}$	$V_{\text {IHP }}$	$V_{\text {IHP }}$	VIHP	$V_{\text {ILP }}$
31	VIHP	$V_{\text {IHP }}$	VIHP	$V_{\text {IHP }}$	VIHP	$V_{\text {ILP }}$
32	$V_{\text {ILP }}$	VILP	$V_{\text {ILP }}$	VILP	VILP	$V_{\text {IHP }}$
33	VIHP	$\mathrm{V}_{\text {ILP }}$	VILP	VILP	VILP	$V_{\text {IHP }}$
34	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	VILP	$V_{\text {ILP }}$	VILP	$V_{\text {IHP }}$
35	$V_{\text {IHP }}$	$V_{\text {IHP }}$	VILP	VILP	VILP	VIHP
36	$V_{\text {ILP }}$	$V_{\text {ILP }}$	VIHP	VILP	VILP	$\mathrm{V}_{\text {IHP }}$
37	VIHP	$\mathrm{V}_{\text {ILP }}$	$V_{\text {IHP }}$	VILP	$V_{\text {ILP }}$	$V_{\text {IHP }}$
38	VILP	VIHP	$V_{\text {IHP }}$	VILP	$V_{\text {ILP }}$	VIHP
39	$V_{\text {IHP }}$	$V_{\text {IHP }}$	$V_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$	VIHP
40	$V_{\text {ILP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$
41	$V_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	VILP	$V_{\text {IHP }}$
42	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {IHP }}$
43	VIHP	VIHP	VILP	$\mathrm{V}_{\text {IHP }}$	VILP	V IHP

Product Term Addresses

Table 3 is used for the programming of the "PHANTOM" and normal array. It provides the addressing for the up to 16 product terms associated with each input. Notice that the number of product terms varies from 8 to 16 and back to 8 from the top to the bottom output. In Table 3, product term " 0 " refers to the top product term associated with the MACROCELLS on pins 18 and 19, while address 15 refers to the bottom or last product term associated with the same pins. In the same manner, the 8 product terms associated with pins 14 and 23 are addressed as " 0 " through " 7 ". The balance of the product terms associated with the remaining I/O pins are addressed as " 0 " through " 10 ", " 12 " and " 14 ".

Product Term Addresses

Table 3

Product Term	$\begin{gathered} \text { Pin } \\ 8 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 9 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 10 \end{gathered}$	Pin 11
0	$V_{\text {ILP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$	VILP
1	$V_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$	VILP
2	$V_{\text {ILP }}$	$V_{\text {IHP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$
3	$V_{\text {IHP }}$	VIHP	$V_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$
4	$V_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$
5	$V_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {IHP }}$	VILP
6	$V_{\text {ILP }}$	VIHP	$V_{\text {IHP }}$	VILP
7	$V_{\text {IHP }}$	VIHP	$\mathrm{V}_{\text {IHP }}$	VILP
8	$V_{\text {ILP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$	$V_{\text {IHP }}$
9	$V_{\text {IHP }}$	VILP	$V_{\text {ILP }}$	$V_{\text {IHP }}$
10	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$
11	$V_{\text {IHP }}$	$V_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {IHP }}$
12	$V_{\text {ILP }}$	$V_{\text {ILP }}$	$V_{\text {IHP }}$	$V_{\text {IHP }}$
13	$V_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {IHP }}$
14	$V_{\text {ILP }}$	$V_{\text {IHP }}$	$V_{\text {IHP }}$	VIHP
15	VIHP	$V_{\text {IHP }}$	VIHP	VIHP

Architecture Bit Addresssing

Table 4 provides the addressing for the architecture bits used to control the configuration of the individual MACROCELLS. In the unprogrammed state, the MACROCELLS are in a registered, active low or inverting configuration. They are programmed with a " 1 " on the pin associated with the MACROCELL and the appropriate address as shown in Table 4. Each architecture bit that is not to be programmed, requires a " 0 " on the I/O pin associated with the MACROCELL.

Architecture Bit Addresssing
 Table 4

Architecture Bit	Pin $\mathbf{9}$	Pin 10
Output Polarity C0	V ILP	V ILP
Register/ Non-Register Output C1	VIHP	VILP

Phantom Input Term Addressing

Phantom input terms are addressed as columns P0 thru P3 and represent inputs from pins 2, 7, 10 and 11 respectively. Pin 7 is inverted, and the remaining 3 are normal non-inverting. This PHANTOM array allows the output structures to be tested. They are only present in PHANTOM modes of operation.

Phantom Input Term Addresses
 Table 5

Phantom Input Term	Pin $\mathbf{4}$	Pin $\mathbf{5}$
P0	V ILP	V ILP
P1	V IHP	V ILP
P2	V ILP	V IHP $^{\text {P3 }}$

Programming Flow Chart

The programming flow chart describes the sequence of operations for programming the NORMAL and PHANTOM arrays, the NORMAL and PHANTOM output enable product terms, the set and preset product terms, the Top Test product term, the Bottom Test product term, and the architecture bits. The exact sequencing and timing of the signals is shown in the "Array Programming Timing Diagram".
The logical sequence to program the device is described in detail in the flow chart below, and should be followed exactly for optimum intelligent programming that both minimizes programming time and realizes reliable programming. Particular attention should be paid to the application of $V_{C C}$ prior to $V_{P P}$, and removal of $V_{P P}$ prior to $V_{C C}$. See Figure 5 and Table 7 for specific timing and AC requirements. Notice that all programming is accomplished without switching VPP on pin 1 and that after programming and verifying all locations individually, the programmed locations should be verified one final time.

The normal word programming cycle, programs and verifies a word at a time as shown in the programming flowchart, Figure 4 and timing diagram Figure 5. After all locations are programmed, the flowchart requires a verify of all words. There is no independent timing diagram for this operation, rather Figure 5 also provides the correct timing information for this operation. When performing this verify only operation, eliminate the program portion of the cycle but maintain the setup and hold timing relative to the verify pulse. Under no circumstances should the verify signal be held low and the addresses toggled.

Note that the overprogram pulse in step 10 of the programming flowchart is a variable, " 4 " times the initial value when programming the NORMAL, PHANTOM, TOP TEST, BOTTOM TEST and OUTPUT ENABLE product terms and " 8 " times the initial value when programming the ARCHITECTURE BITS.

Programming Flowchart

0023-7
Figure 3

Timing Diagrams

Programming timing diagrams are provided for two cases, programming of all cells except the SECURITY BIT and programming the SECURITY BIT.

Array

Programming the NORMAL and PHANTOM arrays and output enables, reset, preset, architecture bits and the top/ bottom test features uses the timing diagram in Figure 4. ADDRESS refers to all applicable information in Tables 1 through 5 that is not specifically referenced in the timing diagram. DATA IN is provided on the I/O pins and

DATA OUT is verified on the same pins. A " 1 " ($\mathrm{V}_{\mathrm{IHP}}$) on an I/O pin causes the addressed location to be programmed. A " 0 " on the I/O pin leaves the addressed location to be unprogrammed. All setup hold and delay times must be met, and in particular the sequence of operations should be strictly followed. During verify only operation it is not acceptable to hold PGM/VFY low and sequence addresses, as it violates address setup and hold times. Proper sequencing of all power and supervoltages is essential, to reliable programming of the device as improper sequencing could result in device damage.

Programming Waveforms

Notes:

1. Power, V_{PP} \& V_{CC} should not be cycled for each program/verify cycle, but may remain static during programming.
2. For programming $\overline{\mathrm{OE}}$ Product Terms \& Architecture bits, Pin 11 (A9) must go to $V_{P P}$ and satisfy T_{AS} and T_{AN}.

Figure 4

Security Cell

The security cell is programmed independently per the timing diagram in Figure 5, and the information in Table 1.
Note again that proper sequencing of power and programming signals is required. Data in is represented as a supervoltage on pin 3 and verified as a TTL signal output on the
same pin. A " 0 " on pin 3 indicates that the security bit has been programmed, and a " 1 " indicates that security bit has not been programmed. Security is programmed with a single 50 ms pulse on pin 13. A supervoltage on pin 4 is used to verify security after $V_{P P}$ has been removed from pin 1.

Programming Waveforms Security Cell

Figure 5

DC Programming Parameters $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Table 6

Parameter	Description	Min.	Max.	Units
V $_{\text {PP }}$	Programming Voltage	13.0	14.0	Volts
V $_{\text {CCP }}$	Supply Voltage During Programming	4.75	5.25	Volts
$\mathbf{V}_{\text {IHP }}$	Input HIGH Voltage During Programming	3.0	$\mathbf{V}_{\text {CCP }}$	Volts
$\mathbf{V}_{\text {ILP }}$	Input LOW Voltage During Programming	-3.0	0.4	Volts
$\mathbf{V}_{\text {OH }}$	Output HIGH Voltage	2.4		Volts
$\mathbf{V}_{\text {OL }}$	Output LOW Voltage		0.4	Volts
$\mathbf{I P P}$	Programming Supply Current	40	mA	

AC Programming Parameters

Table 7

Parameter	Description	Min.	Max.	Units
$\mathrm{T}_{\mathbf{P}}$	Delay to Programming Voltage	20		ms
T_{DP}	Delay to Program	1		$\mu \mathrm{s}$
T_{HP}	Hold from Program or Verify	1		$\mu \mathrm{s}$
TR,F	$\mathrm{V}_{\text {PP }}$ Rise \& Fall Time	50		ns
T_{AS}	Address Setup Time	1		$\mu \mathrm{s}$
$\mathrm{T}_{\text {AH }}$	Address Hold Time	1		$\mu \mathrm{s}$
TDS	Data Setup Time	1		$\mu \mathrm{s}$
$\mathrm{T}_{\text {DH }}$	Data Hold Time	1		$\mu \mathrm{s}$
T_{PP}	Programming Pulsewidth	0.2	10	ms
$\mathrm{T}_{\text {SPP }}$	Programming Pulsewidth for Security	50		ms
TDV	Delay from Program to Verify	2		μs
TVD	Delay to Data Out		1	$\mu \mathrm{s}$
TVP	Verify Pulse Width	2		$\mu \mathrm{s}$
TDZ	Verify to High Z		1	$\mu \mathrm{s}$

Ordering Information

$\underset{(\mathrm{mA})}{\mathbf{I}_{\mathbf{C C}}}$	tPD (ns)	$\underset{\text { (} \mathrm{ns} \text { s }}{ }$	$\begin{aligned} & \text { tco } \\ & \text { (ns) } \end{aligned}$	Ordering Code	Package	Operating Range
90	15	12	10	PAL C 22V10-15PC	P13	Commercial
				PAL C 22V10-15WC	W14	
				PAL C 22V10-15JC	J64	
90	20	12	15	PAL C 22V10-20PC	P13	Commercial
				PAL C 22V10-20WC	W14	
				PAL C 22V10-20JC	J64	
120	20	17	15	PAL C 22V10-20DMB	D14	Military
				PAL C 22V10-20WMB	W14	
				PAL C 22V10-20LMB	L64	
				PAL C 22V10-20QMB	Q64	
55	25	15	15	PAL C 22V10L-25PC	P13	Commercial
				PAL C 22V10L-25WC	W14	
				PAL C 22V10L-25JC	J64	
90	25	15	15	PAL C 22V10-25PC	P13	Commercial
				PAL C 22V10-25WC	W14	
				PAL C 22V10-25JC	J64	
100	25	20	20	PAL C 22V10-25DMB	D14	Military
				PAL C 22V10-25WMB	W14	
				PAL C 22V10-25LMB	L64	
				PAL C 22V10-25QMB	Q64	
100	30	25	20	PAL C 22V10-30DMB	D14	Military
				PAL C 22V10-30WMB	W14	
				PAL C 22V10-30LMB	L64	
				PAL C 22V10-30QMB	Q64	
55	35	30	25	PAL C 22V10L-35PC	P13	Commercial
				PAL C 22V10L-35WC	W14	
				PAL C $22 \mathrm{~V} 10 \mathrm{~L}-35 \mathrm{JC}$	J64	
90	35	30	25	PAL C 22V10-35PC	P13	Commercial
				PAL C 22V10-35WC	W14	
				PAL C 22V10-35JC	J64	
100	40	35	25	PAL C 22V10-40DMB	D14	Military
				PAL C 22V10-40WMB	W14	
				PAL C 22V10-40LMB	L64	
				PAL C 22V10-40QMB	Q64	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{PD}	$7,8,9,10,11$
t_{CO}	$7,8,9,10,11$
$\mathrm{t}_{\mathbf{S}}$	$7,8,9,10,11$
t_{H}	$7,8,9,10,11$
t_{W}	$7,8,9,10,11$

CMOS Programmable Synchronous State Machine

Features

- 12 I/O macro cells each having:
- registered, three-state I/O pins
- input register clock select multiplexer
- feed back multiplexer
- output enable (OE) multiplexer
- All twelve macro cell state registers can be hidden
- User configurable state registers-JK, RS, T, or D
- Input multiplexer per pair of I/O macro cells allows I/O pin associated with a hidden macro cell state register to be saved for use as an input
- 4 dedicated hidden registers
- 11 dedicated, registered inputs
- 3 separate clocks- 2 inputs, 1 output
- Common (PIN 14 controlled) or product term controlled output enable for each I/O pin
- 256 product terms- $\mathbf{3 2}$ per pair of macro cells, variable distribution
- Global, synchronous, product term controlled, state register set and reset-inputs to product term are clocked by input clock
- 50 MHz operation
- 5 ns input setup and 15 ns clock to output
- 20 ns input register to state register
- Low power
- 120 mA maximum ICC
- 28 pin 300 mil DIP, LCC
- Erasable and reprogrammable

Product Characteristics

The CY7C330 is a high-performance, eraseable, programmable, logic device (EPLD) whose architecture has been optimized to enable the user to easily and efficiently construct very high performance synchronous state machines.

The unique architecture of the CY7C330, consisting of the user-configurable output macrocell, bi-directional I/O capability, input registers, and three separate clocks, enables the user to design high performance state machines that can communicate either with each other or with microprocessors over bi-directional parallel busses of user-definable widths.
The three separate clocks permit independent, synchronous state machines to be synchronized to each other. The two input clocks, $\mathrm{C} 1, \mathrm{C} 2$, enable the state machine to sample input signals that may be generated by another system and that may be available on its bus for a short period of time.
The user-configurable state register flip-flops enable the designer to designate JK, RS, T, or D type devices, so that the number of product terms required to implement the logic is minimized.

Block Diagram and DIP Pinout

0101-1

Selection Guide

		CY7C330-50	CY7C330-40	CY7C330-33	CY7C330-28
Maximum Operating Frequency (MHz)	50	40	33	28	
Maximum Operating Current (mA)	Commercial	120		120	
	Military		150		150

Product Characteristics (Continued)

The major functional blocks of the CY7C330 are (1) the input registers and (input) clock multiplexers, (2) the EPROM (AND) cell array, (3) the twelve I/O macrocells and (4) the four hidden registers.

Input Registers and Clock Multiplexers

There are a total of eleven dedicated Input Registers. Each Input Register consists of a \mathbf{D} flip-flop and a clock multiplexer. The clock multiplexer is user-programmable to select either CK1 or CK2 as the clock for the flip-flop. CK2 and $\overline{\mathrm{OE}}$ can alternatively be used as inputs to the array. The twenty-two outputs of the registers (i.e. the Q and \bar{Q} outputs of the input registers) drive the array of EPROM cells.
An architecture configuration bit (C4) is reserved for each Dedicated Input Register cell to allow selection of either input clock CK1 or CK2 as the input register clock for each Dedicated Input Cell. If the CK2 clock is not needed that input may also be used as a general purpose array input. In this case the Input Register for this input can only be clocked by input clock CK1. Figure 1 illustrates the Dedicated Input Cell composed of input register, Input Clock Multiplexer, and architecture configuration bit C4 which determines the input clock selected.

I/O Macro Cell

The logic diagram of the CY7C330 I/O macro cell is shown in Figure 2. There are a total of twelve indentical macro cells.
Each macro cell consists of:

- An Output State Register which is clocked by the global state counter clock, CLK (PIN 1). The State Register can be configured as a D, JK, RS, or T flip-flop (default is a D-type flip-flop). Polarity can be controlled in the D flip-flop implementation by use of the exclusive or function. Data is sampled on the LOW to HIGH clock transition. All of the State Registers have a common reset and set which are controlled asynchronously by Product Terms which are generated in the EPROM cell array.
- A Macro Cell Input Register which may be clocked by either the CK1 or CK2 input clock as programmed by the user by use of architecture configuration bit C2 which controls the I/O Macro Cell Input Clock Multiplexer. The Macro Cell Input Registers are initialized on power up such that all of the Q outputs are at logic LOW level and the \bar{Q} outputs are at a logic HIGH level.
- An Output Enable Multiplexer (OE), which is user-programmable, by architecture configuration bit C 0 , to select either the common $\overline{O E}$ signal from pin 14 or, for each cell individually, the signal from the Output Enable product term associated with each macro cell. The Output Enable input signal to the array product term is clocked through the input register by the selected input register clock, CK1 or CK2.
- An input Feed Back Multiplexer which is user-programmable to select either the output of the State Register or the output of the Macro Cell Input Register to be fed back into the array. This option is programmed by architecture configuration bit C1. If the output of the Macro Cell Input Register is selected by the Feed Back Multiplexer, the I/O pin becomes bi-directional.

Macro Cell Input Multiplexer

Each pair of I/O macro cells share a Macro Cell Input Multiplexer which selects the output of one or the other of the pair's input registers to be fed to the input array. This multiplexer is shown in Figure 3. The Macro Cell Input Multiplexer allows the input pin of a macro cell, for which the state register has been hidden by feeding back its input to the input array, to be preserved for use as an input pin.
This is possible as long as the other macro cell of the pair is not needed as a input or does not require State Register feed back. The input pin input register output which would normally be blocked by the hidden State Register feed back can be routed to the array input path of the companion macro cell for use as array input.

State Registers

By use of the exclusive or gate the State Register may be configured as a JK, RS or T Register. The default is a D-Type register. For the D-Type register, the exclusive or function can be used to select the polarity or the register output.
The set and reset of the State Register are global synchronous signals which are controlled by the logic of two global product terms for which input signals are clocked through the input registers by either of the input clocks, CK1 or CK2.

Hidden Registers

In addition to the twelve macro cells, which contain a total of twenty-four registers, there are four hidden registers whose outputs are not brought out to the device output pins. The Hidden State Register Macro Cell is shown in Figure 4.
The four hidden registers are clocked by the same clock as the macrocell state registers. All of the hidden register flipflops have a common, synchronous set, S , as well as a common, synchronous reset, R, which oer-ride the data at the D input. The S and R signals are PRODUCT TERMS that are generated in the array and are the same signals used to preset and reset the state register flip-flops.

Macrocell Product Term Distribution

Each pair of macrocells has a total of thirty-two product terms. Two product terms of each macrocell pair are used for the output enables (OEs) for the two output pins. Two product terms are also used as one input to each of the two exclusive OR gates in the macrocell pair. The number of product terms available to the designer is then $32-4=$ 28 for each macrocell pair. These product terms are divided between the macro cell state register flip-flops as shown in Table 1.

Table 1. Product Term Distribution

Macro Cell	Pin No.	Product Terms
0	28	9
1	27	19
2	26	11
3	25	17
4	24	13
5	23	15
6	20	15
7	19	13
8	18	17
9	17	11
10	16	19
11	15	9

Table 2. Hidden State Register Product Term Distribution

Hidden Register Cell	Product Terms
0	19
1	11
2	17
3	13

Architecture Configuration Bits

The architecture configuration bits are used to program the multiplexers. The function of the architecture bits is outlined below.

Table 3. Architecture Configuration Bits

Architecture Configuration Bit		Number of Bits	Value	Function
C0	Output Enable Select MUX	12 Bits, 1 Per I/O Macro Cell	0-Virgin State	Output Enable Controlled by Product Term
			1-Programmed	Output Enable Controlled by Pin 14
C1	State Register Feed Back MUX	12 Bits, 1 Per I/O Macro Cell	0-Virgin State	State Register Output is Fed Back to Input Array
			1-Programmed	I/O Macro Cell is Configured as an Input and Output of Input Register is Fed to Array
C2	I/O Macro Cell Input Register Clock Select MUX	12 Bits, 1 Per I/O Macro Cell	0-Virgin State	CK1 Input Register Clock (Pin 2) is Connected to I/O Macro Cell Input Register Clock Input
			1-Programmed	CK2 Input Register Clock (Pin 3) is Connected to I/O Macro Cell Input Register Clock Input
C3	I/O Macro Cell Pair Input Select MUX	6 Bits, 1 Per I/O Macro Cell Pair	0-Virgin State	Selects Data from I/O Macro Cell Input Register of Macro Cell A of Macro Cell Pair
			1-Programmed	Selects Data from I/O Macro Cell Input Register of Macro Cell B of Macro Cell Pair
C4	Dedicated Input Register Clock Select MUX	11 Bits, 1 Per Dedicated Input Cell	0-Virgin State	CK1 Input Register Clock (Pin 2) is Connected to Dedicated Input Register Clock Input
			1-Programmed	CK2 Input Register Clock (Pin 3) is Connected to Dedicated Input Register Clock Input

0101-5
Figure 1. Dedicated Input Cell

Figure 2. I/O Macro Cell

Figure 3. I/O Macro Cell Pair with Shared Input MUX

Figure 4. Hidden State Register Macro Cell

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 24 to Pin 12)
-0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State.
-0.5 V to +7.0 V
DC Input Voltage
-3.0 V to +7.0 V
Output Current into Outputs (Low) 16 mA

Static Discharge Voltage . > 2001 V
(per MIL-STD-883 Method 3015)
Latchup Current . $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	V CC
Commerical	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $\left.{ }^{5]}\right]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range ${ }^{[6]}$

Parameters	Description	Test Conditions			Min.	Max.	Units
VOH	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathbf{I H}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{IOH}=-3.2 \mathrm{~mA}$	COM ${ }^{\prime}$ L	2.4		V
			$\mathrm{IOH}=-2 \mathrm{~mA}$	MIL			
VoL	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{IOL}=12 \mathrm{~mA}$	COM'L		0.5	V
			$\mathrm{IOL}=8 \mathrm{~mA}$	MIL			
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed Input Logical HIGH Voltage for All Inputs [1]			2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed Input Logical LOW Voltage for All Inputs ${ }^{\text {1] }}$				0.8	V
IIX	Input Leakage Current	$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=$ Max.			-10	10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{V}_{\text {CC }}=$ Max. $\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$			-40	40	$\mu \mathrm{A}$
ISC	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ [2]			-30	-90	mA
I_{CC}	Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$ Outputs Open Device Operating @ $f_{\max }$		COM'L		120	mA
				MIL		150	mA

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Min	Max	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$		7	pF
COUT	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$		8	

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
2. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. VOUT $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
3. Tested initially and after any design or process changes that may affect these parameters.
4. Figure $5 a$ test load used for all parameters except t CEA, t CER , tPZX and $t_{P X Z}$. Figure $5 b$ test load for $\mathrm{t}_{\text {CEA }}, \mathrm{t}_{\text {CER }}, \mathrm{t}_{\text {PZX }}, \mathrm{t}_{P X Z}$.
5. T_{A} is the "instant on" case temperature.
6. See the last page of this specification for Group A subgroup testing information.

Switching Characteristics Over the Operating Range ${ }^{[4,6]}$

Parameters		Description	Commercial				Military				Units	
		-50	-33		-40		-28					
No.	Ref.		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.		
1	tisu		Input or Feedback Setup to Input Register Clock	5		10		5		10		ns
2	tosu	Input Register Clock to Output Register Clock	20		30		25		35		ns	
3	t_{CO}	Output Register Clock to Output		15		20		20		25	ns	
4	t_{H}	Hold Time from Input Register Clock	5		5		5		5		ns	
5	${ }^{\text {t CEA }}$	Input Register Clock to Output Enable		20		30		25		35	ns	
6	${ }^{\text {t CER }}$	Input Register Clock to Output Disable		20		30		25		35	ns	
7	tPZX	Pin 14 Enable to Output Enable		20		30		25		35	ns	
8	tPXZ	Pin 14 Disable to Output Disable		20		30		25		35	ns	
9	tw	Input or Output Clock Width	10		15		12.5		17.5		ns	
10	${ }_{\text {tP }}$	Input or Output Clock Period	20		30		25		35		ns	
11	$\mathrm{f}_{\max }$	Input or Output Clock Maximum Frequency	50		33		40		28		$\mathbf{M H z}$	

AC Test Loads and Waveforms (Commercial)

Figure 5a

0101-9

Equivalent to: THEVENIN EQUIVALENT (Military)

$$
\text { OUTPUT } O \underbrace{190 \Omega}_{0101-12} 02.02 \mathrm{~V}
$$

Switching Waveforms

Typical DC and AC Characteristics

Ordering Information

$\begin{gathered} \mathbf{f}_{\max } \\ (\mathbf{M H z}) \end{gathered}$	$\begin{aligned} & \mathrm{I}_{\mathbf{C C}} \\ & (\mathrm{mA}) \end{aligned}$	Ordering Code	Package	Operating Range
50	120	CY7C330-50	P21	Commercial
		CY7C330-50	W22	
		CY7C330-50	J64	
40	150	CY7C330-40	D22	Military
		CY7C330-40	W22	
		CY7C330-40	L64	
33	120	CY7C330-33	P21	Commercial
		CY7C330-33	W22	
		CY7C330-33	J64	
28	150	CY7C330-28	D22	Military
		CY7C330-28	W22	
		CY7C330-28	L64	

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
\mathbf{V}_{OH}	$1,2,3$
\mathbf{V}_{OL}	$1,2,3$
$\mathbf{V}_{\mathbf{I H}}$	$1,2,3$
\mathbf{V}_{IL}	$1,2,3$
$\mathbf{I}_{\mathbf{I X}}$	$1,2,3$
\mathbf{I}_{OZ}	$1,2,3$
\mathbf{I}_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t $_{\text {ISU }}$	$9,10,11$
tosU	$9,10,11$
$t_{\text {CO }}$	$9,10,11$
$t_{\text {H }}$	$9,10,11$
$t_{\text {CEA }}$	$9,10,11$
tPZX	$9,10,11$

Document \#: 38-00064-A

Asynchronous Registered
 EPLD

Features

- 12 I/O macrocells each having:
- One state Flip-Flop with an XOR sum or products input
- One feedback Flip-Flop with input coming from the \mathbf{I} / O pin
- Independent (product term) set, reset, and clock inputs on all registers
- Asynchronous bypass capability on all registers, under product term control ($\mathrm{r}=\mathrm{s}=1$)
- Global or local output enable on tristate I/O
- Feedback from either register to the array
- 192 product terms with variable distribution to macrocells
- 13 inputs, 12 feedback I/O pins, plus 6 shared I/O macrocell feedbacks for a total of 31 true and complementary inputs
- High speed: $\mathbf{2 5}$ ns maximum
- Security bit
- Space saving 28 pin slim-line DIP package; also available in 28 pin PLCC
- Low power
- 90 mA typical ICC quiescent
- $\mathbf{1 8 0} \mathrm{mA}$ ICC maximum
- UV-Eraseable and reprogrammable
- Programming and operation 100% testable

Product Characteristics

The CY7C331 is the most versatile PLD available for asynchronous designs. Central resources include 12 full D-type Flip-Flops with separate set, reset and clock capability. For increased utility, XOR gates are provided at the D-inputs and the product term allocation per Flip-Flop is variably distributed.

I/O Resources

Pins 1 through 7 and 9 through 14 serve as array inputs; pin 14 may also be used as a global output enable for the I/O macrocell tristate outputs. Pins 15 through 20 and 23 through 28 are connected to I/O macrocells and may be managed as inputs or outputs depending on the configuration and the macrocell OE terms.

Block Diagram and DIP Pinout

0100-1

Selection Guide

Generic Part Number	I ICC mA		tPD/tCO $\mathbf{n s}$		tors ns	
	Com	Mil	Com	Mil	Com	Mil
7C331-25	120		25		12	
7C331-30		150		30		15
$7 C 331-35$	120		35		15	
7C331-40		150		40		20

1/O Resources (Continued)

It should be noted that there are two ground connections (pins 8 and 21) which, together with $\mathbf{V}_{\mathbf{C C}}$ (pin 22) are located centrally on the package. The reason for this placement and dual ground structure is to minimize the groundloop noise when the outputs are driving simultaneously into a heavy capacitive load.

Figure 1. Macrocell

The CY7C331 has 12 macrocells. Each macrocell has two D-type Flip-Flops. One is fed from the array, and one is fed from the I/O pin. For each Flip-Flop there are 3 dedicated product terms driving the R, S, and Clock inputs respectively. Each macrocell has one input to the array and for each pair of macrocells there is one shared input to the array. The macrocell input to the array may be configured to come from the ' Q ' output of either Flip-Flop.
The D-type Flip-Flop which is fed from the array (i.e., the state Flip-Flop) has a logical XOR function on its input which combines a single product term with a sum (OR) of a number of product terms. The single product term is used to set the polarity of the output or to implement toggling (by including the current output in the product term).
The R and S inputs to the Flip-Flops override the current setting of the ' Q ' output. The S input sets ' Q ' true and the R input 'resets' ' Q ' (sets it false). If both R and S are asserted (true) at once, then the output will follow the input (' Q ' $=$ ' D ').

Table 1

\mathbf{R}	\mathbf{S}	\mathbf{Q}
1	0	0
0	1	1
1	1	\mathbf{D}
R-S Truth Table		

Shared Input Multiplexer

The input associated with each pair of macrocells may be configured by the shared input multiplexer to come from either macrocell; the ' Q ' output of the Flip-Flop coming from the I/O pin is used as the input signal source.

Product Term Distribution

The product terms are distributed to the macrocells such that 32 product terms are distributed between two adjacent macrocells. The pairing of macrocells is the same as it is for

0100-4
Figure 2. Shared Input Multiplexer
the shared inputs. 8 of the product terms are used in each macrocell for set, reset, clock, OE and the upper part of the XOR gate. This leaves 16 product terms per pair of macrocells to be divided between the sum-of-product inputs to the two state registers. The following table shows the I/O pin pairing for shared inputs, and the product term (P-Term) allocation to macrocells associated with the I/O pins.

Table 2

Macrocell	Pin Number	Product Terms
0	28	4
1	27	12
2	26	6
3	25	10
4	24	8
5	23	8
6	20	8
7	19	8
8	18	10
9	17	6
10	16	12
11	15	4

The CY7C331 is configured by three arrays of configuration bits (C0, C1, C2). For each macrocell, there is one C0 bit and one C1 bit. For each pair of macrocells, there is one C2 bit.
There are 12 C 0 bits. If C 0 is programmed for a macrocell, then the tristate enable (OE) will be controlled by pin 14 (the global OE). If C 0 is not programmed, then the OE product term for that macrocell will be used.
There is one Cl bit for each macrocell. The C 1 bit selects input for the product term (PT) array from either the state register (if the bit is unprogrammed) or the input register.
There are 6 C 2 bits, providing one C 2 bit for each pair of macrocells. The C2 bit controls the shared input Multiplexer (Mux); if the C2 bit is not programmed, then the input to the product term array comes from the upper macrocell (A). If the C2 bit is programmed, then the input comes from the lower macrocell (B).
The timing diagrams for the CY7C331 cover state register, input register, and various combinational delays. Since internal clocks are the outputs of product terms, all timing is from the transition of inputs causing the clock transition.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Ambient Temperature with
Power Applied $\ldots \ldots \ldots \ldots \ldots \ldots-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Group Potential

Output Current into Outputs (Low) $\ldots \ldots \ldots \ldots \ldots . .$.
(per MIL-STD-883 Method 3015)
Latchup Current $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	VCC
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[5]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[6]}$

Parameters	Description	Test Conditions			Min.	Max.	Units
$\mathrm{VOH}^{\text {OH}}$	Output HIGH Voltage	$\begin{aligned} & \mathbf{V}_{\mathrm{CC}}=\mathbf{M i n} . \\ & \mathbf{V}_{\mathbf{I N}}=\mathbf{V}_{\mathbf{I H}} \text { or } \mathbf{V}_{\mathbf{I L}} \end{aligned}$	$\mathrm{IOH}=-3.2 \mathrm{~mA}$	Commercial	2.4		V
			$\mathrm{IOH}_{\mathrm{OH}}=-2 \mathrm{~mA}$	Military			
VOL	Output LOW Voltage	$\begin{aligned} & \mathbf{V}_{\mathrm{CC}}=\mathrm{Min}_{.}, \\ & \mathbf{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{IOL}^{\prime}=8 \mathrm{~mA}$	Commercial		0.5	V
			$\mathrm{IOL}^{\prime}=8 \mathrm{~mA}$	Military			
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed HIGH Input, all Inputs ${ }^{\text {[1] }}$			2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed LOW Input, all Inputs ${ }^{\text {[1] }}$				0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	$\mathbf{V}_{\text {SS }}<\mathbf{V}_{\text {IN }}<\mathbf{V}_{\text {CC }},<\mathrm{V}_{\text {CC }}=$ Max.			-10	10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathbf{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {SS }}<\mathrm{V}_{\text {OUT }}<\mathrm{V}_{\text {CC }}$			-40	40	$\mu \mathrm{A}$
ISC	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}[2]$			-30	-90	mA
ICC	Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max., } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND}, \\ & \text { Outputs Open } \end{aligned}$		Commercial		120	mA
				Military		150	mA

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Min.	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$		7	pF
COUT	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$		8	

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
2. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. VOUT $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
3. Tested initially and after any design or process changes that may affect these parameters.
4. Figure $3 a$ test load used for all parameters except $t_{P Z X I}, t_{\text {PXZI }}, t_{P Z X}$ and $\mathrm{t}_{\text {PXZ }}$. Figure $3 b$ test load for $\mathrm{t}_{\text {PZXI }}, \mathrm{t}_{\text {PXZI }}, \mathrm{t}_{\text {PZX }}$ and $\mathrm{t}_{\mathrm{PXZ}}$.
5. T_{A} is the "instant on" case temperature.
6. See the last page of this specification for Group A subgroup testing information.

Switching Characteristics ${ }^{[6]}$

Parameter	Description	Commercial				Military				Units
		-25		-35		-30		-40		
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$t_{\text {PD }}$	Input to Output Propagation Delay ${ }^{[7]}$		25		35		30		40	ns
$\mathrm{t}_{\mathrm{ICO}}$	Input Clock to Combinatorial Output Delay ${ }^{[8]}$		40		55		50		65	ns
tIRS	Input Register Input Setup Time ${ }^{[8]}$	2		2		5		5		ns
$\mathrm{t}_{\text {IRH }}$	Input Register Input Hold Time ${ }^{[8]}$	13		15		15		20		ns
t_{I}	Input to Input Register Asynchronous Reset Delay ${ }^{[8]}$		40		55		50		65	ns
$\mathrm{tIS}_{\text {IS }}$	Input to Input Register Asynchronous Set Delay[8]		40		55		50		65	ns
t_{CO}	Output Register Clock to Output Delay [9]		25		35		30		40	ns
tors	Output Register Input Setup Time ${ }^{[9]}$	12		15		15		20		ns
torH	Output Register Input Hold Time ${ }^{\text {[9] }}$	8		10		10		12		ns
t_{OR}	Input to Output Register Asynchronous Reset Delay[9]		25		35		30		40	ns
tos	Input to Output Register Asynchronous Set Delay[9]		25		35		30	.	40	ns
tw	Clock Width ${ }^{[8, ~ 9]}$	15		20		20		25		ns
tCEA	Input to Output Enable Delay ${ }^{\text {[4, 10] }}$		25		35		30		40	ns
$t_{\text {CER }}$	Input to Output Disable Delay [4, 10]		25		35		30		40	ns
tPZX	Pin 14 to Output Enable Delay [4, 11]		20		30		25		35	ns
$\mathrm{tPXZ}^{\text {P }}$	Pin 14 to Output Disable Delay $[4,11]$		20		30		25		35	ns
$\mathrm{f}_{\text {MAX }}$	Maximum Frequency ($1 /\left(\right.$ tors $+\mathrm{t}_{\mathrm{CO}}$) $)$	27		20		22		16		MHz

Notes:
7. Refer to Figure 5 configuration 1.
10. Refer to Figure 5 configuration 4.
8. Refer to Figure 5 configuration 2.
11. Refer to Figure 5 configuration 5.
9. Refer to Figure 5 configuration 3.

AC Test Loads and Waveforms

Figure 3a
Equivalent to:
THÉVENIN EQUIVALENT

R1 457 Ω

0100-5
Figure 3b

0100-7
$\begin{array}{ll}\text { Equivalent to: } \quad \text { THÉVENIN EQUIVALENT } \\ \text { OUTPUTO-O } & \text { 2.02V }\end{array}$

Figure 4
路

0100-8

Switching Waveforms

Notes:

12. Because these input signals are controlled by product terms, active input polarity may be of either polarity. Internal active input polarity has been shown for clarity.
13. Output register is set in Transparent Mode. Set and Reset inputs are in a HIGH state.
14. Dedicated input or input register is set in Transparent Mode. Set and Reset inputs are in a HIGH state.
15. Combinatorial Mode. Reset and Set inputs of the input and output registers should remain in a HIGH state at least until the output responds at tPD. When returning Set and Reset inputs to a LOW state, one of these signals should go LOW a MINIMUM of tor prior to the other. This guarantees predictable register states upon exit from Combinatorial Mode.
16. When entering the Combinatorial Mode, input and output register Set and Reset inputs must be stable in a HIGH state a MINIMUM of tor prior to application of logic input signals.
17. When returning to the input and/or output Registered Mode, register Set and Reset inputs must be stable in a LOW state a MINIMUM of tor prior to the application of the register clock input.

Figure 5. Timing Configurations

Ordering Information

$\begin{gathered} \mathbf{I}_{\mathbf{C C}} \\ (\mathbf{m A}) \end{gathered}$	$\mathrm{t}_{\mathbf{P D}}$ (ns)	(ns)	$\begin{aligned} & \text { tco } \\ & (\mathrm{nc}) \end{aligned}$	Ordering Code	Package Type	Operating Range
180	25	20	25	CY7C331-25PC	P21	Commercial
				CY7C331-25WC	W22	
				CY7C331-25JC	J64	
200	30	25	30	CY7C331-30DMB	D22	Military
				CY7C331-30WMB	W22	
				CY7C331-30LMB	Q64	
180	35	25	35	CY7C331-35PC	P21	Commercial
				CY7C331-35WC	W22	
				CY7C331-35JC	J64	
200	40	30	40	CY7C331-40DMB	D22	Military
				CY7C331-40WMB	W22	
				CY7C331-40LMB	Q64	

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{SC}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
tSU1	9,10,11
thi	9,10,11
twH	9,10,11
twL	9,10,11
t_{CO}	9,10,11
tPD	9,10,11
t_{R}	9,10,11
ts	9,10,11
tpxZ	9,10,11
tPZX	9,10,11
tPXZI	9,10,11
tPZXI	9,10,11
tSU	9,10,11
t_{H}	9,10,11

Document \#: 38-00066

Features

- 12 I/O macrocells each having:
- Registered, latched, or transparent array input
- A choice of two clock sources
- Global or local output enable (OE)
- Up to 19 product terms (PT) per output
- Product term (PT) output polarity control
- 192 product terms with variable distribution to macrocells
- An average of 14 PT's per macrocell sum node
- Up to 19 PT's maximum for select nodes
- 2 clock inputs with configureable polarity control
- 13 input macrocells, each having:
- Complementary input
- Register, latch, or transparent access
- Two clock sources
- 20 ns max. delay
- Low power
- $\mathbf{1 2 0} \mathbf{m A}$ typical ICC quiescent
- $\mathbf{1 8 0} \mathrm{mA}$ max.
- Security fuse
- 28 pin slim-line package; also available in 28 pin PLC
- UV-Eraseable and reprogrammable
- Programming and operation 100% testable

Product Characteristics

The CY7C332 is a versatile combinatorial PLD with I/O registers onboard. There are 25 array inputs; each has a macrocell which may be configured as a register, latch or simple buffer. Outputs have polarity and tristate control product terms. The allocation of product terms to I/O macrocells is varied so that functions of up to 19 product terms can be accommodated.

I/O Resources

Pins 1 through 7 and 9 through 14 function as dedicated array inputs. Pins 1 and 2 function as input clocks as well as normal inputs. Pin 14 functions as a global output enable as well as a normal input.

Block Diagram and Pinout

LCC and PLCC Pinout

Selection Guide

Generic Part Number	ICC mA		tICO/tPD ns		tIRS ns	
	Com	Mil	Com	Mil	Com	Mil
7C332-20	120		20		5	
7C332-25		150		25		7
7C332-30	120		30		5	
7C332-35		150		35		7

I/O Resources (Continued)

0134-3
Figure 1. CK1 and CK2
Pins 15 through 20 and 23 through 28 are connected to I/O macrocells and may be combinatorial outputs as well as registered or direct inputs.

Input Macrocell

Figure 2. Input Macrocell

There are 13 input macrocells, corresponding to pins 1 through 7 and 9 through 14 . Each macrocell has a clock which is selected to come from either pin 1 or pin 2 by configuration bit S2. Pins 1 and 2 are clocks as well as normal inputs. There is no S 2 configuration bit for either of these two input macrocells. Macrocells connected to pins 1 and 2 do not have a clock choice, but each has a clock coming from the other pin.
Each input macrocell can be configured as a register, latch or a simple buffer (transparent path) to the product term array. For a register the configuration bit, S 0 , is 0 (unprogrammed) and S 1 is 0 . For a Latch, S 0 is 1 and S 1 is 0 . If both S0 and S1 are 1 (programmed) then the macrocell is completely transparent.

I/O Macrocell

There are 12 I/O macrocells corresponding to pins 15 through 20 and 23 through 28 . Each macrocell has a tristate output control, an XOR product term to dynamically control polarity, and a configureable feedback path.
For each I/O macrocell, the tristate control for the output may be configured two ways. If the configuration bit, $S 2$, is a 1 (programmed), then the global OE signal is selected. Otherwise, the OE product term is used.
For each I/O macrocell, the input/feedback path may be configured as a register, latch, or shunt. There are two configuration bits per I/O macrocell which configure the feedback path. These are programmed in the same way as for the input macrocells.
For each I/O macrocell, the input register clock (or Latch Enable) which is used for the input/feedback path may be selected as pin 1 (select bit, S3, not programmed) or pin 2 (select bit, S3, programmed).

Array Allocation to Output Macrocell

The number of product terms in each output macrocell. sum is position dependent. The table below summarizes the allocation:

Table 1

Macrocell	Pin Number	Product Terms
0	28	19
1	27	9
2	26	17
3	25	11
4	24	15
5	23	13
6	20	13
7	19	15
8	18	11
9	17	17
10	16	9
11	15	19

0134-5
Figure 3. I/O Macrocell

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C} \quad$ Static Discharge Voltage . $>2001 \mathrm{~V}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
(per MIL-STD-883, Method 3015)
Latch-up Current . >200 mA
Operating Range

Range	Ambient Temperature	VCC
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[5]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions			Min.	Max.	Units
$\mathrm{VOH}^{\text {O }}$	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA}$	Commercial	2.4		V
			$\mathrm{IOH}=-2 \mathrm{~mA}$	Military			
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & \mathbf{V}_{\mathrm{CC}}=\mathbf{M i n} . \\ & \mathbf{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{IOL}=12 \mathrm{~mA}$	Commercial		0.5	V
			$\mathrm{IOL}=8 \mathrm{~mA}$	Military			
$\mathrm{V}_{\text {IH }}$	Input LOW Level	Guaranteed HIGH Input, all Inputs [1]			2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed LOW Input, all Inputs ${ }^{\text {[1] }}$				0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	$\mathbf{V}_{\text {SS }}<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\mathbf{C C}}, \mathrm{V}_{\text {CC }}=$ Max.			-10	10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {SS }}<\mathrm{V}_{\text {OUT }}<\mathrm{V}_{\text {CC }}$			-40	40	$\mu \mathrm{A}$
ISC	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}[2]$			-30	-90	mA
ICC	Power Supply Current	$\begin{aligned} & \mathbf{V}_{\mathrm{CC}}=\text { Max., } \\ & \mathbf{V}_{\text {IN }}=\text { GND, Outputs Open } \end{aligned}$		Commercial		120	mA
				Military		150	mA

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Min.	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$		7	pF
COUT	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$		8	

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
2. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. V DUT $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
3. Tested initially and after any design or process changes tha may affect these parameters.
4. Figure $4 a$ test load used for all parameters except $t_{E A}, t_{E R}, t_{P Z X}$ and $\mathrm{t}_{\mathrm{PXZ}}$. Figure $4 b$ test load for $\mathrm{t}_{\mathrm{EA}}, \mathrm{t}_{\mathrm{ER}}, \mathrm{t}_{\mathrm{PZX}}, \mathrm{t}_{\mathrm{PXZ}}$.
5. T_{A} is the "instant on" case temperature.
eristics Over the Operating Range ${ }^{[1]}$
Switching Characteristics Over the Operating Range ${ }^{[1]}$

Parameters	Description	Commercial				Military				Units
		-20		-30		-25		-35		
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
tPD	Input to Output Propagation Delay[6]		20		30		25		35	ns
${ }^{\text {tico }}$	Input Clock to Combinatorial Output Delay ${ }^{[7]}$		20		30		25		35	ns
tIRS	Input Register Input Setup Time ${ }^{\text {[7] }}$	5		7		5		7		ns
tIRH	Input Register Input Hold Time ${ }^{[7]}$	5		7		5		7		ns
tw	Clock Width ${ }^{\text {[7] }}$	10		14		10		14		ns
${ }^{\text {t CEA }}$	Input to Output Enable Delay [4, 8]		20		30		25		35	ns
tCER	Input to Output Disable Delay [4, 8]		20		30		25		35	ns
tPZX	Pin 14 to Output Enable Delay $[4,9]$		15		25		20		30	ns
tPXZ	Pin 14 to Output Disable Delay [4, 9]		15		25		20		30	ns

Notes:
6. Refer to Figure 6 configuration 1.
7. Refer to Figure 6 configuration 2.
8. Refer to Figure 6 configuration 3.
9. Refer to Figure 6 configuration 4.

AC Test Loads and Waveforms (Commercial)

R1 313Ω
($470 \Omega \mathrm{MLL}$)

Figure 4a
Equivalent to: THEVENIN EQUIVALENT (Commercial)

R1 313Ω
($470 \Omega \mathrm{MIL}$)

Figure 4b

0134-7
Figure 5. Input Pulses
Equivalent to: THÉVENIN EQUIVALENT (Military)

0134-9

Switching Waveforms

Notes:

10. Because OE can be controlled by the $\overline{\mathrm{OE}}$ product term, input signal polarity for control of OE can be of either polarity. Internally the product term OE signal is active high.
11. Since the input register clock polarity is programmable, the input clock may be rising or falling edge triggered.

Figure 6. Timing Configurations

Ordering Information

$\mathrm{I}_{\text {CC }}(\max)$	$\mathbf{t I C O}_{\text {I }} / \mathrm{tPD}^{\text {(ns) }}$	tIRS (ns)	$\mathbf{t i R H}^{\text {(ns) }}$	Ordering Code	Package Type	Operating Range
120	20	5	5	CY7C332-20PC	P21	Commercial
				CY7C332-20WC	W22	
				CY7C332-20JC	J64	
150	25	7	7	CY7C332-25DMB	D22	Military
				CY7C332-25WMB	W22	
				CY7C332-25LMB	Q64	
120	30	5	5	CY7C332-30PC	P21	Commercial
				CY7C332-30WC	W22	
				CY7C332-30JC	J64	
150	35	7	7	CY7C332-35DMB	D22	Military
				CY7C332-35WMB	W22	
				CY7C332-35LMB	Q64	

Introduction

PLDs or Programmable Logic Devices provide an attractive alternative to logic implemented with discrete devices. Because the primary requirements for this logic has been to provide high performance and increased functional density, in the past all programmable logic functions have been implemented in a bipolar technology. Bipolar technology uses a fuse for the programming mechanism. The fuses are intact when the product is delivered to the user, and may be programmed once, then read and used indefinitely. The fuses are literally blown using a high current supplied by a programming system. Programming or blowing a fuse is a one time event, once blown the fuse is forever open. A fuse therefore may not be tested to see that it will blow or program properly before it is delivered to the user. This difficulty in testing fuses for programming results in less than 100% programming yield in the field, and this fallout falls into three categories.
A certain percentage of the product simply fails to program. These devices are easily identified, and may be returned for replacement. A small percentage of the product will program and verify correctly, but fail to function properly as a logic element. This can happen because, without programming each location, the connection between the programmed cell and the logic it is to control cannot be verified. Some programmers can test for this condition through the use of a set of test vectors for each unique code or part. Additional material will be lost, however, even if a structured set of test vectors is used due to the device functioning too slow. This failure is much more subtle and can only be found by 100% AC testing of the programmed device, or worse yet by troubleshooting an assembled board or system.
Cypress PLDs use an EPROM programming mechanism. This technology has been available since the early 1970's, however, as with most MOS technologies, the emphasis has been on density, not performance. CMOS at Cypress is as fast as or faster than Bipolar and coupled with EPROM programming, offers a viable alternative to bipolar programmable logic from a performance point of view. In addition, CMOS EPROM technology offers other overwhelming advantages. EPROM cells are programmed by injecting charge on an electrically isolated gate which causes the transistor to be permanently turned off. This mechanism may be reversed by irradiating the cell with ultraviolet light. This feature totally changes the testing philosophy and provides a new feature for the user. All programmable cells may now be tested by the manufacturer prior to delivery to the customer. This provides an easy methodology to certify programming, functionality, and performance. With built in test arrays, functionality and performance may be tested even if the device is packaged in a non-windowed package. Devices packaged in a windowed package may be programmed and erased indefinitely providing the designer a tool for the development of his logic without throwing away devices that are programmed incorrectly as the design proceeds.

Programmable Technology

EPROM Process Technology

EPROM technology employs a floating or isolated gate between the normal control gate and the source/drain region of a transistor. This gate may be charged with electrons during the programming operation and when charged with electrons, the transistor is permanently turned off. When uncharged (the transistor is unprogrammed) the device may be turned on and off normally with the control gate. The state of the floating gate, charged or uncharged, is permanent because the gate is isolated in an extremely pure oxide. The charge may be removed if the device is irradiated with ultraviolet energy in the form of light. This ultraviolet light allows the electrons on the gate to recombine and discharge the gate. This process is repeatable and therefore can be used during the processing of the device, repeatedly if necessary, to assure programming function and performance.

Two Transistor Cells

In order to provide an EPROM cell that is as fast as the fuse technology employed in bipolar processes, Cypress uses a two transistor EPROM cell. One transistor is optimized for reliable programming, and one transistor is optimized for high speed. The floating gates are connected such that charge injected on the floating gate of the programming transistor is conducted to the read transistor biasing it off.

Programming Algorithm
 Byte Addressing and Programming

All Cypress Programmable Logic Devices are addressed and programmed on BYTE or EXTENDED BYTE basis where an EXTENDED BYTE is a field that is as wide as the output path of the device. Each device or family of devices has a unique address map which is available in the product data sheet. Each BYTE or EXTENDED BYTE is written into the addressed location from the pins that serve as the output pins in normal operation. To program a cell, a " 1 " or HIGH is placed on the input pin and a " 0 " or LOW is placed on pins corresponding to cells that are not to be programmed. Data is also read from these pins in parallel for verification after programming. A " 1 " or HIGH during program verify operation indicates an unprogrammed cell, while a " 0 " or LOW indicates that the cell accessed has been programmed.

Blank Check

Before programming all Programmable Logic Devices may be checked in a conventional manner to determine that they have not been previously programmed. This is accomplished in a program verify mode of operation by reading the contents of the array. During this operation, a " 1 " or HIGH output indicates that the addressed cell is unprogrammed, while a " 0 " or LOW indicates a programmed cell.

Data I/O Corporation
10525 Willows Rd. N.E.
P.O. Box 97046

Redmond, WA
98073-9746
(206) 881-6444

Note:

1. Requires Design Adapter 100.

Data I/O Model 60A, 60H				
Cypress Part Number	Generic Part Number	Family Code and Pinout	Revision	
PALC16R8	16R8	28	24	V05
PALC16R6	16R6	28	24	V05
PALC16R4	16R4	28	24	V05
PALC16L8	16L8	28	17	V05
PALC22V10	22V10	28	28	V08
PLDC20G10	20G10	28	56	V08

Stag Microsystems
1600 Wyatt Dr.
Santa Clara, CA 95054
(408) 988-1118

STAG ZL32 Rev. 30A03

STAG PPZ Zm2200 Rev. 18 ZL32 Rev. 30A03		
Cypress Part Number	Generic Part Number	Family Code and Pinout
PALC16R8	16R8	
PALC16R6	16R6	Menu
PALC16R4	16R4	Driven
PALC16L8	16L8	
PALC22V10	22V10	

Data I/O 29B LOGICPAK VO4				Adapters:	
				PT	Generic
Cypress Part Number	Generic Part Number			303A-009 Revision	303A-011A/B Revision
PALC16R8	16R8 [1]	28	24	V03	V01
PALC16R6	16R6 [1]	28	24	V03	V01
PALC16R4	16R4 [1]	28	24	V03	V01
PALC16L8	16L8 [1]	28	17	V03	V01
PALC22V10	22V10	28	28	V04	V01
PLDC20G10	20G10	28	56	V04	V01
PLDC20G10	20R4	28	65	V04	V02
PLDC20G10	20R6	28	66	V04	V02
PLDC20G10	20R8	28	27	V04	V02
PLDC20G10	20L8	28	26	V04	V01
PLDC20G10	20L10	28	6	V04	V01
PLDC20G10	20L2	28	5	V04	V02
PLDC20G10	18L4	28	4	V04	V01
PLDC20G10	16L6	28	3	V04	V01
PLDC20G10	14L8	28	2	V04	V01
PLDC20G10	12L10	28	1	V04	V01

All Cypress Programmable Logic Devices contain a PHANTOM ARRAY for the purposes of post assembly testing. This array is accessed, programmed and operated in a special PHANTOM mode of operation. In this mode, the normal array is disconnected from control of the logic, and in its place the PHANTOM ARRAY is connected. In normal operation the PHANTOM ARRAY is disconnected and control is only via the normal array. This special feature allows every device to be tested for both functionality and performance after packaging and, if desired, by the user before programming and use. The PHANTOM modes are entered through the use of supervoltages and are are entered through the use of supervoltages and are
unique for each device or family of devices. See specific data sheets for details.

Special Features

Cypress Programmable Logic devices, depending on the device, have several special features. For example the security mechanism defeats the verify operation and therefore secures the contents of the device against unauthorized secures the contents of the device against unauthorized
tampering or access. In advanced devices such as the PAL C 22V10, PLD C 20G10, and the CY7C330 the MACROCELLs are programmable through the use of the architecture bits. This allows the user to more effectively tailor the device architecture to his unique system requirements. device architecture to his unique system requirements.
These features are also programmed though the use of EPROM cells. Specific programming is detailed in the device data sheet.

Programming Support

Programming support for Cypress CMOS Programmable Logic Devices is available from a number of programmer manufacturers, some of which are listed as follows. The hardware module version number listed is the earliest version qualified by Cypress. Any subsequent version is also qualified unless otherwise specifically noted.

$$
0
$$

Programming The Data Array

Programming is accomplished by applying a supervoltage to one pin of the device causing it to enter the programming mode of operation. This also provides the programming voltage for the cells to be programmed. In this mode of operation, the address lines of the device are used to address each location to be programmed, and the data is presented on the pins normally used for reading the contents of the device. Each device has a READ/WRITE pin in the programming mode. This signal causes a write operation when switched to a supervoltage, and a read operation when switched to a logic " 0 " or LOW. In the logic HIGH state " 1 " the device is in a program inhibit condition and the output pins are in a high impedance state. During a WRITE operation, the data on the output pins is written into the addressed array location. In a READ operation the contents of the addressed location are present on the output pins and may be verified. Programming therefore is accomplished by placing data on the output pins, and writing it into the addressed location. Verification of data is accomplished by examining the information on the output pins during a READ operation.
The timing for actual programming is supplied in the unique programming specification for each device.

Phantom Operating Modes

Cypress Semiconductor Inc.
3901 North First Street
San Jose, CA 95134
(408) 943-2600

Cypress CY3000 QuickPro Rev. PLD 2.0		
Cypress Part Number	Generic Part Number	Family Code and Pinout
PALC16R8	16R8	
PALC16R6	16R6	
PALC16R4	16R4	
PALC16L8	16L8	
PALC22V10	22V10	
PLDC20G10	20G10	
PLDC20G10	20R4	
PLDC20G10	20R6	Menu
PLDC20G10	20R8	Driven
PLDC20G10	20L8	
PLDC20G10	20L10	
PLDC20G10	20L2	
PLDC20G10	18L4	
PLDC20G10	16L6	
PLDC20G10	14L8	
PLDC20G10	12L10	
CY7C330	7C330	

Digelec Corporation
1602 Lawrence Ave.
Suite 113
Ocean, NJ 07712
(201) 493-2420

DIGELEC 803 FAM-52 Rev. A-6.0				
Cypress Part Number	Generic Part Number	Family Code and Pinout	Adapter Rev. A-3	
PALC16R8	16R8		DA-53	
PALC16R6	16R6	Menu	DA-53	
PALC16R4	16R4	Driven	DA-53	
PAALC16L8	16L8			
PALC22V10	22V10		DA-53	

Logical Devices Inc.
1321 N.W. 65th Place
Ft. Lauderdale, FL 33309
(305) 974-0975

Logical Devices ALLPRO Rev. V1.4			
Cypress Part Number	Generic Part Number	Family Code and Pinout	
PALC16R8	16R8		
PALC16R6	16R6	Menu	
PALC16R4	16R4	Driven	
PALC16L8	16L8		
PALC22V10	22V10		

Kontron Electronics
1230 Charleston Road
Mountain View, CA
94039-7230
(415) 965-7020

Kontron EPP 80 UPM-P		
Cypress Part Number	Generic Part Number	Family Code and Pinout
PALC16R8	16R8	
PALC16R6	16R6	
PALC16R4	16R4	Menu
PALC16L8	16L8	Driven
PALC22V10	22V10	

Development Software
ABELTM
Supported Devices:
Data I/O Corporation
PALC16R8
PALC16R6
10525 Willows Rd. N.E.
PALC16R4
P.O. Box 97046

PALC16L8
Redmond, WA
98073-9746
PALC22V10
PLDC20G10
(206) 881-6444

CUPLTM
Assisted Technology
1290 Parkmoor Ave.
San Jose, CA 95126
(800) 523-5207

CY7C330

PALC16R8
PALC16R6
PALC16R4
PALC16L8
PALC22V10
(800) 628-8748 CA

LOG/iCTM

ISDATA GmbH
Haid-und-Neu-Strasse 7
D-7500 Karlsruhe 1 West Germany
(0721) 693092

PALC16R8
PALC16R6
PALC16R4
PALC16L8
PALC22V10

ABELTM is a trademark of Data I/O Corporation.
CUPLTM is a trademark of Assisted Technology.
ISDATA ${ }^{\circledR}$ is a registered trademark of ISDATA GmbH.
LOG/iCTM is a trademark of ISDATA GmbH.
PRODUCT
INFORMATION
STATIC RAMS2
PROMS 3
EPLDS 4

RISC 6
BRIDGEMOS 7
QUICKPRO 8
QUALITY AND 9 RELIABILITY
APPLICATION BRIEFS 10
PACKAGES11

LOGIC

Device Number

CY2901C
CY2909A
CY2911A
CY2910A
CY3341
CY7C401
CY7C402
CY7C403
CY7C404
CY7C408
CY7C409
CY7C420
CY7C421
CY7C424
CY7C425
CY7C428
CY7C429
CY7C510
CY7C516
CY7C517
CY7C901
CY7C909
CY7C911
CY7C910
CY7C9101
CY7C9116
CY7C9117
Description Page Number
CMOS 4-Bit Slice 5-1
CMOS Microprogram Sequencer 5-9
CMOS Microprogram Sequencer 5-9
CMOS Microprogram Controller 5-14
64×4 FIFO Serial Memory 5-19
Cascadeable 64×4 FIFO 5-24
Cascadeable 64×5 FIFO 5-24
Cascadeable 64×4 FIFO with Output Enable 5-24
Cascadeable 64×5 FIFO with Output Enable 5-24
Cascadeable 64×8 FIFO with Output Enable 5-34
Cascadeable 64×9 FIFO 5-34
Cascadeable 512×9 FIFO 5-48
Cascadeable 512×9 FIFO 5-48
Cascadeable 1024×9 FIFO 5-48
Cascadeable 1024×9 FIFO 5-48
Cascadeable 2048×9 FIFO 5-48
Cascadeable 2048×9 FIFO 5-48
16 x 16 Multiplier Accumulator 5-59
16×16 Multiplier 5-71
16×16 Multiplier 5-71
CMOS 4-Bit Slice 5-83
Microprogram Sequencer 5-98
Microprogram Sequencer 5-98
Microprogram Controller 5-109
CMOS 16-Bit Slice 5-120
CMOS 16-Bit Microprogrammed ALU 5-137
CMOS 16-Bit Microprogrammed ALU 5-137

CY2901C

Features

- Pin compatible and functional equivalent to AMD AM2901C
- Low power
- $\mathbf{V}_{\mathbf{C C}}$ margin
- 5V $\pm 10 \%$
- All parameters guaranteed over commercial and military operating temperature range
- Eight function ALU

Performs eight operations on two 4-bit operands

- Expandable

Infinitely expandable in 4-bit increments

- Four status flags Carry, overflow, negative, zero
- ESD protection

Capable of withstanding greater than 2000V static discharge voltage

Functional Description

The CY2901 is a high-speed, expandable, 4-bit wide ALU that can be used to implement the arithmetic section of a CPU, peripheral controller, or programmable controller. The instruction set of the CY2901 is basic but yet so versatile that it can emulate the ALU of almost any digital computer.
The CY2901, as illustrated in the block diagram, consists of a 16 -word by 4 -bit dual-port RAM register file, a 4-bit ALU and the required data manipulation and control logic.

The operation performed is determined by nine input control lines (I_{0} to I_{8}) that are usually inputs from an instruction register.
The CY2901 is expandable in 4-bit increments, has three-state data outputs as well as flag outputs, and can use either a full-look ahead carry or a ripple carry.
The CY2901 is a pin compatible, functional equivalent, improved performance replacement for the AM2901.
The CY2901 is fabricated using an advanced 1.2 micron CMOS process that eliminates latchup, results in ESD protection over 2000V and achieves superior performance at a low power dissipation.

Logic Block Diagram

Pin Configuration

	Top View		
A_{3}	1	40	万気
A_{2}	2	39	r_{3}
A_{1}	3	38	$]^{1}$
A_{0}	4	37	r_{1}
16	5	36	$\square \mathrm{Y}_{0}$
s_{8}	6	35	$\square^{\bar{p}}$
17	7	34	Jovr
RAM_{3}	8	33	$\square \mathrm{c}_{\mathrm{n}}+4$
RAM ${ }_{0}$	9	32	$\overline{\text { c }}$
$v_{\text {cc }} \mathrm{D}$	10	31	F_{3}
$\mathrm{F}=0$	11	30	Gnd
4	12	29	c_{n}
1.	13	28	J_{4}
12	14	27	l_{5}
${ }^{\circ} \mathrm{P}$	15	26	I_{3}
0_{3}	16	25	D_{0}
B_{0}	17	24	D_{1}
B_{1} प	18	23	D_{2}
B_{2}	19	22	70_{3}
B_{3}	20	21	a_{0}

0007-2

Selection Guide See last page for ordering information.

Read Modify-Write Cycle (Min.) in ns	Operating ICC (Max.) in mA	Operating Range	Part Number
31	140	Commercial	CY2901C
32	180	Military	CY2901C

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\ldots \ldots \ldots \ldots \ldots . .65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Ambient Temperature withPower Applied $\ldots \ldots \ldots \ldots \ldots \ldots .$..	
Supply Voltage to Ground Potential (Pin 10 to Pin 30).	-0.5 V to +7.0 V
DC Voltage Applied to Outputs in High Z State.	-0.5 V to +7.0 V
DC Input Voltage	-3.0 V to +7.0 V
Output Current into Outputs (Low)	30

Pin Definitions

Signal
Name I/O

Description

| $A_{0}-A_{3} \quad I \quad$ | $\begin{array}{l}\text { These } 4 \text { address lines select one of the registers in } \\ \text { the stack and output its contents on the (internal) }\end{array}$ |
| :--- | :--- | :--- | A port.

$B_{0}-B_{3} \quad I \quad$ These 4 address. lines select one of the registers in the stack and output is contents on the (internal) B port. This can also be the destination address when data is written back into the register file.
$\mathbf{I}_{0}-\mathbf{I}_{8} \quad$ I These 9 instruction lines select the ALU data sources ($\mathrm{I}_{0,1}, 2$), the operation to be performed ($I_{3,4}, 5$) and what data is to be written into either the Q register or the register file ($\mathrm{I}_{6}, 7,8$).
$\mathrm{D}_{0}-\mathrm{D}_{3} \quad I \quad$ These are 4 data input lines that may be selected by the $\mathrm{I}_{0,1,2}$ lines as inputs to the ALU.
$\mathrm{Y}_{0}-\mathrm{Y}_{3} \mathrm{O}$ These are three-state data output lines that, when enabled, output either the output of the ALU or the data in the A latches, as determined by the code on the $I_{6,7,8}$ lines.
$\overline{\mathrm{OE}} \quad \mathrm{I}$ Output Enable. This is an active LOW input that controls the $\mathrm{Y}_{0}-\mathrm{Y}_{3}$ outputs. When this signal is LOW the Y outputs are enabled and when it is HIGH they are in the high impedance state.
CP I Clock Input. The LOW level of the clock writes data to the 16×4 RAM. The HIGH level of the clock writes data from the RAM to the A-port and B-port latches. The operation of the Q register is similar. Data is entered into the master latch on the LOW level of the clock and transferred from master to slave when the clock is HIGH.
Q3 I/O These two lines are bidirectional and are
RAM $_{3} \quad$ controlled by the $I_{6,7,8}$ inputs. Electrically they are three-state output drivers connected to the TTL compatible CMOS inputs.

Static Discharge Voltage . > 2001 V
(Per MIL-STD-883 Method 3015)
Latchup Current (Outputs) $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[1]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Note:

1. T_{A} is the "instant on" case temperature.

Signal

Name I/O

Description

Q3 I/O Outputs: When the destination code on lines $\mathrm{RAM}_{3} \quad \mathrm{I}_{6}, 7,8$ indicates a shift left (UP) operation the (Cont.) three-state outputs are enabled and the MSB of the Q register is output on the Q_{3} pin and the MSB of the ALU output $\left(\mathrm{F}_{3}\right)$ is output on the RAM 3 pin.
Inputs: When the destination code indicates a shift right (DOWN) the pins are the data inputs to the MSB of the Q register and the MSB of the RAM.
Qo I/O These two lines are bidirectional and function in a
RAM $_{0}$ manner similar to the Q3 and RAM 3 lines, except that they are the LSB of the Q register and RAM.
$\mathrm{C}_{\mathrm{n}} \quad \mathrm{I}$ The carry-in to the internal ALU.
$\mathrm{C}_{\mathrm{n}}+4$ O The carry-out from the internal ALU.
$\overline{\mathbf{G}}, \overline{\mathbf{P}} \quad \mathbf{O}$ The carry generate and the carry propagate outputs of the ALU, which may be used to perform a carry look-ahead operation over the 4 bits of the ALU.
OVR O Overflow. This signal is logically the exclusiveOR of the carry-in and the carry-out of the MSB of the ALU. This pin indicates that the result of the ALU operation has exceeded the capacity of the machine. It is valid only for the sign bit and assumes two's complement coding for negative numbers.
$F=0 \quad O \quad$ Open collector output that goes HIGH if the data on the ALU outputs ($\mathrm{F}_{0}, 1,2,3$) are all LOW. It indicates that the result of an ALU operation is zero (positive logic).
$\mathrm{F}_{3} \quad \mathrm{O}$ The most significant bit of the ALU output.

Electrical Characteristics Over Commercial and Military Operating Range ${ }^{[3]}$
V_{CC} Min. $=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}$ Max. $=5.5 \mathrm{~V}$

Parameters	Description	Test Conditions		Min.	Max.	Units
VOH	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{I}_{\mathrm{OH}}=-3.4 \mathrm{~mA} \end{aligned}$		2.4		V
$V_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & \mathbf{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \text { Commercial } \\ & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \text { Military } \end{aligned}$			0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.0	V_{CC}	V
VIL	Input LOW Voltage			-3.0	0.8	V
$\mathrm{I}_{\mathbf{I H}}$	Input HIGH Current	$\begin{aligned} & \mathbf{V}_{\mathrm{CC}}=\mathbf{M a x} \\ & \mathbf{V}_{\mathrm{IN}}=\mathbf{V}_{\mathrm{CC}} \end{aligned}$			10	$\mu \mathrm{A}$
IIL	Input LOW Current	$\begin{aligned} & \mathbf{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathbf{V}_{\mathrm{IN}}=\mathrm{GND} \end{aligned}$			-10	$\mu \mathrm{A}$
IOH	Output HIGH Current	$\begin{aligned} & \mathbf{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathbf{V}_{\mathrm{OH}}=2.4 \mathrm{~V} \end{aligned}$		-3.4		mA
IOL	Output LOW Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V} \end{aligned}$	Commercial	20		mA
			Military	16		mA
Ioz	Output Leakage Current	$\begin{aligned} & \mathbf{V}_{\mathrm{CC}}=\text { Max. } \\ & \mathbf{V}_{\text {OUT }}=\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$		-40	$+40$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
ISC	Output Short Circuit Current ${ }^{[1]}$	$\begin{aligned} & \mathbf{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V} \end{aligned}$		-30	-85	mA
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max.	Commercial		140	mA
			Military		180	mA

Capacitance ${ }^{[2]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	5	pF
COUT	Output Capacitance		7	

Notes:

1. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second.
2. Tested initially and after any design or process changes that may affect these parameters.
3. See the last page of this specification for Group A subgroup testing information.

Output Loads used for AC Performance Characteristics

0007-3
All outputs except open drain

Open drain ($\mathbf{F}=\mathbf{0}$)

Notes:

1. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ includes scope probe, wiring and stray capacitance.
2. $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ for output disable tests.
3. Loads shown above are for commercial $(20 \mathrm{~mA}) \mathrm{I}_{\mathrm{OL}}$ specifications only.

	Commercial	Military
R_{1}	203Ω	252Ω
R_{2}	148Ω	174Ω

CY2901C

CY2901C Guaranteed Commercial

Range AC Performance Characteristics

The tables below specify the guaranteed AC performance of these devices over the Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$ operating temperature range with V_{CC} varying from 4.5 V to 5.5 V . All times are in nanoseconds and are measured between the 1.5 V signal levels. The inputs switch between 0 V and 3 V with signal transition rates of 1 V per nanosecond. All outputs have maximum DC current loads. See previous page for loading circuit information.
This data applies to parts with the following numbers: CY2901CPC CY2901CDC CY2901CLC

Cycle Time and Clock Characteristics

CY2901-	C
Read-Modify-Write Cycle (from selection of A, B registers to end of cycle).	31 ns
Maximum Clock Frequency to shift Q (50\% duty cycle, I $=432$ or 632)	32 MHz
Minimum Clock LOW Time	15 ns
Minimum Clock HIGH Time	15 ns
Minimum Clock Period	31 ns

For faster performance see CY7C901-23 specification.

Combinational Propagation Delays. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

To Output From Input	Y	F3	$\mathrm{C}_{\mathrm{n}}+4$	$\overline{\mathbf{G}}, \overline{\mathbf{P}}$	$\mathbf{F}=\mathbf{0}$	OVR	$\begin{aligned} & \mathbf{R A M}_{\mathbf{0}} \\ & \mathbf{R A M}_{\mathbf{3}} \end{aligned}$	$\begin{aligned} & \mathbf{Q}_{0} \\ & \mathbf{Q}_{3} \end{aligned}$
A, B Address	40	40	40	37	40	40	40	-
D	30	30	30	30	38	30	30	-
C_{n}	22	22	20	-	25	22	25	-
I_{012}	35	35	35	37	37	35	35	-
I 345	35	35	35	35	38	35	35	-
I_{678}	25	-	-	-	-	-	26	26
$\begin{aligned} & \text { A Bypass ALU } \\ & (\mathrm{I}=2 \mathrm{XX}) \end{aligned}$	35	-	-	-	-	-	-	-
Clock \sim	35	35	35	35	35	35	35	28

Set-up and Hold Times Relative to Clock (CP) Input

Input		Hold Time After H $\rightarrow \mathbf{L}$		Hold Time After L $\rightarrow \mathbf{H}$
A, B Source Address	15	$\begin{gathered} 1 \\ \text { (Note 3) } \end{gathered}$	$\begin{aligned} & 30,15+\text { tpWL } \\ & \text { (Note 4) } \end{aligned}$	1
B Destination Address	15	$\leftarrow \quad$ Do Not	Change \rightarrow	1
D	-	-	25	0
C_{n}	-	-	20	0
I_{012}	-	-	30	0
I_{345}	-	-	30	0
I678	10	$\leftarrow \quad$ Do Not	t Change \rightarrow	0
$\mathrm{RAM}_{0,3,} \mathrm{Q}_{0,3}$	-	-	12	0

Output Enable/Disable Times
Output disable tests performed with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ and measured to 0.5 V change of output voltage level.

Device	Input	Output	Enable	Disable
CY2901C	$\overline{\mathrm{OE}}$	Y	23	23

Notes:

1. A dash indicates a propagation delay path or set-up time constraint does not exist.
2. Certain signals must be stable during the entire clock LOW time to avoid erroneous operation. This is indicated by the phrase "do not change".
3. Source addresses must be stable prior to the clock $H \rightarrow L$ transition to allow time to access the source data before the latches close. The A address may then be changed. The B address could be changed if it is not a destination; i.e. if data is not being written back into the RAM. Normally A and B are not changed during the clock LOW time.
4. The set-up time prior to the clock $L \rightarrow H$ transition is to allow time for data to be accessed, passed through the ALU, and returned to the RAM. It includes all the time from stable A and B addresses to the clock $L \rightarrow H$ transition, regardless of when the clock $H \rightarrow L$ transition occurs.

CY2901C Guaranteed Military

Range AC Performance Characteristics

The tables below specify the guaranteed AC performance of these devices over the Military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ operating temperature range with V_{CC} varying from 4.5 V to 5.5 V . All times are in nanoseconds and are measured between the 1.5 V signal levels. The inputs switch between 0 V and 3 V with signal transition rates of 1 V per nanosecond. All outputs have maximum DC current loads. See "Electrical Characteristics" of this data sheet for loading circuit information.
This data applies to parts with the following numbers:

Cycle Time and Clock Characteristics ${ }^{[5]}$

CY2901-	C
Read-Modify-Write Cycle (from selection of A, B registers to end of cycle).	32 ns
Maximum Clock Frequency to shift Q (50\% duty cycle, I = 432 or 632)	31 MHz
Minimum Clock LOW Time	15 ns
Minimum Clock HIGH Time	15 ns
Minimum Clock Period	32 ns

For faster performance see CY7C901-27 specification.

CY2901CDMB

Combinational Propagation Delays $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}^{[5]}$

To Output From Input	Y	F3	$\mathrm{C}_{\mathrm{n}}+4$	\mathbf{G}, \mathbf{P}	$\mathbf{F}=0$	OVR	$\begin{aligned} & \mathbf{R A M}_{\mathbf{0}} \\ & \mathbf{R A M}_{3} \end{aligned}$	$\begin{aligned} & \mathbf{Q}_{0} \\ & \mathbf{Q}_{3} \end{aligned}$
A, B Address	48	48	48	44	48	48	48	-
D	37	37	37	34	40	37	37	-
C_{n}	25	25	21	-	28	25	28	-
I_{012}	40	40	40	44	44	40	40	-
I_{345}	40	40	40	40	40	40	40	-
I_{678}	29	-	-	-	-	-	29	29
$\begin{aligned} & \text { A Bypass ALU } \\ & (\mathrm{I}=2 \mathrm{XX}) \end{aligned}$	40	-	-	-	-	一	-	-
Clock $-T$	40	40	40	40	40	40	40	33

Set-up and Hold Times Relative to Clock (CP) Input ${ }^{[5]}$

Input		Hold Time After H \rightarrow L		Hold Time After L $\rightarrow \mathrm{H}$
A, B Source Address	15	$\begin{gathered} 2 \\ \text { (Note 3) } \end{gathered}$	$\begin{aligned} & 30,15+\text { tpWL } \\ & (\text { Note } 4) \end{aligned}$	2
B Destination Address	15	$\leftarrow \quad$ Do Not	Change \rightarrow	2
D	-	-	25	0
C_{n}	-	-	20	0
I_{012}	-	-	30	0
I_{345}	-	-	30	0
I678	10	$\leftarrow \quad$ Do Not	Change \rightarrow	0
$\mathrm{RAM}_{0,3,} \mathrm{Q}_{0,3}$	-	-	12	0

Output Enable/Disable Times ${ }^{[5]}$

Output disable tests performed with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ and measured to 0.5 V change of output voltage level.

Device	Input	Output	Enable	Disable
CY2901C	$\overline{\mathrm{OE}}$	Y	25	25

Notes:

1. A dash indicates a propagation delay path or set-up time constraint does not exist.
2. Certain signals must be stable during the entire clock LOW time to avoid erroneous operation. This is indicated by the phrase "do not change".
3. Source addresses must be stable prior to the clock $H \rightarrow L$ transition to allow time to access the source data before the latches close. The A address may then be changed. The \mathbf{B} address could be changed if it is not a destination; i.e. if data is not being written back into the RAM. Normally A and B are not changed during the clock LOW time.
4. The set-up time prior to the clock $L \rightarrow H$ transition is to allow time for data to be accessed, passed through the ALU, and returned to the RAM. It includes all the time from stable A and B addresses to the clock $L \rightarrow H$ transition, regardless of when the clock $H \rightarrow L$ transition occurs.
5. See the last page of this specification for Group A subgroup testing information.

Ordering Information

Read Modify- Write Cycle (ns)	Ordering Code	Package Type	Operating Range
31	CY2901CPC	P17	Commercial Commercial
31	CY2901CDC	D18	C
CY2901CDMB	D18	Military	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
\mathbf{V}_{OH}	$1,2,3$
\mathbf{V}_{OL}	$1,2,3$
\mathbf{V}_{IH}	$1,2,3$
\mathbf{V}_{IL}	$1,2,3$
$\mathrm{I}_{\mathbf{I H}}$	$1,2,3$
$\mathrm{I}_{\mathbf{I L}}$	$1,2,3$
\mathbf{I}_{OH}	$1,2,3$
I_{OL}	$1,2,3$
I_{OZ}	$1,2,3$
$\mathrm{I}_{\mathbf{S C}}$	$1,2,3$
I_{CC}	$1,2,3$

Cycle Time and Clock Characteristics

Parameters	Subgroups
Minimum Clock LOW Time	$7,8,9,10,11$
Minimum Clock HIGH Time	$7,8,9,10,11$

Combinational Propagation Delays

Parameters	Subgroups
From A, B Address to Y	7,8,9,10,11
From A, B Address to F3	7,8,9,10,11
From A, B Address to $\mathrm{C}_{\mathrm{n}}+4$	7,8,9,10,11
From A, B Address to $\overline{\mathbf{G}}, \overline{\mathbf{P}}$	7,8,9,10,11
From A, B Address to F $=0$	7,8,9,10,11
From A, B Address to OVR	7,8,9,10,11
From A, B Address to RAM ${ }_{0,3}$	7,8,9,10,11
From D to Y	7,8,9,10,11
From D to F3	7,8,9,10,11
From D to $\mathrm{C}_{\mathrm{n}}+4$	7,8,9,10,11
From D to $\overline{\mathbf{G}}, \overline{\mathbf{P}}$	7,8,9,10,11
From D to F $=0$	7,8,9,10,11
From D to OVR	7,8,9,10,11
From D to RAM ${ }_{0,3}$	7,8,9,10,11

Combinational Propagation Delays (Continued)

Parameters	Subgroups
From C_{n} to Y	7,8,9,10,11
From C_{n} to F3	7,8,9,10,11
From C_{n} to $\mathrm{C}_{\mathrm{n}+4}$	7,8,9,10,11
From C_{n} to $\mathrm{F}=0$	7,8,9,10,11
From C_{n} to OVR	7,8,9,10,11
From C_{n} to $\mathrm{RAM}_{0,3}$	7,8,9,10,11
From I_{012} to Y	7,8,9,10,11
From I_{012} to F_{3}	7,8,9,10,11
From I_{012} to $\mathrm{C}_{\mathrm{n}}+4$	7,8,9,10,11
From I_{012} to $\overline{\mathrm{G}}, \overline{\mathbf{P}}$	7,8,9,10,11
From I_{012} to $\mathrm{F}=0$	7,8,9,10,11
From I_{012} to OVR	7,8,9,10,11
From I_{012} to $\mathrm{RAM}_{0,3}$	7,8,9,10,11
From I_{345} to Y	7,8,9,10,11
From I 345 to F_{3}	7,8,9,10,11
From I_{345} to $\mathrm{C}_{\mathrm{n}}+4$	7,8,9,10,11
From I 345 to $\overline{\mathbf{G}}, \overline{\mathbf{P}}$	7,8,9,10,11
From I_{345} to $\mathrm{F}=0$	7,8,9,10,11
From I_{345} to OVR	7,8,9,10,11
From \mathbf{I}_{345} to $\mathrm{RAM}_{0,3}$	7,8,9,10,11
From I_{678} to Y	7,8,9,10,11
From I_{678} to $\mathrm{RAM}_{0,3}$	7,8,9,10,11
From I_{678} to $\mathrm{Q}_{0,3}$	7,8,9,10,11
From A Bypass ALU to Y $(\mathbf{I}=2 \mathbf{X X})$	7,8,9,10,11
From Clock \sim to Y	7,8,9,10,11
From Clock \sim to F_{3}	7,8,9,10,11
From Clock \sim to $\mathrm{C}_{\mathrm{n}+4}$	7,8,9,10,11
From Clock \sim to $\overline{\mathbf{G}}, \overline{\mathbf{P}}$	7,8,9,10,11
From Clock \sim to $\mathrm{F}=0$	7,8,9,10,11
From Clock - to OVR	7,8,9,10,11
From Clock \sim to RAM 0,3	7,8,9,10,11
From Clock \sim to $\mathrm{Q}_{0,3}$	7,8,9,10,11

Set-up and Hold Times Relative to Clock (CP) Input

Parameters	Subgroups
A, B Source Address Set-up Time Before $\mathbf{H} \rightarrow \mathrm{L}$	7,8,9,10,11
A, B Source Address Hold Time After H \rightarrow L	7,8,9,10,11
A, B Source Address Set-up Time Before L $\rightarrow \mathrm{H}$	7,8,9,10,11
A, B Source Address Hold Time After $\mathbf{L} \rightarrow \mathbf{H}$	7,8,9,10,11
B Destination Address Set-up Time Before H \rightarrow L	7,8,9,10,11
B Destination Address Hold Time After H \rightarrow L	7,8,9,10,11
B Destination Address Set-up Time Before L \rightarrow H	7,8,9,10,11
B Destination Address Hold Time After L $\rightarrow \mathrm{H}$	7,8,9,10,11
D Set-up Time Before L $\rightarrow \mathrm{H}$	7,8,9,10,11

Parameters	Subgroups
D Hold Time After L \rightarrow H	7,8,9,10,11
C_{n} Set-up Time Before $\mathrm{L} \rightarrow \mathrm{H}$	7,8,9,10,11
C_{n} Hold Time After $\mathrm{L} \rightarrow \mathrm{H}$	7,8,9,10,11
I_{012} Set-up Time Before L $\rightarrow \mathrm{H}$	7,8,9,10,11
I_{012} Hold Time After L $\rightarrow \mathrm{H}$	7,8,9,10,11
I 345 Set-up Time Before $\mathrm{L} \rightarrow \mathrm{H}$	7,8,9,10,11
I_{345} Hold Time After L $\rightarrow \mathrm{H}$	7,8,9,10,11
I_{678} Set-up Time Before $\mathrm{H} \rightarrow \mathrm{L}$	7,8,9,10,11
I 678 Hold Time After $\mathrm{H} \rightarrow \mathrm{L}$	7,8,9,10,11
I_{678} Set-up Time Before L $\rightarrow \mathrm{H}$	7,8,9,10,11
I_{678} Hold Time After $\mathrm{L} \rightarrow \mathrm{H}$	7,8,9,10,11
RAM_{0}, RAM $_{3}, \mathrm{Q}_{0}, \mathrm{Q}_{3}$ Set-up Time Before L $\rightarrow \mathbf{H}$	7,8,9,10,11
RAM $_{0}$, RAM $_{3}, \mathrm{Q}_{0}, \mathrm{Q}_{3}$ Hold Time After $\mathbf{L} \rightarrow \mathbf{H}$	7,8,9,10,11

Document \# : 38-00008-B

CMOS Micro Program Sequencers

Features

- Fast
- CY2909A/11A has a 40 ns (min.) clock to output cycle time; commercial
- CY2909/11 has a 40 ns (min.) clock to output cycle time; military
- Low power
- ICC (max.) $=70 \mathbf{m A}$ commercial
$-\mathbf{I}_{\mathbf{C C}}($ max. $)=\mathbf{9 0} \mathbf{m A}$ military
- VCC margin
$-5 V \pm 10 \%$
- All parameters guaranteed over commercial and military operating temperature range
- Expandable

Infinitely expandable in 4-bit increments

- ESD protection Capable of withstanding greater than 2000 V static discharge voltage
- Pin compatible and functional equivalent to AMD AM2909A/AM2911A

Description

The CY2909A and CY2911A are highspeed, four-bit wide address sequencers intended for controlling the sequence of execution of microinstructions contained in microprogram memory. They may be connected in parallel to expand the address width in 4 bit increments. Both devices are implemented in high performance CMOS for optimum speed and power.
The CY2909A can select an address from any of four sources. They are:

1) a set of four external direct inputs $\left.\left(D_{i}\right) ; 2\right)$ external data stored in an internal register (\mathbf{R}_{i}); 3) a four word deep push/pop stack; or 4) a program counter register (which usually contains the last address plus one). The push/pop stack includes control lines so that it can efficiently execute nested subroutine linkages. Each of the four outputs $\left(\mathrm{Y}_{\mathrm{i}}\right)$ can be OR'ed with an external input for conditional skip or branch instructions. A ZERO input line forces the outputs to all zeros. The outputs are three state, controlled by the Output Enable ($\overline{\mathrm{OE}}$) input.
The CY2911A is an identical circuit to the CY2909A, except the four OR inputs are removed and the D and R inputs are tied together. The CY2911A is available in a 20 -pin, 300 -mil package. The CY2909 is available in a 28 -pin, 600-mil package.

Logic Block Diagram

Pin Configurations

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential $\ldots-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State.
-0.5 V to +7.0 V
DC Input Voltage -3.0 V to +7.0 V
Output Current, into Outputs (Low) .30 mA

Static Discharge Voltage . > 2001V
(per MIL-STD-883 Method 3015)
Latch-Up Current . $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[3]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range ${ }^{[4]}$

Parameters	Description	Test Conditions		Min.	Max.	Units
$\mathrm{VOH}^{\text {O}}$	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-2.6 \mathrm{~mA}$ (Comm.)		2.4		V
		$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$ (Mil.)		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=16.0 \mathrm{~mA}$			0.4	V
V_{IH}	Input High Voltage			2.0	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage			-2.0	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	GND $\leq \mathrm{V}_{\text {I }} \leq \mathrm{V}_{\text {CC }}$		-10	+10	$\mu \mathrm{A}$
Ioz	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$ Output Disabled		-20	$+20$	$\mu \mathrm{A}$
Ios	Output Short Circuit Current ${ }^{[1]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max.	$\mathrm{V}_{\text {OUT }}=\mathbf{G N D}$	-30	-85	mA
ICC	$V_{C C}$ Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Commercial		70	mA
			Military		90	

Capacitance ${ }^{[2]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	5	pF
CoUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	7	

Notes:

1. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
2. Tested initially and after any design or process changes that may affect these parameters.
3. T_{A} is the "instant on" case temperature.
4. See the last page of this specification for Group A subgroup testing information.

AC Test Loads and Waveforms

Figure 1a

0066-7

Figure 2

	Commercial	Military
R_{1}	254Ω	258Ω
R_{2}	187Ω	216Ω

Switching Characteristics Over Operating Range ${ }^{4]}$

	$\begin{aligned} & \text { 2909A } \\ & \text { 2911A } \end{aligned}$		$\begin{aligned} & \text { 2909A } \\ & \text { 2911A } \end{aligned}$		Units
	Commercial		Military		
Minimum Clock Low Time	20		20		ns
Minimum Clock High Time	20		20		ns
MAXIMUM COMBINATIONAL PROPAGATION DELAYS					
From Input To:	Y	$\mathrm{C}_{\mathrm{N}}+4$	Y	$\mathrm{C}_{\mathrm{N}}+4$	ns
D_{i}	17	22	20	25	ns
$\mathrm{S}_{0}, \mathrm{~S}_{1}$	29	34	29	34	ns
$\mathrm{OR}_{\mathrm{i}} \mathrm{CY} 2909 \mathrm{~A}$	17	22	20	25	ns
C_{N}	-	14	-	16	ns
ZERO	29	34	30	35	ns
$\overline{\mathrm{OE}}$ Low to Output	25	-	25	-	ns
$\overline{\mathrm{OE}}$ High to High $\mathrm{Z}^{[5]}$	25	-	25	-	ns
Clock High, $\mathrm{S}_{0}, \mathrm{~S}_{1}=\mathrm{LH}$	39	44	45	50	ns
Clock High, $\mathrm{S}_{0}, \mathrm{~S}_{1}=\mathrm{LL}$	39	44	45	50	ns
Clock High, $\mathrm{S}_{0}, \mathrm{~S}_{1}=\mathrm{HL}$	44	49	53	58	ns
MINIMUM SET-UP AND HOLD TIMES (All Times Relative to Clock LOW to HIGH Transition)					
From Input	Set-up	Hold	Set-up	Hold	
$\overline{\mathrm{RE}}$	19	4	19	5	ns
$\mathrm{R}_{\mathrm{i}}{ }^{[6]}$	10	4	12	5	ns
Push/Pop	25	4	27	5	ns
FE	25	4	27	5	ns
C_{N}	18	4	18	5	ns
D_{i}	25	0	25	0	ns
$\mathrm{OR}_{\mathrm{i}}(\mathrm{CY} 2909 \mathrm{~A})$	25	0	25	0	ns
$\mathrm{S}_{0}, \mathrm{~S}_{1}$	25	0	29	0	ns
$\overline{\text { ZERO }}$	25	0	29	0	ns

Notes:
5. Output Loading as in Figure 1 b.
6. R_{i} and D_{i} are internally connected on the CY2911A. Use R_{i} set-up and hold times for D_{i} inputs.

Switching Waveforms

Ordering Information

Ordering Code	Package Type	Operating Range
CY2909APC	P15	Commercial
CY2909ADC	D16	
CY2909ALC	L64	
CY2909ADMB	D16	Military
CY2909ALMB	L64	

Ordering Code	Package Type	Operating Range
CY2911APC	P5	Commercial
CY2911ADC	D6	
CY2911ALC	L61	
CY2911ADMB	D6	Military
CY2911ALMB	L61	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{OS}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
Minimum Clock Low Time	7,8,9,10,11
Minimum Clock High Time	7,8,9,10,11
MAXIMUM COMBINATIONAL PROPAGATION DELAYS	
D_{i} to Y	7,8,9,10,11
D_{i} to $\mathrm{C}_{\mathrm{N}+4}$	7,8,9,10,11
S_{0}, S_{1} to Y	7,8,9,10,11
$\mathrm{S}_{0}, \mathrm{~S}_{1}$ to C	7,8,9,10,11
OR ${ }_{\text {i }}$ (CY2909A)	7,8,9,10,11
$\mathrm{OR}_{\mathrm{i}}(\mathrm{CY} 2909 \mathrm{~A})$ to	7,8,9,10,11
C_{N} to $\mathrm{C}_{\mathrm{N}+4}$	7,8,9,10,11
$\overline{\text { ZERO }}$ to $\mathrm{C}_{\mathrm{N}+4}$	7,8,9,10,11
Clock High, $\mathrm{S}_{0}, \mathrm{~S}_{1}=\mathrm{LH}$ to Y	7,8,9,10,11
Clock High, $\mathrm{S}_{0}, \mathrm{~S}_{1}=\mathrm{LH}$ to $\mathrm{C}_{\mathrm{N}+4}$	7,8,9,10,11
Clock High, $\mathrm{S}_{0}, \mathrm{~S}_{\mathbf{1}}=\mathrm{LL}$ to Y	7,8,9,10,11
Clock High, $\mathrm{S}_{0}, \mathrm{~S}_{1}=\mathrm{LL}$ to $\mathrm{C}_{\mathrm{N}+4}$	7,8,9,10,11
Clock High, $\mathrm{S}_{0}, \mathrm{~S}_{1}=\mathrm{HL}$ to Y	7,8,9,10,11
Clock High, $\mathrm{S}_{0}, \mathrm{~S}_{1}=\mathrm{HL}$ to $\mathrm{C}_{\mathrm{N}+4}$	7,8,9,10,11

Parameters	Subgroups
MINIMUM SET-UP AND HOLD TIMES	
$\overline{\mathrm{RE}}$ Set-up Time	7,8,9,10,11
$\overline{\mathrm{RE}}$ Hold Time	7,8,9,10,11
Push/Pop Set-up Time	7,8,9,10,11
Push/Pop Hold Time	7,8,9,10,11
FE Set-up Time	7,8,9,10,11
FE Hold Time	7,8,9,10,11
C_{N} Set-up Time	7,8,9,10,11
C_{N} Hold Time	7,8,9,10,11
D_{i} Set-up Time	7,8,9,10,11
D_{i} Hold Time	7,8,9,10,11
OR_{i} (CY2909A) Set-up Time	7,8,9,10,11
OR_{i} (CY2909A) Hold Time	7,8,9,10,11
$\mathrm{S}_{0}, \mathrm{~S}_{1}$ Set-up Time	7,8,9,10,11
$\mathrm{S}_{0}, \mathrm{~S}_{1}$ Hold Time	7,8,9,10,11
$\overline{\text { ZERO}}$ Set-up Time	7,8,9,10,11
ZERO Hold Time	7,8,9,10,11

Features

- Fast
- CY2910AC has a 50 ns (min.) clock cycle; commercial
- CY2910AM has a 51 ns (min.) clock cycle; military
- Low power
$-I_{C C}$ (max.) $=170 \mathrm{~mA}$
- VCC Margin 5V $\pm 10 \%$ commercial and military
- Sixteen powerful microinstructions
- Three output enable controls for three-way branch
- Twelve-bit address word
- Four sources for addresses: microprogram counter (MPC), branch address bus, 9 -word stack, internal holding register
- Internal 9 -word by $\mathbf{1 2 - b i t}$ stack The internal stack can be used for subroutine return address or data storage
- 12-bit Internal loop counter
- ESD protection Capable of withstanding over 2000 volts static discharge voltage
- Pin compatible and functional equivalent to Am2910A

Functional Description

The CY2910A is a stand-alone microprogram controller that selects, stores, retrieves, manipulates and tests addresses that control the sequence of execution of instructions stored in an external memory. All addresses are 12-bit binary values that designate an absolute memory location.
The CY2910A, as illustrated in the block diagram, consists of a 9 -word by 12-bit LIFO (Last-In-First-Out) stack and SP (Stack Pointer), a 12-bit RC (Register/Counter), a 12-bit MPC (Microprogram Counter) and incrementer, a 12-bit wide by 4 -input multiplexer
and the required data manipulation and control logic.
The operation performed is determined by four input instruction lines (I0-I3) that in turn select the (internal) source of the next micro-instruction to be fetched. This address is output on the Y0-Y11 pins. Two additional inputs ($\overline{\mathrm{CC}}$ and $\overline{\mathrm{CCEN}}$) are provided that are examined during certain instructions and enable the user to make the execution of the instruction either unconditional or dependent upon an external test.
The CY2910A is a pin compatible, functional equivalent, improved performance replacement for the Am2910A.
The CY2910A is fabricated using an advanced 1.2 micron CMOS process that eliminates latchup, results in ESD protection of over 2000 volts and achieves superior performance and low power dissipation.

Logic Block Diagram

Pin Configuration

Top View

Selection Guide

Clock Cycle (Min.) in ns	Stack Depth	Operating Range	Part Number
50	9 words	Commercial	CY2910AC
51	9 words	Military	CY2910AM

Maximum Ratings
(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature ${ }^{\text {a }}-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Ambient Temperature with	Static Discharge Voltage . $>2001 \mathrm{~V}$ (Per MIL-STD-883 Method 3015)		
Power Applied . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Latchup Curre	tputs).	$>200 \mathrm{~mA}$
Supply Voltage to Ground Potential (Pin 10 to Pin 30) -0.5 V to +7.0 V	Operating Range		
DC Voltage Applied to Outputs in High Z State. -0.5 V to +7.0 V	Range	Ambient Temperature	$\mathrm{V}_{\mathbf{C C}}$
DC Input Voltage - 3.0V to +7.0 V	Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Output Current into Outputs (Low) 30 mA	Military ${ }^{[3]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Commercial and Military Operating Range ${ }^{[4]}$
V_{CC} Min. $=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}$ Max. $=5.5 \mathrm{~V}$

Parameter	Description	Test Condition	Min.	Max.	Units
VOH	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-1.6 \mathrm{~mA}$	2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$		0.5	V
$\mathrm{V}_{\mathbf{I H}}$	Input HIGH Voltage		2.0	V_{CC}	V
V_{IL}	Input LOW Voltage		-3.0	0.8	V
$\mathbf{I}_{\mathbf{I H}}$	Input HIGH Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$		10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input LOW Current	$\mathbf{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{GND}$		-10	$\mu \mathrm{A}$
$\mathrm{IOH}^{\text {H }}$	Output HIGH Current	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{V}_{\text {IH }}=2.4 \mathrm{~V}$	-1.6		mA
I_{OL}	Output LOW Current	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$	8		mA
I_{O}	Output Leakage Current	$\begin{aligned} & \mathbf{v}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathbf{v}_{\mathrm{OUT}}=\mathrm{GND} / \mathbf{v}_{\mathrm{CC}} \end{aligned}$	-40	+40	$\mu \mathrm{A}$ $\mu \mathrm{A}$
ISC	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		-85	mA
ICC	Supply Current	$\mathrm{V}_{\text {CC }}=$ Max.		170	mA

Capacitance ${ }^{[2]}$

Parameters	Description	Test Conditions	Max.	Units
C IN $^{\text {IN }}$	Input Capacitance	$\mathbf{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	8	pF
COUT	Output Capacitance	$\mathbf{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Notes:

1. Not more than one output should be tested at a time. Duration of the short circuit should not exceed one second.
2. Tested initially and after any design or process changes that may affect these parameters.

Output Load for AC Performance Characteristics

0040-4
Notes:
$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ includes scope probe, writing and stray capacitance.
$C_{L}=5 \mathrm{pF}$ for output disable tests.
3. T_{A} is the "instant on" case temperature.
4. See the last page of this specification for Group A subgroup testing information.

Switching Waveforms

Guaranteed AC Performance Characteristics

The tables below specify the guaranteed AC performance of the CY2910A over the commercial ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) and the military ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) temperature ranges with V_{CC} varying from 4.5 V to 5.5 V . All times are in nanoseconds and are measured between the 1.5 V signal levels.

The inputs switch between 0 V and 3 V with signal transition rates of 1 Volt per nanosecond. All outputs have maximum DC current loads.

Clock Requirements ${ }^{[1,4]}$

	Commercial	Military
Minimum Clock LOW	20	25
Minimum Clock HIGH	20	25
Minimum Clock Period I $=14$	50	51
Minimum Clock Period $\mathrm{I}=8,9,15$ (Note 2)	50	50

Combinational Propagation Delays. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}{ }^{[4]}$

To Output	Commercial			Military		
From Input	Y	PL, $\overline{\text { VECT, }} \overline{\text { MAP }}$	$\overline{\text { FULL }}$	Y	$\overline{\text { PL, }} \overline{\text { VECT, }}, \overline{\text { MAP }}$	FULL
D0-D11	20	-	-	25	$\overline{3}$	-
IO-I3	35	30	-	40	35	-
$\overline{\text { CC }}$	30	-	-	36	-	-
CCEN	30	-	-	36	-	-
CP $=8,9,15$ (Note 2)	40	-	31	-	-	35
CP All Other I	40	-	31	46	-	35
$\overline{\text { OE }}$	25	-	-	25	-	-
(Note 3)	27	-	-	30	-	

Minimum Set-up and Hold Times Relative to clock LOW to HIGH Transition. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}{ }^{[4]}$

	Commercial		Military	
Input	Set-up	Hold	Set-up	Hold
DI \rightarrow RC	16	0	16	0
DI \rightarrow MPC	30	0	30	0
I0-I3	35	0	38	0
$\overline{\text { CC }}$	24	0	35	0
$\overline{\text { CCEN }}$	24	0	35	0
CI	18	0	18	0
$\overline{\text { RLD }}$	19	0	20	0

Notes:

1. A dash indicates that a propagation delay path or set-up time does not exist.
2. These instructions are dependent upon the register/counter. Use the shorter delay times if the previous instruction either does not change the register/counter or could only decrement it. Use the longer delay if the instruction prior to the clock was 4 or 12 or if RLD was LOW.
3. The enable/disable times are measured to a 0.5 Volt change on the output voltage level with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.
4. See the last page of this specification for Group A subgroup testing information.

Table of Instructions

$\mathrm{I}_{3}-\mathrm{I}_{0}$	MNEMONIC	NAME	$\begin{aligned} & \text { REG// } \\ & \text { CNTR } \\ & \text { CON- } \\ & \text { TENTS } \end{aligned}$	RESULT					
				$\stackrel{\text { FAIL }}{\overline{\mathbf{C C E N}}=\mathbf{L} \text { and } \overline{\mathrm{CC}}=\mathbf{H}}$		$\begin{gathered} \text { PASS } \\ \overline{\mathrm{CCEN}}=\mathrm{H} \text { or } \overline{\mathrm{CC}}=\mathrm{L} \end{gathered}$		REG/ CNTR	ENABLE
				Y	STACK	Y	STACK		
0	JZ	Jump Zero	X	0	Clear	0	Clear	Hold	PL
1	CJS	Cond JSB PL	X	PC	Hold	D	Push	Hold	PL
2	JMAP	Jump Map	X	D	Hold	D	Hold	Hold	Map
3	CJP	Cond Jump PL	X	PC	Hold	D	Hold	Hold	PL
4	PUSH	Push/Cond LD CNTR	X	PC	Push	PC	Push	(Note 1)	PL
5	JSRP	Cond JSB R/PL	X	R	Push	D	Push	Hold	PL
6	CJV	Cond Jump Vector	X	PC	Hold	D	Hold	Hold	Vect
7	JRP	Cond Jump R/PL	X	R	Hold	D	Hold	Hold	PL
8	RFCT	Repeat Loop,$\mathrm{CNTR} \neq 0$	$\neq 0$	F	Hold	F	Hold	Dec	PL
			$=0$	PC	POP	PC	Pop	Hold	PL
9	RPCT	$\begin{aligned} & \text { Repeat PL, } \\ & \text { CNTR } \neq 0 \end{aligned}$	$\neq 0$	D	Hold	D	Hold	Dec	PL
			$=0$	PC	Hold	PC	Hold	Hold	PL
10	CRTN	Cond RTN	X	PC	Hold	F	Pop	Hold	PL
11	CJPP	Cond Jump PL \& Pop	X	PC	Hold	D	Pop	Hold	PL
12	LDCT	LD Cntr \& Continue	X	PC	Hold	PC	Hold	Load	PL
13	LOOP	Test End Loop	X	F	Hold	PC	Pop	Hold	PL
14	CONT	Continue	X	PC	Hold	PC	Hold	Hold	PL
15	TWB	Three-Way Branch	$\neq 0$	F	Hold	PC	Pop	Dec	PL
			$=0$	D	Pop	PC	Pop	Hold	PL

Notes:

1. If $\overline{C C E N}=\mathrm{L}$ and $\overline{\mathrm{CC}}=\mathbf{H}$, hold; else load.

$$
\mathrm{H}=\mathrm{HIGH} \quad \mathrm{~L}=\text { LOW } \quad \mathrm{X}=\text { Don't Care }
$$

Ordering Information

Clock Cycle (ns)	Ordering Code	Package Type	Operating Range
50	CY2910ADC	D18	
	CY2910AJC	J67	
	CY2910ALC	L67	
	CY2910APC	P17	
51	CY2910ADMB	D18	
	CY2910ALMB	L67	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IH}	$1,2,3$
I_{IL}	$1,2,3$
I_{OH}	$1,2,3$
I_{OL}	$1,2,3$
I_{OZ}	$1,2,3$
I_{SC}	$1,2,3$
I_{CC}	$1,2,3$

Clock Requirements

Parameters	Subgroups
Minimum Clock LOW	$7,8,9,10,11$

Combinational Propagation Delays

Parameters	Subgroups
From D0-D11 to Y	$7,8,9,10,11$
From I0-I3 to Y	$7,8,9,10,11$
From I0-I3 to $\overline{\text { PL, } \overline{\text { VECT, }} \overline{\text { MAP }}}$	$7,8,9,10,11$
From $\overline{\text { CC }}$ to Y	$7,8,9,10,11$
From $\overline{\text { CCEN }}$ to Y	$7,8,9,10,11$
From CP (I = 8, 9, 15) to FULL	$7,8,9,10,11$
From CP (All Other I) to Y	$7,8,9,10,11$
From CP (All Other I) to $\overline{\text { FULL }}$	$7,8,9,10,11$

Document \#: 38-00010-B

Minimum Set-up and Hold Times

Parameters	Subgroups
DI \rightarrow RC Set-up Time	$7,8,9,10,11$
DI \rightarrow RC Hold Time	$7,8,9,10,11$
DI \rightarrow MPC Set-up Time	$7,8,9,10,11$
DI \rightarrow MPC Hold Time	$7,8,9,10,11$
I0-I3 Set-up Time	$7,8,9,10,11$
I0-I3 Hold Time	$7,8,9,10,11$
$\overline{\text { CC Set-up Time }}$	$7,8,9,10,11$
$\overline{\text { CC Hold Time }}$	$7,8,9,10,11$
$\overline{\text { CCEN Set-up Time }}$	$7,8,9,10,11$
$\overline{\text { CCEN Hold Time }}$	$7,8,9,10,11$
CI Set-up Time	$7,8,9,10,11$
CI Hold Time	$7,8,9,10,11$
$\overline{\text { RLD Set-up Time }}$	$7,8,9,10,11$
$\overline{\text { RLD Hold Time }}$	$7,8,9,10,11$

Features

- $1.2 / 2 \mathrm{MHz}$ data rate
- Fully TTL compatible
- Independent asynchronous inputs and outputs
- Direct replacement for PMOS 3341
- Expandable in word length and width
- CMOS for optimum speed/ power
- Capable of withstanding greater than 2000 V electrostatic discharge

Functional Description

The 3341 is a 64 -word x 4-bit First-In First-Out (FIFO) Serial Memory. The inputs and outputs are completely independent (no common clocks) making the 3341 ideal for asynchronous buffer applications.
Control signals are provided for both vertical and horizontal expansion.
The 3341 is manufactured using Cypress CMOS technology and is available in both ceramic and plastic packages.

Data Input

The four bits of data on the D_{0} through D_{3} inputs are entered into the first location when both Input Ready (IR) and Shift In (SI) are HIGH. This causes IR to go LOW but data will stay locked in the first bit location until both IR and SI are LOW. Then data will propagate to the second bit location, provided the location is empty. When data is transferred, IR will go HIGH indicating that the device is ready to accept new data. If the memory is full, IR will stay LOW.

Data Transfer

Once data is entered into the second cell, the transfer of any full cell to the adjacent (downstream) empty cell is automatic, activated by an on-chip control. Thus, data will stack up at the end of the device while empty locations will "bubble" to the front. t ${ }^{\text {BT }}$ defines the time required for the first data to travel from the input to the output of a previously empty device, or for the first empty space to travel from the output to the input of a previously full device.

Data Output

When data has been transferred into the last cell, Output Ready (OR) goes

HIGH, indicating the presence of valid data at the output pins Q_{0} through Q_{3}. The transfer of data is initiated when both the Output Ready output from the device and the Shift Out (SO) input to the device are HIGH. This causes OR to go LOW; output data, however, is maintained until both OR and SO are LOW. Then the content of the adjacent (upstream) cell (provided it is full) will be transferred into the last cell, causing OR to go HIGH again. If the memory has been emptied, OR will stay LOW.
Input Ready and Output Ready may also be used as status signals indicating that the FIFO is completely full (Input Ready stays LOW for at least $t_{B T}$) or completely empty (Output Ready stays LOW for at least t_{BT}).

Reset

When Master Reset ($\overline{\mathrm{MR}}$) goes LOW, the control logic is cleared, and the data outputs enter a LOW state. When $\overline{M R}$ returns HIGH, Output Ready (OR) stays LOW, and Input Ready (IR) goes HIGH if Shift In (SI) was LOW.

Logic Block Diagram

Pin Configuration

0004-2
*Internally not connected

0004-1

Selection Guide

		3341	$3341-2$
Maximum Operating Frequency		1.2 MHz	2.0 MHz
Maximum Operating Current (mA)	Commercial	45	45
	Military	60	60

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature \qquad
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 16 to Pin 8) \qquad .-0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State.
.-0.5 V to +7.0 V
DC Input Voltage
$\ldots \ldots \ldots \ldots \ldots .-3.0 \mathrm{~F}$ to +7.0 V
Output Current, into Outputs (Low)
.20 mA

Static Discharge Voltage $>2001 \mathrm{~V}$ (per MIL-STD-883 Method 3015)
Latchup Current
$>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{S S}}$	$\mathbf{V}_{\mathbf{D D}}$	$\mathbf{V}_{\mathbf{G G}}{ }^{*}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$	GND	NC
Military ${ }^{[3]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$	GND	NC

*Internally Not Connected.

Electrical Characteristics Over the Operating Range ${ }^{[4]}$

Parameters	Description	Test Conditions		Min.	Max.	Units
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{SS}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-0.3 \mathrm{~mA}$		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{SS}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$			0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.0	$\mathrm{V}_{\text {SS }}$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	$\mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\text {SS }}$		-10	$+10$	$\mu \mathrm{A}$
IOS	Output Short Circuit Current ${ }^{[1]}$	$\mathrm{V}_{\text {SS }}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {DD }}$			-90	mA
IDD	Power Supply Current	$\begin{aligned} & \mathrm{V}_{\text {SS }}=\text { Max. } \\ & \text { IOUT }=0 \mathrm{~mA} \end{aligned}$	Commercial		45	mA
			Military		60	
I_{GG}	$\mathrm{V}_{\text {GG }}$ Current				0	mA

Capacitance ${ }^{[2]}$

Parameters	Description	Test Conditions	Max.	Units
C $_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	7	pF
COUT	Output Capacitance	$\mathrm{V}_{\mathbf{S S}}=5.0 \mathrm{~V}$	10	

Notes:

1. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
2. Tested initially and after any design or process changes that may affect these parameters.
3. T_{A} is the "instant on" case temperature.
4. See the last page of this specification for Group A subgroup testing information.

AC Test Loads and Waveforms

0004-5

Equivalent to:
THEVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[4,5]}$

Parameters	Description	Test Conditions	3341		3341-2		Units
			Min.	Max.	Min.	Max.	
$\mathrm{f}_{\text {MAX }}$	Operating Frequency	Note 6		1.2		2	MHz
tPHSI	SI HIGH Time		80		80		ns
tPLSI	SI LOW Time		80		80		ns
$t_{\text {D }}$	Data Setup to SI		0		0		ns
$\mathrm{t}_{\text {HSI }}$	Data Hold from SI		200		100		ns
$\mathrm{t}_{\mathbf{I R}+}$	Delay, SI HIGH to IR LOW		20	350	20	160	ns
tir-	Delay, SI LOW to IR HIGH		20	450	20	200	ns
tPHSO	SO HIGH Time		80		80		ns
tPLSO	SO LOW Time		80		80		ns
tor +	Delay, SO HIGH to OR LOW		20	370	20	160	ns
tor -	Delay, SO LOW to OR HIGH		20	450	20	200	ns
t_{DA}	Data Setup to OR HIGH		0		0		ns
t_{DH}	Data Hold from OR LOW		75		20		ns
t_{BT}	Bubble through Time			1000		500	ns
$\mathrm{t}_{\text {MRW }}$	$\overline{M R}$ Pulse Width		400		200		ns
tosi	MR HIGH to SI HIGH		30		30	.	ns
tDOR	$\overline{M R}$ LOW to OR LOW			400		200	ns
$\mathrm{t}_{\text {DIR }}$	MR LOW to IR HIGH			400		200	ns

Notes:
5. Test conditions assume signal transitions of 10 ns or less. Timing \quad 6. $1 / \mathrm{f}_{\mathrm{MAX}}>\mathrm{t}_{\mathrm{PHSI}}+\mathrm{t}_{\mathrm{IR}}-, 1 / \mathrm{f}_{\mathrm{MAX}}>\mathrm{t}_{\mathrm{PHSO}}+\mathrm{t}_{\mathrm{OR}}-$. reference levels of 1.5 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance.

Switching Waveforms

Data In Timing Diagram

Data Out Timing Diagram

Switching Waveforms (Continued)

Master Reset Timing Diagram

0004-8
Ordering Information

Ordering Code (1.2 MHz)	Package Type	Operating Range
CY3341PC	P1 CY3341DC	Commercial
CY3341DMB	D2	Military

Ordering Code (2 MHz)	Package Type	Operating Range
CY3341-2PC	P1	Commercial
CY3341-2DC	D2	Military
CY3341-2DMB	D2	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{DD}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
$f_{\text {MAX }}$	$7,8,9,10,11$
tPHSI	$7,8,9,10,11$
t PLSI	$7,8,9,10,11$
$t_{\text {DD }}$	$7,8,9,10,11$
$t_{\text {HSI }}$	$7,8,9,10,11$
$t_{\text {IR }}+$	$7,8,9,10,11$
$t_{\text {IR }}-$	$7,8,9,10,11$
$t_{\text {PHSO }}$	$7,8,9,10,11$
$t_{\text {PLSO }}$	$7,8,9,10,11$
$t_{\text {OR }}$	$7,8,9,10,11$
$t_{\text {OR }}-$	$7,8,9,10,11$
$t_{\text {DA }}$	$7,8,9,10,11$
$t_{\text {DH }}$	$7,8,9,10,11$
$t_{\text {BT }}$	$7,8,9,10,11$
$t_{\text {MRW }}$	$7,8,9,10,11$
$t_{\text {DSI }}$	$7,8,9,10,11$
$t_{\text {DOR }}$	$7,8,9,10,11$
$t_{\text {DIR }}$	$7,8,9,10,11$

Document \# : 38-00011-B

Cascadeable 64×4 FIFO and 64×5 FIFO

Features

- 64×4 (CY7C401 and CY7C403) 64×5 (CY7C402 and CY7C404) High speed first-in first-out memory (FIFO)
- Processed with high-speed CMOS for optimum speed/power
- 25 MHz data rates available on CY7C403 and CY7C404
- 50 ns bubble-through time25 MHz
- Expandable in word width and/or length
- 5 volt power supply $\pm 10 \%$ tolerance both commercial and military
- Independent asynchronous inputs and outputs
- TTL compatible interface
- Output enable function available on CY7C403 and CY7C404
- Capable of withstanding greater than 2000 V electrostatic discharge
- Pin compatible with MMI 67401A/67402A

Functional Description

The CY7C401 and CY7C403 are asynchronous first-in first-out memories (FIFOs) organized as 64 four bit words. The CY7C402 and CY7C404 are similar FIFOs organized as 64 five bit words. Both the CY7C403 and CY7C404 have an Output Enable (OE) function.

The devices accept $4 / 5$ bit words at the data input ($\mathrm{DI}_{0}-\mathrm{DI}_{n}$) under the control of the Shift In (SI) input. The stored words stack up at the output $\left(\mathrm{DO}_{0}-\mathrm{DO}_{\mathrm{n}}\right)$ in the order they were entered. A read command on the Shift Out (SO) input causes the next to last word to move to the output and all data shifts down once in the stack. The Input Ready (IR) signal acts as a flag to indicate when the input is ready to accept new data (HIGH), to indicate when the FIFO is full (LOW), and to provide a signal for cascading. The

Output Ready (OR) signal is a flag to indicate the output contains valid data (HIGH), to indicate the FIFO is empty (LOW), and to provide a signal for cascading.
Parallel expansion for wider words is accomplished by logically ANDing the Input Ready (IR) and Output Ready (OR) signals to form composite signals.
Serial expansion is accomplished by tying the data inputs of one device to the data outputs of the previous device. The Input Ready (IR) pin of the receiving device is connected to the Shift Out (SO) pin of the sending device, and the Output Ready (OR) pin of the sending device is connected to the Shift In (SI) pin of the receiving device.
Reading and writing operations are completely asynchronous, allowing the FIFO to be used as a buffer between two digital machines of widely differing operating frequencies. The 25 MHz operation makes these FIFOs ideal for high speed communication and controller applications.

Selection Guide

		7C401/2-5	7C40X-10	7C40X-15	7C403/4-25
Maximum Shift Rate (MHz)		5	10	15	25
Maximum Operating Current (mA)	Commercial	75	75	75	75
	Military	-	90	90	90

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature \qquad
Ambient Temperature with
Power Applied \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Supply Voltage to Ground Potential $\ldots .-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State.

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

Power Dissipation 1.0 w
Output Current, into Outputs (Low)
.20 mA

Static Discharge Voltage . > 2001 V
(per MIL-STD-883 Method 3015)
Latch-up Current. $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	VCC
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[3]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range (Unless Otherwise Noted) ${ }^{[4]}$

Parameters	Description	Test Conditions		7C40X-10, 15, 25		Units
				Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., I		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., I^{\prime}			0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.0	6.0	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq$		-10	+10	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{CD}}{ }^{\text {[1] }}$	Input Diode Clamp Voltage ${ }^{\text {[1] }}$					
I_{OZ}	Output Leakage Current	$\text { GND } \leq V_{\text {OUT }}$ Output Disable	$\begin{aligned} & =5.5 \mathrm{~V} \\ & \text { and CY7C404) } \end{aligned}$	-50	+ 50	$\mu \mathrm{A}$
IOS	Output Short Circuit Current ${ }^{[2]}$	$\mathrm{V}_{\text {CC }}=$ Max., V			-90	mA
$\mathrm{I}_{\mathbf{C C}}$	Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Commercial		75	mA
			Military		90	mA

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	5	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	7	

Notes:

1. The CMOS process does not provide a clamp diode. However, the FIFO is insensitive to -3 V dc input levels and -5 V undershoot pulses of less than 10 ns (measured at 50% point).
2. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
3. T_{A} is the "instant on" case temperature.
4. See the last page of this specification for Group A subgroup testing information.
5. Tested initially and after any design or process changes that may affect these parameters.

Note:

For more information on FIFOs, please refer to the FIFO Application Brief in the Appendix of this book.

AC Test Load and Waveform

Figure 1a

Figure 1b

Equivalent to: THÉVENIN EQUIVALENT

0014-6
Switching Characteristics Over the Operating Range ${ }^{[4,6]}$

Parameters	Description	Test Conditions	$\begin{aligned} & 7 C 401-5 \\ & 7 C 402-5 \end{aligned}$		7C40X-10		7C40X-15		$\begin{aligned} & \text { 7C403-25 } \\ & \text { 7C404-25 } \end{aligned}$		Units
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
fo_{0}	Operating Frequency	Note 7		5		10		15		25	$\mathbf{M H z}$
$\mathrm{t}_{\text {PHSI }}$	SI HIGH Time		20		20		20		11		ns
tPLSI	SI LOW Time		45		30		25		20		ns
$\mathrm{t}_{\text {SSI }}$	Data Setup to SI	Note 8	0		0		0		0		ns
$\mathrm{t}_{\mathrm{HSI}}$	Data Hold from SI	Note 8	60		40		30		20		ns
$\mathrm{t}_{\text {DLIR }}$	Delay, SI HIGH to IR LOW			75		40		35		21/22	ns
$t_{\text {DHIR }}$	Delay, SI LOW to IR HIGH			75		45		40		28/30	ns
tPHSO	SO HIGH Time		20		20		20		11		ns
tPLSO	SO LOW Time		45		25		25		20		ns
$\mathrm{t}_{\text {DLOR }}$	Delay, SO HIGH to OR LOW			75		40		35		19/21	ns
$\mathrm{t}_{\text {DHOR }}$	Delay, SO LOW to OR HIGH			80		55		40		34/37	ns
tSOR	Data Setup to OR HIGH		0		0		0		0		ns
$\mathrm{t}_{\mathrm{HSO}}$	Data Hold from SO LOW		5		5		5		5		ns
t_{BT}	Bubble through Time			200	10	95	10	65	10	50/60	ns
$\mathrm{t}_{\text {SIR }}$	Data Setup to IR	Note 9	5		5		5		5		ns
thir	Data Hold from IR	Note 9	30		30		30		20		ns
tPIR	Input Ready Pulse HIGH		20		20		20		15		ns
tPOR	Output Ready Pulse HIGH	- -	20		20		20		15		ns
tPMR	MR Pulse Width		40		30		25		25	*	ns
${ }^{\text {t }}$ DSI	MR HIGH to SI HIGH		40		35		25		10		ns
tDOR	MR LOW to OR LOW			85		40		35		35	ns
$\mathrm{t}_{\text {DIR }}$	MR LOW to IR HIGH			85		40		35		35	ns
${ }^{\text {t LZMR }}$	MR LOW to Output LOW	Note 10		50		40		35		25	ns
toom	Output Valid from OE LOW			-		35		30		20	ns
$\mathrm{t}_{\mathrm{HZOE}}$	Output HIGH-Z from OE HIGH	Note 11		-		30		25		15	ns

Notes:

6. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance, as in Figure 1a.
7. $\mathrm{I} / \mathrm{f}_{\mathrm{O}}>$ t $_{\text {PHSI }}+\mathrm{t}_{\text {DHIR }}, \mathrm{I} / \mathrm{f}_{\mathrm{O}}>$ tPHSO $+\mathrm{t}_{\text {DHOR }}$
8. $\mathrm{t}_{\text {SSI }}$ and $\mathrm{t}_{\text {HSI }}$ apply when memory is not full.
9. STIR $^{\text {and }}$ thIR $^{\text {HIR }}$ apply when memory is full, SI is high and minimum bubble through (t_{BT}) conditions exist.
10. All data outputs will be at LOW level after reset goes high until data is entered into the FIFO.
11. HIGH-Z transitions are referenced to the steady-state $\mathrm{V}_{\mathrm{OH}}-500$ mV and $\mathrm{V}_{\mathrm{OL}}+500 \mathrm{mV}$ levels on the output. $\mathrm{t}_{\mathrm{HZOE}}$ is tested with 5 pF load capacitance as in Figure 1 b.
12. Commercial/Military

Operational Description
 \section*{CONCEPT}

Unlike traditional FIFOs these devices are designed using a dual port memory, read and write pointer, and control logic. The read and write pointers are incremented by the Shift Out (SO) and Shift In (SI) respectively. The availability of an empty space to shift in data is indicated by the Input Ready (IR) signal, while the presence of data at the output is indicated by the Output Ready (OR) signal. The conventional concept of bubble through is absent. Instead, the delay for input data to appear at the output is the time required to move a pointer and propagate an Output Ready (OR) signal. The Output Enable ($\overline{\mathrm{OE}}$) signal provides the capability to OR tie multiple FIFOs together on a common bus.

RESETTING THE FIFO

Upon power up, the FIFO must be reset with a Master Reset (MR) signal. This causes the FIFO to enter an empty condition signified by the Output Ready (OR) signal being LOW at the same time the Input Ready (IR) signal is HIGH. In this condition, the data outputs $\mathrm{DO}_{0}-\mathrm{DO}_{n}$) will be in a LOW state.

SHIFTING DATA IN

Data is shifted in on the rising edge of the Shift In (SI) signal. This loads input data into the first word location of the FIFO. On the falling edge of the Shift In (SI) signal, the write pointer is moved to the next word position and the Input Ready (IR) signal goes HIGH indicating the readiness to accept new data. If the FIFO is full, the Input Ready (IR) will remain LOW until a word of data is shifted out.

SHIFTING DATA OUT

Data is shifted out of the FIFO on the falling edge of the Shift Out (SO) signal. This causes the internal read pointer to be advanced to the next word location. If data is present, valid data will appear on the outputs and the Output Ready (OR) signal will go HIGH. If data is not present, the Output Ready (OR) signal will stay LOW indicating the FIFO is empty. Upon the rising edge of Shift Out (SO), the Output Ready (OR) signal goes LOW. The data outputs of the FIFO should be sampled with edge sensitive type D flip-flop (or equivalent), using the SO signal as the clock input to the flip-flop.

BUBBLE THROUGH

Two bubble through conditions exist. The first is when the device is empty. After a word is shifted into an empty device, the data propagates to the output. After a delay, the Output Ready (OR) flag goes HIGH indicating valid data at the output.
The second bubble through condition occurs when the device is full. Shifting data out creates an empty location which propagates to the input. After a delay, the Input Ready (IR) flag goes HIGH. If the Shift In (SI) signal is HIGH at this time, data on the input will be shifted in.

APPLICATION OF THE 7C403-25/7C404-25 AT 25 MHz

Application of the CY7C403 or CY7C404 Cypress CMOS FIFO's requires attention to characteristics not easily spec-
ified in a Datasheet, but necessary for reliable operation under all conditions.
When an empty FIFO is filled with initial information, at maximum "shift in" SI frequency, followed by immediate shifting out of the data also at maximum "shift out" SO frequency, the designer must be aware of a window of time which follows the initial rising edge of the "output Ready" OR signal during which the SO signal is not recoginized. This condition exists only at high speed operation where more than one SO may be generated inside the prohibited window. This condition does not inhibit the operation of the FIFO at full frequency operation, but rather delays the full 25 MHz operation until after the window has passed.
There are several implementation techniques to manage the window so that all SO signals are recognized:

1. The first involves delaying SO operation such that it does not occur in the critical window. This can be accomplished by causing a fixed delay of 40 ns "initiated by the SI signal only when the FIFO is empty" to inhibit or gate the SO activity. This however requires that the SO operation at least temporarily be synchronized with the input SI operation. In synchronous applications this may well be possible and a valid solution.
2. Another solution not uncommon in synchronous applications is to only begin shifting data out of the FIFO when it is greater than half full. This is a common method of FIFO application, as earlier FIFOs could not be operated at maximum frequency when near full or empty. Although Cypress FIFOs do not have this limitation, any system designed in this manner will not encounter the window condition described above.
3. The window may also be managed by not allowing the first SO signal to occur until the window in question has passed. This can be accomplished by delaying the SO 40 ns from the rising edge of the initial OR "output ready" signal. This however involves the requirement that this only occurs on the first occurance of data being loaded into the FIFO from an empty condition and therefore requires the knowledge of "input ready" IR and SI conditions as well as SO.
4. Handshaking with the OR signal can be a third method of avoiding the window in question. With this technique the rising edge of SO, or the fact that the SO signal is HIGH, will cause the OR signal to go LOW. The SO signal is not taken low again, advancing the internal pointer to the next data, until the OR signal goes LOW. This assures that the SO pulse that is initiated in the window will be automatically extended sufficient time to be recognized.
5. There remains the decision as to what signal will be used to latch the data from the output of the FIFO into the receiving source. The leading edge of the SO signal is most appropriate because data is guaranteed to be stable prior to and after the SO leading edge for each FIFO. This is a solution for any number of FIFOs in parallel.
Any of the above solutions will provide a solution for correct operation of a Cypress FIFO at 25 MHz . The specific implementation is left to the designer and dependent on the specific application needs.

Switching Waveforms

Data In Timing Diagram

Data Out Timing Diagram

Bubble Through, Data Out To Data In Diagram

Note:

Interfacing to the FIFO-
Please refer to the Interfacing to the FIFO applications brief in the Applications Section at the back of this data book.

Switching Waveforms (Continued)

Bubble Through, Data In To Data Out Diagram

Master Reset Timing Diagram

Output Enable Timing Diagram

Typical DC and AC Characteristics

OUTPUT SINK CURRENT vs. OUTPUT VOLTAGE

NORMALIZED ICC

FIFO Expansion

128×4 Application

0014-14
FIFOs can be easily cascaded to any desired depth. The handshaking and associated timing between the FIFOs are handled by the inherent timing of the devices.

FIFOs are expandable in depth and width. However, in forming wider words two external gates are required to generate composite Input and Output Ready flags. This need is due to the variation of delays of the FIFOs.

User Notes:

1. When the memory is empty the last word read will remain on the outputs until the master reset is strobed or a new data word bubbles through to the output. However, OR will remain LOW, indicating data at the output is not valid.
2. When the output data changes as a result of a pulse on SO, the OR signal always goes LOW before there is any change in output data and stays LOW until the new data has appeared on the outputs. Anytime OR is HIGH, there is valid stable data on the outputs.
3. If SO is held HIGH while the memory is empty and a word is written into the input, that word will ripple through the memory to the output. OR will go HIGH for one internal cycle (at least toRL) and then go back LOW again. The stored word will remain on the outputs. If more words are written into the FIFO, they will line up behind the first word and will not appear on the outputs until SO has been brought LOW.
4. When the master reset is brought LOW, the outputs are cleared to LOW, IR goes HIGH and OR goes LOW. If SI is HIGH when the master reset goes HIGH then the data on the inputs will be written into the memory and IR will return to the LOW state until SI is brought LOW. If SI is LOW when the master reset is ended, then IR will go HIGH, but the data on the inputs will not enter the memory until SI goes HIGH.
5. All Cypress FIFOs will cascade with other Cypress FIFOs. However, they may not cascade with pin-compatible FIFO's from other manufacturers.

CY7C402/CY7C404

Ordering Information

Ordering Code (25 MHz)	Package Type	Operating Range
CY7C403-25PC	P1	Com.
CY7C404-25PC	P3	
CY7C403-25DC	D2	
CY7C404-25DC	D4	
CY7C403-25LC	L61	
CY7C404-25LC	L61	
CY7C403-25DMB	D2	Mil.
CY7C404-25DMB	D4	
CY7C403-25LMB	L61	
CY7C404-25LMB	L61	

Ordering Code (15 MHz)	Package Type	Operating Range
CY7C401-15PC	P1	Com.
CY7C402-15PC	P3	
CY7C403-15PC	P1	
CY7C404-15PC	P3	
CY7C401-15DC	D2	
CY7C402-15DC	D4	
CY7C403-15DC	D2	
CY7C404-15DC	D4	
CY7C401-15LC	L61	
CY7C402-15LC	L61	
CY7C403-15LC	L61	
CY7C404-15LC	L61	
CY7C401-15DMB	D2	Mil.
CY7C402-15DMB	D4	
CY7C403-15DMB	D2	
CY7C404-15DMB	D4	
CY7C401-15LMB	L61	
CY7C402-15LMB	L61	
CY7C403-15LMB	L61	
CY7C404-15LMB	L61	

Ordering Code (10 MHz)	Package Type	Operating Range
CY7C401-10PC	P1	Com.
CY7C402-10PC	P3	
CY7C403-10PC	P1	
CY7C404-10PC	P3	
CY7C401-10DC	D2	
CY7C402-10DC	D4	
CY7C403-10DC	D2	
CY7C404-10DC	D4	
CY7C401-10LC	L61	
CY7C402-10LC	L61	
CY7C403-10LC	L61	
CY7C404-10LC	L61	
CY7C401-10DMB	D2	
CY7C402-10DMB	D4	
Mil.		
	D2	
	D4	
CY7C401-10LMB	Lul	
CY7C402-10LMB	L61	
CY7C403-10LMB	L61	
CY7C404-10LMB	L61	

Ordering Code (5 MHz)	Package Type	Operating Range
CY7C401-5PC	P1	Com.
CY7C402-5PC	P1	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{OS}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
f_{O}	7,8,9,10,11
tPHSI	7,8,9,10,11
tPLSI	7,8,9,10,11
$\mathrm{t}_{\text {SSI }}$	7,8,9,10,11
$\mathrm{t}_{\mathrm{HSI}}$	7,8,9,10,11
$\mathrm{t}_{\text {DLIR }}$	7,8,9,10,11
t ${ }_{\text {DHIR }}$	7,8,9,10,11
tPHSO	7,8,9,10,11
tPLSO	7,8,9,10,11
tDLOR	7,8,9,10,11
t ${ }_{\text {DHOR }}$	7,8,9,10,11
tsor	7,8,9,10,11
thSO	7,8,9,10,11
t_{BT}	7,8,9,10,11
$\mathrm{t}_{\text {SIR }}$	7,8,9,10,11
$\mathrm{t}_{\text {HIR }}$	7,8,9,10,11
tPIR	7,8,9,10,11
tPOR	7,8,9,10,11
tPMR	7,8,9,10,11
$\mathrm{t}_{\text {DSI }}$	7,8,9,10,11
$\mathrm{t}_{\text {DOR }}$	7,8,9,10,11
tir	7,8,9,10,11
$\mathrm{t}_{\text {LZMR }}$	7,8,9,10,11

Parameters	Subgroups
tooE	$\mathbf{7 , 8 , 9 , 1 0 , 1 1}$
$\mathbf{t}_{\mathrm{HZOE}}$	$\mathbf{7 , 8 , 9 , 1 0 , 1 1}$

Document \# : 38-00040-C

Features

- 64×8 and 64×9 first-in firstout (FIFO) buffer memory
- 35 MHz shift-in and shift-out rates
- 50 MHz burst mode capability
- Almost Full/Almost Empty and Half Full flags
- Dual port RAM architecture
- Fast, 50 ns, bubblethrough
- Independent asynchronous inputs and outputs
- Output Enable (CY7C408)
- Expandable in word width and FIFO depth
- 5V $\pm 10 \%$ supply
- TTL compatible
- Capable of withstanding greater than 2000 V electrostatic discharge voltage
- 300 mil, 28-pin DIP

Functional Description

The CY7C408 and CY7C409 are 64word deep by 8 - or 9 -bit wide first-in first-out (FIFO) buffer memories. In addition to the industry standard handshaking signals Almost Full/Almost Empty (AFE) and Half Full (HF) flags are provided.

AFE is HIGH when the FIFO is almost full or almost empty. Otherwise AFE is LOW. HF is HIGH when the FIFO is half full, otherwise HF is LOW.

The CY7C408 has an Output Enable (OE) function.
The memory accepts 8 - or 9-bit parallel words at its inputs (DIO-DI8) under the control of the Shift-In (SI) input when the Input-Ready (IR) control signal is HIGH. The data is output, in the same order as it was stored, on the DO0-DO8 output pins under the control of the Shift-Out (SO) input when the Output-Ready (OR) control signal is HIGH. If the FIFO is full (IR LOW) pulses at the SI input are ignored: if the FIFO is empty (OR LOW) pulses at the SO input are ignored.
The IR and OR signals are also used to connect the FIFO's in parallel to make a wider word, or in series to make a deeper buffer, or both.
Parallel expansion for wider words is implemented by logically ANDing the IR and OR outputs (respectively) of the individual FIFOs together. The AND operation insures that all of the FIFOs are either ready to accept more
data (IR HIGH) or are ready to output data (OR HIGH) and thus compensate for variations in propagation delay times between devices.
Serial expansion for deeper buffer memories is accomplished by connecting the data outputs of the FIFO closest to the data source (upstream device) to the data inputs of the following (downstream) FIFO. In addition, to insure proper operation, the SO signal of the upstream FIFO must be connected to the IR output of the downstream FIFO and the SI signal of the downstream FIFO must be connected to the OR output of the upstream FIFO. In this serial expansion configuration (called cascade) the IR and OR signals are used to pass data through full and empty FIFOs.
Reading and writing operations are completely asynchronous, allowing the FIFO to be used as a buffer between two digital machines of widely differing operating frequencies. The high shift-in and shift-out rates of these FIFOs, and their high throughput rate due to the fast bubblethrough time, which is due to their dual port RAM architecture, make them ideal for high speed communications and controllers.

Logic Block Diagram

0065-1
Flag Definitions

HF	AFE	Words Stored
L	H	$0-8$
L	L	$9-31$
H	L	$32-55$
H	H	$56-64$

Pin Configurations

Selection Guide

		7C408-15 $\mathbf{7 C 4 0 9 - 1 5}$	$\mathbf{7 C 4 0 8 - 2 5}$ $\mathbf{7 C 4 0 9 - 2 5}$	$\mathbf{7 C 4 0 8 - 3 5}$ $\mathbf{7 C 4 0 9 - 3 5}$
Maximum Shift Rate (MHz)		15	25	35
Maximum Operating	Commercial	115	125	135
Current (mA) ${ }^{[2]}$	Military	140	$\mathbf{1 5 0}$	N/A

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\ldots \ldots \ldots \ldots \ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Static Discharge Voltage . 2001 V (per MIL-STD-883 Method 3015)		
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Operating Range		
Supply Voltage to Ground Potential . . . -0.5 V to +7.0 V DC Voltage Applied to Outputs in High Z State. -0.5 V to +7.0 V	Range	Ambient Temperature	$\mathbf{V}_{\text {CC }}$
	Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
	Military ${ }^{\text {[4] }}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Power Dissipation
.20 mA
Electrical Characteristics Over Operating Range (Unless Otherwise Noted) ${ }^{[5]}$

Parameters	Description	Test Conditions		$\begin{aligned} & \text { CY7C408 } \\ & \text { CY7C409 } \end{aligned}$		Units
				Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{IOH}=-4.0 \mathrm{~mA}$		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	GND $\leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\text {CC }}$		-10	+ 10	$\mu \mathrm{A}$
Ios	Output Short Circuit Current[1]	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-90	mA
		$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}$	Commercial		100	mA
${ }^{1} \mathrm{CC}_{\mathrm{Q}}$	Quiescent Power Supply Current	$\mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {IL }}, \mathrm{V}_{\text {IN }} \geq \mathrm{V}_{\text {IH }}$	Military		125	mA
I_{CC}	Power Supply Current	$\mathrm{I}_{\mathrm{CC}}=\mathrm{I}_{\mathrm{CC}_{\mathrm{Q}}}+1 \mathrm{~mA} / \mathrm{MHz} \times\left(\mathrm{fSI}+\mathrm{f}_{\text {SO }}\right) / 2$				

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	5	pF
COUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	7	

Notes:

1. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
2. $\mathrm{I}_{\mathrm{CC}}=\mathrm{I}_{\mathrm{CC}_{\mathrm{Q}}}+1 \mathrm{~mA} / \mathrm{MHz} \times\left(\mathrm{f}_{\mathrm{SI}}+\mathrm{f}_{\mathrm{SO}}\right) / 2$

AC Test Load and Waveforms

Figure 1a

Figure 1b
3. Tested initially and after any design or process changes that may affect these parameters.
4. T_{A} is the "instant on" case temperature.
5. See the last page of this specification for Group A subgroup testing information.

0065-5
Figure 2. All Input Pulses

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[5,6]}$

Parameters	Description	Test Conditions	CY7C408-15 CY7C409-15		CY7C408-25 CY7C409-25		CY7C408-35 CY7C409-35		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
fo_{0}	Operating Frequency	Note 7		15		25		35	MHz
tPHSI	SI HIGH Time		16		11		9		ns
tPLSI	SI LOW Time		16		11		9		ns
tSSI	Data Setup to SI	Note 8	0		0		0		ns
$\mathrm{t}_{\mathrm{HSI}}$	Data Hold from SI	Note 8	30		20		12		ns
tDLIR	Delay, SI HIGH to IR LOW			35		21		15	ns
tDHIR	Delay, SI LOW to IR HIGH			40		23		16	ns
tPHSO	SO HIGH Time		16		11		9		ns
tplso	SO LOW Time		16		11		9		ns
tDLOR	Delay, SO HIGH to OR LOW			35		21		15	ns
tDHOR	Delay, SO LOW to OR HIGH			40		23		16	ns
tsor	Data Setup to OR HIGH		0		0		0		ns
thso	Data Hold from SO LOW		0		0		0		ns
t_{BT}	Bubblethrough Time		10	65	10	60	10	50	ns
$\mathrm{t}_{\text {SIR }}$	Data Setup to IR	Note 9	5		5		5		ns
thir	Data Hold from IR	Note 9	30		20		20		ns
tPIR	Input Ready Pulse HIGH		16		11		9		ns
tPOR	Output Ready Pulse HIGH		16		11		9		ns
tDLZOE	OE LOW to LOW Z (7C408)	Note 12		35		30		25	ns
t ${ }_{\text {DHZOE }}$	OE HIGH to HIGH Z (7C408)	Note 12		35		30		25	ns
$\mathrm{t}_{\text {DHHF }}$	SI LOW to HF HIGH			65		55		45	ns
tDLHF	SO LOW to HF LOW			65		55		45	ns
tDLAFE	SO or SI LOW to AFE LOW			65		55		45	ns
t DHAFE	SO or SI LOW to AFE HIGH			65		55		45	ns
tPMR	$\overline{M R}$ Pulse Width		55		45		35		ns
tDSI	MR HIGH to SI HIGH		25		10		10		ns
tDOR	MR LOW to OR LOW			55		45		35	ns
t ${ }_{\text {DIR }}$	MR LOW to IR HIGH			55		45		35	ns
$\mathrm{t}_{\text {LZMR }}$	$\overline{\text { MR LOW to Output LOW }}$	Note 10		55		45		35	ns
$\mathrm{t}_{\text {AFE }}$	$\overline{\text { MR LOW to AFE HIGH }}$			55		45		35	ns
t_{HF}	$\overline{M R}$ LOW to HF LOW			55		45		35	ns
f_{B}	Burst Mode Frequency	Note 13		30		40		50	MHz
tod	SO to Data Out Valid			28		20		16	ns

Notes:

6. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance, as in Figure 1.
7. $1 /$ fo $>$ t $_{\text {PHSI }}+$ tDHIR $1 / \mathrm{fO}_{\mathrm{O}}>$ t $_{\text {PHSO }}+\mathrm{t}_{\text {DHOR }}$.
8. tSSI and $t_{\text {HSI }}$ apply when memory is not full.
9. ISIR and tHIR apply when memory is full, SI is HIGH and minimum bubblethrough (\mathbf{t}_{BT}) conditions exist.
10. All data outputs will be at LOW level after reset goes HIGH until data is entered into the FIFO.
11. For 7C408 only.
12. $\mathrm{T}_{\mathrm{DHZOE}}$ and $\mathrm{T}_{\mathrm{DZOE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in Figure $1 b$.
$\mathrm{T}_{\text {DHZOE }}$ transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
TDLZOE transition is measured $\pm 100 \mathrm{mV}$ from steady state voltage.
These parameters are guaranteed and not 100% tested.
13. $1 / \mathrm{f}_{\mathrm{B}}=\mathbf{t}_{\text {PHSI }}+\mathbf{t}_{\text {PLSI }}, 1 / \mathrm{f}_{\mathrm{B}}=\mathbf{t}_{\text {PHSO }}+\mathbf{t}_{\text {PLSO }}$.

Switching Waveforms

Data In Timing Diagram

HF \qquad 0065-7
(1) FIFO Contains 8 Words

Data Out Timing Diagram

(2) FIFO Contains 9 Words

Switching Waveforms (Continued)

Data In Timing Diagram

(3) FIFO Contains 31 Words

Data Out Timing Diagram

0065-15
(c) FIFO Contains 32 Words

Switching Waveforms (Continued)

Data In Timing Diagram

Data Out Timing Diagram

Bubblethrough, Data Out to Data In Diagram

Switching Waveforms (Continued)
Fallthrough, (Bubblethrough) Data In to Data Out Diagram

Master Reset Timing Diagram

0065-11

Shifting Words In

Shifting Words Out

Architecture of the CY7C408 and CY7C409

The CY7C408 and CY7C409 FIFOs consist of an array of 64 words of 8 - or 9 -bits each (which are implemented using a dual port RAM cell), a write pointer, a read pointer and the control logic necessary to generate the handshaking (SI/IR, SO/OR) signals as well as the Almost Full/Almost Empty (AFE) and the Half Full (HF) flags. The handshaking signals operate in a manner identical to those of the industry standard CY7C401/402/403/404 FIFOs.

Dual Port RAM

The dual port RAM architecture refers to the basic memory cell used in the RAM. The cell itself enables the read and write operations to be independent of each other, which is necessary to achieve truly asynchronous operation of the inputs and outputs. A second benefit is that the time required to increment the read and write pointers is much less than the time that would be required for data to propagate through the memory, which would be the case if the memory were implemented using the conventional register array architecture.

Bubblethrough and Fallthrough

The time required for data to propagate from the input to the output of an initially empty FIFO is defined as the Fallthrough time.
The time required for an empty location to propagate from the output to the input of an initially full FIFO is defined as the Bubblethrough time.
The maximum rate at which data can be passed through the FIFO (called the throughput) is limited by the fallthrough time when it is empty (or near empty) and by the bubblethrough time when it is full (or near full).

The conventional definitions of fallthrough and bubblethrough do not apply to the CY7C408 and CY7C409 FIFOs because the data is not physically propagated through the memory. The read and write pointers are incremented instead of moving the data. However, the parameter is specified because it does represent the worst case propagation delay for the control signals. That is, the time required to increment the write pointer and propagate a signal from the SI input to the OR output of an empty
FIFO or the time required to increment the read pointer and propagate a signal from the SO input to the IR output of a full FIFO.

Resetting the FIFO

Upon power up the FIFO must be reset with a Master Reset (MR) signal. This causes the device to enter the empty condition, which is signified by the OR signal being LOW at the same time that the IR signal is HIGH. In this condition, the data outputs (DO0-DO8) will be LOW. The AFE flag will be HIGH and the HF flag will be LOW.

Shifting Data Into the FIFO

The availability of an empty location is indicated by the HIGH state of the Input Ready (IR) signal. When IR is HIGH a LOW to HIGH transition on the Shift-In (SI) pin will load the data on the DI0-DI8 inputs into the FIFO.
The IR output will then go LOW, indicating that the data has been sampled. The HIGH to LOW transition of the SI signal initiates the LOW to HIGH transition of the IR signal, as well as the AFE flag LOW to HIGH transition if the FIFO is almost full or almost empty.

Shifting Data Out of the FIFO

The availability of data at the outputs of the FIFO is indicated by the HIGH state of the Output Ready (OR) signal. After the FIFO is reset all data outputs (DO0-DO8) will be in the LOW state. As long as the FIFO remains empty the OR signal will be LOW and all Shift Out (SO) pulses applied to it will be ignored. After data is shifted into the FIFO the OR signal will go HIGH. The external control logic (designed by the user) should use the HIGH state of the OR signal to generate a SO pulse. The data outputs of the FIFO should be sampled with edge sensitive type D flip-flops (or equivalent), using the SO signal as the clock input to the flip-flop.

Interfacing to the FIFO Application Brief

See the application brief in the back of this databook for information regarding interfacing to the FIFO under asynchronous operating conditions.

AFE and HF Flags

Two flags, Almost Full/Almost Empty (AFE) and Half Full (HF), describe how many words are stored in the FIFO. AFE is HIGH when there are eight or less, or 56 or more, words stored in the FIFO. Otherwise the AFE flag is LOW. HF is HIGH when there are 32 or more words stored in the FIFO, otherwise the HF flag is LOW. Flag transitions occur relative to the falling edges of SI and SO.

Burst Mode Operation

The CY7C408 and CY7C409 support a burst mode of operation which allows data to be shifted in and shifted out at 50,40 and 30 MHz for CY7C480X-35, CY7C480X-25, CY7C480X-15 respectively. Burst Mode takes advantage of the new flags HF (Half Full) and AFE (Almost Full/ Empty) and the IR and OR flags are not used. In the Burst Mode the relative fullness or emptiness of the FIFO is decoded and data is shifted in and out as long as the FIFO is less than ALMOST FULL or less than ALMOST EMPTY.

Burst Fill

Burst mode fill operation is proper only when the AL-
MOST FULL condition is NOT present. If the ALMOST FULL condition exists, normal shift in operation may resume using IR, SI synchronization or shift in operation may be terminated entirely until the ALMOST FULL condition no longer exists.

HF	AFE	Words	Condition
0	1	$0-8$	Burst Fill
0	0	$9-31$	Burst Fill
1	0	$32-55$	Burst Fill
1	1	$56-64$	Sync Fill

Burst Fill to Almost Full or Shift Out, or Shift in Normal

Burst Empty

Burst empty is proper only when the ALMOST EMPTY condition is NOT present. If the ALMOST EMPTY condition exists, normal shift out operation may resume using OR, SO synchronization or shift out operation may be terminated entirely until the ALMOST EMPTY condition no longer exists.

HF	AFE	Words	Condition
1	1	$56-64$	Burst Empty
1	Burst Empty to Almost Empty		
or Shift Out, or Shift in Normal			
1	0	$32-55$	Burst Empty
0	0	$9-31$	Burst Empty
0	1	$0-8$	Sync Empty

Cascaded FIFO Operation at High Frequency and Burst Mode Operation

There are two factors that limit data throughput when two or more FIFOs are cascaded to make a deeper FIFO. They are: (1) the physical movement of data from FIFO to FIFO, and (2) the handshaking mechanism between the FIFOs.
To overcome the handshaking throughput limitation in the CY7C408 and CY7C409 operating above 25 MHz , and thereby maximize the data throughput in cascaded configurations, simply invert the IR signal of the downstream FIFO before applying that signal to the SO input of the upsteam FIFO.
Figure 1 illustrates how $\mathrm{n}-1$ inverters are required when n FIFOs are cascaded. Additionally, for every cascaded FIFO that has an inverter, the depth capacity of that FIFO is decreased by one.

Figure 1. Burst Mode Operation in Cascaded Configuration

FIFO Expansion

128×9 Configuration

0065-12
FIFOs can be easily cascaded to any desired depth. The handshaking and associated timing between the FIFOs are handled by the inherent timing of the devices.

User Notes:

1. When the memory is empty the last word read will remain on the outputs until the master reset is strobed or a new data word bubbles through to the output. However, OR will remain LOW, indicating data at the output is not valid.
2. When the output data changes as a result of a pulse on SO, the OR signal always goes LOW before there is any change in output data and stays LOW until the new data has appeared on the outputs. Anytime OR is HIGH, there is valid stable data on the outputs.
3. If SO is held HIGH while the memory is empty and a word is written into the input, that word will ripple through the memory to the output. OR will go HIGH for one internal cycle (at least tDLOR) and then go back LOW again. The stored word will remain on the out-
puts. If more words are written into the FIFO, they will line up behind the first word and will not appear on the outputs until SO has been brought LOW.
4. When the master reset is brought LOW, the outputs are cleared to LOW, IR goes HIGH and OR goes LOW. If SI is HIGH when the master reset goes HIGH then the data on the inputs will be written into the memory and IR will return to the LOW state until SI is brought LOW. If SI is LOW when the master reset is ended, then IR will go HIGH, but the data on the inputs will not enter the memory until SI goes HIGH.
5. All Cypress FIFOs will cascade with other Cypress FIFOs. However, they may not cascade with FIFOs from other manufacturers.

FIFO Expansion (Continued)

192×27 Configuration

0065-13
FIFOs are expandable in depth and width. However, in forming wider words two external gates are required to generate composite Input and Output Ready flags. This need is due to the variation of delays of the FIFOs.

User Notes:

1. When the memory is empty the last word read will remain on the outputs until the master reset is strobed or a new data word bubbles through to the output. However, OR will remain LOW, indicating data at the output is not valid.
2. When the output data changes as a result of a pulse on SO, the OR signal always goes LOW before there is any change in output data and stays LOW until the new data has appeared on the outputs. Anytime OR is HIGH, there is valid stable data on the outputs.
3. If SO is held HIGH while the memory is empty and a word is written into the input, that word will ripple through the memory to the output. OR will go HIGH for one internal cycle (at least tDLOR) and then go back LOW again. The stored word will remain on the out-
puts. If more words are written into the FIFO, they will line up behind the first word and will not appear on the outputs until SO has been brought LOW.
4. When the master reset is brought LOW, the outputs are cleared to LOW, IR goes HIGH and OR goes LOW. If SI is HIGH when the master reset goes HIGH then the data on the inputs will be written into the memory and IR will return to the LOW state until SI is brought LOW. If SI is LOW when the master reset is ended, then IR will go HIGH, but the data on the inputs will not enter the memory until SI goes HIGH.
5. All Cypress FIFOs will cascade with other Cypress FIFOs. However, they may not cascade with FIFOs from other manufacturers.

Typical DC and AC Characteristics

Ordering Information

Frequency (MHz)	Ordering Code	Package Type	Operating Range
35	CY7C408-35PC	P21	Commercial
	CY7C408-35DC	D22	
	CY7C408-35LC	L64	
25	CY7C408-35VC	V21	
	CY7C408-25PC	P21	Commercial
	CY7C408-25DC	D22	
	CY7C408-25LC	L64	
	CY7C408-25VC	V21	
	CY7C408-25DMB	D22	Military
	CY7C408-25LMB	L64	
	CY7C408-15PC	P21	Commercial
	CY7C408-15DC	D22	
	CY7C408-15LC	L64	
	CY7C408-15VC	V21	
	CY7C408-15DMB	D22	Military
	CY7C408-15LMB	L64	

Frequency (MHz)	Ordering Code	Package Type	Operating Range
35	CY7C409-35PC CY7C409-35DC CY7C409-35LC CY7C409-35VC	$\begin{aligned} & \text { P21 } \\ & \text { D22 } \\ & \text { L64 } \\ & \text { V21 } \end{aligned}$	Commercial
25	CY7C409-25PC CY7C409-25DC CY7C409-25LC CY7C409-25VC	$\begin{aligned} & \hline \text { P21 } \\ & \text { D22 } \\ & \text { L64 } \\ & \text { V21 } \end{aligned}$	Commercial
	CY7C409-25DMB CY7C409-25LMB	$\begin{aligned} & \text { D22 } \\ & \text { L64 } \end{aligned}$	Military
15	CY7C409-15PC CY7C409-15DC CY7C409-15LC CY7C409-15VC	$\begin{aligned} & \hline \text { P21 } \\ & \text { D22 } \\ & \text { L64 } \\ & \text { V21 } \end{aligned}$	Commercial
	$\begin{aligned} & \text { CY7C409-15DMB } \\ & \text { CY7C409-15LMB } \end{aligned}$	$\begin{aligned} & \text { D22 } \\ & \text { L64 } \end{aligned}$	Military

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OS}	$1,2,3$
$\mathrm{I}_{\mathrm{CCQ}}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
f_{0}	7,8,9,10,11
$\mathrm{t}_{\text {PHSI }}$	7,8,9,10,11
tPLSI	7,8,9,10,11
$t_{\text {SSI }}$	7,8,9,10,11
$\mathrm{t}_{\mathrm{HSI}}$	7,8,9,10,11
$\mathrm{t}_{\text {DLIR }}$	7,8,9,10,11
tDHIR	7,8,9,10,11
tPHSO	7,8,9,10,11
tplso	7,8,9,10,11
$\mathrm{t}_{\text {DLOR }}$	7,8,9,10,11
t ${ }_{\text {DHOR }}$	7,8,9,10,11
$\mathrm{t}_{\text {SOR }}$	7,8,9,10,11
$\mathrm{t}_{\mathrm{HSO}}$	7,8,9,10,11
$\mathrm{t}_{\text {BT }}$	7,8,9,10,11
$\mathrm{t}_{\text {SIR }}$	7,8,9,10,11
$\mathrm{t}_{\mathrm{HIR}}$	7,8,9,10,11
tPIR	7,8,9,10,11
tPOR	7,8,9,10,11
$\mathrm{t}_{\text {DLZOE }}$	7,8,9,10,11
t ${ }^{\text {dHzOE }}$	7,8,9,10,11
${ }^{\text {t }}$ DHHF	7,8,9,10,11
$\mathrm{t}_{\text {DLHF }}$	7,8,9,10,11
$t_{\text {DLAFE }}$	7,8,9,10,11
$t_{\text {DHAFE }}$	7,8,9,10,11

Parameters	Subgroups
t_{B}	$7,8,9,10,11$
t_{OD}	$7,8,9,10,11$
$\mathrm{t}_{\text {PMR }}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DSI}}$	$7,8,9,10,11$
$\mathrm{t}_{\text {DOR }}$	$7,8,9,10,11$
$\mathrm{t}_{\text {DIR }}$	$7,8,9,10,11$
$\mathrm{t}_{\text {LZMR }}$	$7,8,9,10,11$
$\mathrm{t}_{\text {AFE }}$	$7,8,9,10,11$
t_{HF}	$7,8,9,10,11$

Features

- $512 \times 9,1024 \times 9,2048 \times 9$ FIFO buffer memory
- Dual port RAM cell
- Asynchronous read/write
- High speed 25 MHz read/write independent of depth/width
- Low operating power
I_{CC} (max.) $=\mathbf{1 0 0} \mathbf{m A}$ commercial
ICC (max.) $=120 \mathrm{~mA}$ military
- Lower standby power
I_{CC} (max.) $=15 \mathrm{~mA}$ commercial
$I_{C C}$ (max.) $=20 \mathrm{~mA}$ military
- Half full flag in standalone
- Empty and full flags
- Retransmit in standalone
- Expandable in width and depth
- Parallel Cascade minimizes bubblethrough
- 5V $\pm 10 \%$ supply
- 300 mil DIP packaging
- TTL compatible
- Three-state outputs
- CY7C421 pin compatible and functional equivalent to IDT7201

Functional Description

The (CY7C420, CY7C421,)
(CY7C424, CY7C425,) and (CY7C428, CY7C429) are, respectively, 512, 1024 and 2048 words by 9 -bit wide first-in first-out (FIFO) memories offered in 300 mil wide and 600 mil wide packages, respectively. Each FIFO memory is organized such that the data is read in the same sequential order that it was written. Full and Empty flags are provided to prevent over-run and under-run. Three additional pins are also provided to facilitate unlimited expansion in width, depth, or both. The depth expansion technique steers the control signals from one device to another in parallel, thus eliminating the serial addition of propagation delays so that throughput is not reduced. Data is steered in a similar manner.

The read and write operations may be asynchronous; each can occur at a rate of 25 MHz . The write operation occurs
when the Write $(\overline{\mathrm{W}})$ signal is LOW.
Read occurs when $\operatorname{Read}(\overline{\mathbf{R}})$ goes LOW. The 9 data outputs go to the high impedance state when \bar{R} is HIGH.
A Half-Full (HF) output flag is provided that is valid in the standalone and width expansion configurations. In the depth expansion configuration this pin provides the expansion out ($\overline{\mathrm{XO}}$) information which is used to tell the next FIFO that it will be activated.

In the standalone and width expansion configurations a LOW on the Retransmit ($\overline{\mathbf{R} T})$ input causes the FIFO's to retransmit the data. Read Enable ($\overline{\mathrm{R}}$) and Write Enable ($\overline{\mathrm{W}}$) must both be HIGH during a retransmit cycle, and then $\overline{\mathrm{R}}$ is used to access the data.
The CY7C420, CY7C421, CY7C424, CY7C425, CY7C428 and CY7C429 are fabricated using an advanced 0.8 micron N-well CMOS technology. Input ESD protection is greater than 2000 V and latchup is prevented by careful layout, guard rings and a substrate bias generator.

Selection Guide

		7C420-30, 7C421-30 7C424-30, 7C425-30 7C428-30, 7C429-30	7C420-40, 7C421-40 7C424-40, 7C425-40 7C428-40, 7C429-40	7C420-65, 7C421-65 7C424-65, 7C425-65 7C428-65, 7C429-65
Frequency (MHz)		25	20	12.5
Access Time (ns)		30	40	65
Maximum Operating Current (mA)	Commercial	100	90	80
	Military	120	110	100

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $\ldots \ldots \ldots \ldots \ldots .6^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Static Discharge Voltage $\ldots \ldots \ldots \ldots \ldots . .$.
Ambient Temperature with
Power Applied $\ldots \ldots \ldots \ldots \ldots \ldots 5^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential $\ldots-0.5 \mathrm{~V}$ to +7.0 V
DC Voitage Applied to Outputs
in High Z State.
-0.5 V to +7.0 V
DC Input Voltage
-3.0 V to +7.0 V
Power Dissipation . 1.0 W
Output Current, into Outputs (Low) .20 mA (per MIL-STD-883 Method 3015)
Latch-up Current
. $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	VCC
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[3]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range ${ }^{[4]}$

Parameters	Description	Test Conditions		CY7C CY7C CY7C CY7C CY7C CY7C	$\begin{aligned} & \mathbf{t 2 0 - 3 0} \\ & \mathbf{2 1 - 3 0} \\ & \mathbf{2 4 - 3 0} \\ & \mathbf{2 4 5 - 3 0} \\ & \mathbf{2 4 - 3 0} \\ & \mathbf{2 9}-30 \end{aligned}$	CY7C420-40 CY7C421-40 CY7C424-40 CY7C425-40 CY7C428-40 CY7C429-40			$\begin{aligned} & 120-65 \\ & 121-65 \\ & 124-65 \\ & 225-65 \\ & 128-65 \\ & 129-65 \end{aligned}$	Units
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$		2.4		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{IOL}=8.0 \mathrm{~mA}$			0.4		0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		Commercial	2.0	V_{CC}	2.0	V_{CC}	2.0	V_{CC}	V
			Military	2.2	V_{CC}	2.2	V_{CC}	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	-3.0	0.8	-3.0	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	GND $\leq \mathrm{V}_{\text {I }} \leq \mathrm{V}_{\text {CC }}$		-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{CC}	Operating Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Commercial ${ }^{[5]}$		100		90		80	mA
			Military [6]		120		110		100	mA
ISB_{1}	Standby Current	$\overline{\mathbf{R}}=\overline{\mathbf{W}}=\overline{\mathbf{M R}}=\overline{\mathrm{FL}} / \overline{\mathrm{RT}}=\mathrm{V}_{\mathbf{I H}}$	Commercial		15		8		8	mA
			Military		20		20		15	mA
ISB_{2}	Power Down Current	All Inputs$\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$	Commercial		5		5		5	mA
			Military		9		9		9	mA
Ios	Output Short Circuit Current ${ }^{[1]}$	$\mathbf{V}_{\text {CC }}=$ Max., $\mathbf{V}_{\text {OUT }}=\mathbf{G N D}$			-90		-90		-90	mA

Capacitance ${ }^{[2]}$

Parameters	Description	Test Conditions	Max.	Units
C $_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	5	pF
COUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	7	

Notes:

1. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
2. Tested initially and after any design or process changes that may affect these parameters.
3. T_{A} is the "instant on" case temperature.
4. See the last page of this specification for Group A subgroup testing information.
5. $\mathrm{I}_{\mathrm{CC}}($ commercial $)=80 \mathrm{~mA}+[(\mathrm{f}-15) * 2 \mathrm{~mA} / \mathrm{MHz}]$ for $\bar{f} \geq 15 \mathrm{MHz}$
where $f=$ the average of the read and write operating frequencies.
6. I_{CC} (military) $=100 \mathrm{~mA}+[(\mathrm{f}-15) * 2 \mathrm{~mA} / \mathrm{MHz}]$

AC Test Load and Waveform

Figure 2. All Input Pulses

Figure 1
Equivalent to:
THÉVENIN EQUIVALENT
OUTPUTO-O 2 OV
0081-6
Switching Characteristics Over the Operating Range ${ }^{[1,3]}$

Parameter	Description	$\begin{aligned} & \text { 7C420-30, 7C421-30 } \\ & \text { 7C424-30, 7C425-30 } \\ & \text { 7C428-30, 7C429-30 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 7C420-40, 7C421-40 } \\ & \text { 7C424-40, 7C425-40 } \\ & \text { 7C428-40, 7C429-40 } \\ & \hline \end{aligned}$		7C420-65, 7C421-65 7C424-65, 7C425-65 7C428-65, 7C429-65		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
t_{RC}	Read Cycle Time	40		50		80		ns
t_{A}	Access Time		30		40		65	ns
$\mathrm{t}_{\text {RR }}$	Read Recovery Time	10		10		15		ns
t_{PR}	Read Pulse Width	30		40		65		ns
$\mathrm{t}_{\text {LZR }}$	Read LOW to Low Z	3		3		3		ns
tDVR	Read HIGH to Data Valid	3		3		3		ns
$\mathrm{t}_{\mathrm{HZR}}$	Read HIGH to High Z		20		25		30	ns
twC	Write Cycle Time	40		50		80		ns
tPW	Write Pulse Width	30		40		65		ns
$\mathrm{t}_{\text {HWZ }}$	Write HIGH to Low Z	10		10		10		ns
twR	Write Recovery Time	10		10		15		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up Time	18		20		30		ns
t_{HD}	Data Hold Time	0		0		10		ns
$\mathrm{t}_{\text {MRSC }}$	$\overline{\text { MR Cycle Time }}$	40		50		80		ns
tPMR	$\overline{\text { MR Pulse Width }}$	30		40		65		ns
trMR	$\overline{\text { MR Recovery Time }}$	10		10		15		ns
$\mathrm{t}_{\text {RPW }}$	Read HIGH to $\overline{\text { MR HIGH }}$	30		40		65		ns
twPW	Write HIGH to MR HIGH	30		40		65		ns
$\mathrm{t}_{\text {RTC }}$	Retransmit Cycle Time	40		50		80		ns
tPRT	Retransmit Pulse Width	30		40		65		ns
triR	Retransmit Recovery Time	10		10		15		ns
$\mathrm{t}_{\text {EFL }}$	$\overline{\mathrm{MR}}$ to EF LOW		40		50		80	ns
${ }^{\text {t }}$ HFH	$\overline{\text { MR }}$ to $\overline{\mathrm{HF}} \mathrm{HIGH}$		40		50		80	ns
$\mathrm{t}^{\text {FFH }}$	$\overline{\text { MR }}$ to FF HIGH		40		50		80	ns
treF	Read LOW to EF LOW		30		35		60	ns
$\mathrm{t}_{\text {RFF }}$	Read HIGH to FF HIGH		30		35		60	ns
tWEF	Write HIGH to EF HIGH		30		35		60	ns
tWFF	Write LOW to $\overline{\text { FF }}$ LOW		30		35		60	ns

Switching Characteristics Over the Operating Range ${ }^{[1,3]}$ (Continued)

Parameter	Description	$\begin{aligned} & \text { 7C420-30, 7C421-30 } \\ & \text { 7C424-30, 7C425-30 } \\ & \text { 7C428-30, 7C429-30 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 7C420-40, 7C421-40 } \\ & \text { 7C424-40, 7C425-40 } \\ & \text { 7C428-40, 7C429-40 } \\ & \hline \end{aligned}$		7C420-65, 7C421-65 7C424-65, 7C425-65 7C428-65, 7C429-65		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
twhF	Write LOW to $\overline{\text { HF }}$ LOW		40		50		80	ns
trHF	Read HIGH to $\overline{\text { HF }}$ HIGH		40		50		80	ns
$\mathrm{t}_{\text {RAE }}$	Effective Read from Write HIGH		30		35		60	ns
trPE	Effective Read Pulse Width after EF HIGH	30		40		65		ns
twAF	Effective Write from Read HIGH		30		35		60	ns
tWPF	Effective Write Pulse Width after $\overline{\mathrm{FF}} \mathrm{HIGH}$	30		40		65		ns
tXOL	Expansion Out LOW Delay from Clock		25		35		55	ns
$\mathrm{tXOH}^{[2]}$	Expansion Out HIGH Delay from Clock		25		35		60	ns

Notes:

1. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance, as in Figure Ia.
2. $\mathbf{t}_{\mathrm{XOH}}$ is guaranteed to be greater than or equal to $\mathrm{t}_{\mathrm{XOL}}$ under all conditions.
3. See the last page of this specification for Group A subgroup testing information.

Switching Waveforms

Asynchronous Read and Write Timing Diagram

Master Reset Timing Diagram

Notes:

1. $\mathrm{t}_{\mathrm{MRSC}}=\mathrm{t}_{\mathrm{PMR}}+\mathrm{t}_{\mathrm{RMR}} . \quad 2 . \overline{\mathrm{W}}$ and $\overline{\mathrm{R}}=\mathrm{V}_{\mathrm{IH}}$ around the rising edge of $\overline{\mathrm{MR}}$.

Switching Waveforms (Continued)

Half-Full Flag Timing Diagram

Last WRITE to First READ Full Flag Timing Diagram

Last READ to First WRITE Empty Flag Timing Diagram

Retransmit Timing Diagram

0081-12

Notes:

1. $\mathrm{t}_{\mathrm{RTC}}=\mathrm{t}_{\mathrm{RT}}+\mathrm{t}_{\mathrm{RTR}}$.
2. $\overline{\mathrm{EF}}, \overline{\mathrm{HF}}$ and $\overline{\mathrm{FF}}$ may change state during retransmit as a result of the offset of the read and write pointers, but flags will be valid at $\mathrm{t}_{\text {RTC }}$.

Switching Waveforms (Continued)
Empty Flag and Read Bubble-Through Mode Timing Diagram

Full Flag and Write Bubble-Through Mode Timing Diagram

Expansion Timing Diagrams

*Expansion Out of Device $1\left(\overline{\mathrm{XO}}_{1}\right)$ is connected to Expansion In of Device $2\left(\overline{\mathrm{XO}}_{2}\right)$.

PRELIMINARY

Architecture

The CY7C420/421/424/425/428/429 FIFOs consist of an array of $512 / 1024 / 2048$ words of 9 -bits each (implemented by an array of dual port RAM cells), a read pointer, a write pointer, control signals ($\overline{\mathbf{W}}, \overline{\mathrm{R}}, \overline{\mathrm{XI}}, \overline{\mathrm{XO}}, \overline{\mathrm{FL}}, \overline{\mathrm{RT}}, \overline{\mathrm{MR}}$) and Full, Half Full, and Empty flags.

Dual Port RAM

The dual port RAM architecture refers to the basic memory cell used in the RAM. The cell itself enables the read and write operations to be independent of each other, which is necessary to achieve truly asynchronous operation of the inputs and outputs. A second benefit is that the time required to increment the read and write pointers is much less than the time that would be required for data to propagate through the memory, which would be the case if the memory were implemented using the conventional register array architecture.

Resetting the FIFO

Upon power up, the FIFO must be reset with a Master Reset ($\overline{\mathrm{MR}}$) cycle. This causes the FIFO to enter the empty condition signified by the Empty flag ($\overline{\mathrm{EF}}$) being LOW, and both the Half-Full ($\overline{\mathrm{HF}}$) and Full flag ($\overline{\mathrm{FF}}$) resetting to HIGH. Read ($\overline{\mathrm{R}}$) and Write $(\overline{\mathrm{W}})$ must be HIGH
trPW/ $^{\text {/WPW }}$ before and trMR after the rising edge of $\overline{M R}$ for a valid reset cycle.

Writing Data to the FIFO

The availability of an empty location is indicated by the HIGH state of the Full flag ($\overline{\mathbf{F F}})$. A falling edge of Write (\bar{W}) initiates a write cycle. Data appearing at the inputs (D0-D8) $\mathrm{t}_{\text {SD }}$ before and t_{HD} after the rising edge of $\overline{\mathbf{W}}$ will be stored sequentially in the FIFO.
The Empty flag ($\overline{\mathrm{EF}}$) LOW to HIGH transition occurs tWEF after the first LOW to HIGH transition on the write clock of an empty FIFO. The Half-Full flag ($\overline{\mathrm{HF}}$) will go LOW on the falling edge of the write clock following the occurrence of half full. HF will remain LOW while less than one half of the total memory of this device is available for writing. The LOW to HIGH transition of the $\overline{\mathrm{HF}}$ flag occurs on the rising edge of Read ($\overline{\mathrm{R}}) . \overline{\mathrm{HF}}$ is available in Single Device Mode only. The Full flag ($\overline{\mathrm{FF}}$) goes low on the falling edge of \bar{W} during the cycle in which the last available location in the FIFO is written, prohibiting overflow. $\overline{\mathrm{FF}}$ goes HIGH $\mathrm{t}_{\mathrm{RFF}}$ after the completion of a valid read of a full FIFO.

Reading Data from the FIFO

The falling edge of Read ($\overline{\mathrm{R}}$) initiates a read cycle if the Empty flag ($\overline{\mathrm{EF}}$) is not LOW. Data outputs (Q0-Q8) are in a high impedance condition between read operations
($\overline{\mathrm{R}}$ HIGH), when the FIFO is empty, or when the FIFO is in the Depth Expansion Mode but is not the active device.
The falling edge of $\overline{\mathrm{R}}$ during the last read cycle before the empty condition triggers a HIGH to LOW transition of $\overline{\mathrm{EF}}$, prohibiting any further read operations until tWEF after a valid write.

Retransmit

The Retransmit feature is beneficial when transferring packets of data. It enables the receipt of data to be interrogated by the receiver and retransmitted if necessary.
The Retransmit ($\overline{\mathrm{RT}}$) input is active in the Single Device Mode only. A LOW pulse on $\overline{\mathrm{RT}}$ resets the internal read pointer to the first physical location of the FIFO. The write pointer is unaffected. $\overline{\mathbf{R}}$ and $\overline{\mathbf{W}}$ must both be HIGH during a retransmit cycle. Full, Half Full and Empty flags are governed by the relative locations of the Read and Write pointers and will be updated by a retransmit operation.

Single Device/Width Expansion Modes

Single Device and Width Expansion Modes are entered by grounding XI during a MR cycle. During these modes the HF and RT features are available. FIFOs can be expanded in width to provide word widths greater than 9 in increments of 9. During Width Expansion Mode all control line inputs are common to all devices and flag outputs from any device can be monitored.

Depth Expansion Mode (Figure 3)

Depth Expansion Mode is entered when, during a $\overline{\mathbf{M R}}$ cycle, Expansion Out ($\overline{\mathbf{X O}}$) of one device is connected to Expansion In (XI) of the next device, with XO of the last device connected to $\overline{\text { XI }}$ of the first device. In the Depth Expansion Mode the First Load ($\overline{\mathrm{FL}}$) input, when grounded, indicates that this part is the first to be loaded. All other devices must have this pin HIGH. To enable the correct FIFO, XO is pulsed LOW when the last physical location of the previous FIFO is written to and is pulsed LOW again when the last physical location is read. Only one FIFO is enabled for read and one is enabled for write at any given time. All other devices are in standby.
FIFOs can also be expanded simultaneously in depth and width. Consequently, any depth or width FIFO can be created of word widths in increments of 9 . When expanding in depth, a composite $\overline{\mathrm{FF}}$ must be created by OR-ing the FFs together. Likewise, a composite $\overline{\mathrm{EF}}$ is created by OR-ing the $\overline{\mathrm{EFs}}$ together. $\overline{\mathrm{HF}}$ and $\overline{\mathrm{RT}}$ functions are not available in Depth Expansion Mode.

Architecture (Continued)

* FIRST DEVICE

Figure 3. Depth Expansion

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
30	CY7C420-30PC	P15	Commercial
	CY7C420-30DC	D16	
	CY7C420-30DMB	D16	Military
40	CY7C420-40PC	P15	Commercial
	CY7C420-40DC	D16	
	CY7C420-40DMB	D16	Military
65	CY7C420-65PC	P15	Commercial
	CY7C420-65DC	D16	
	CY7C420-65DMB	D16	Military

Speed (ns)	Ordering Code	Package Type	Operating Range
30	CY7C421-30PC	P21	Commercial
	CY7C421-30JC	J65	
	CY7C421-30VC	V21	
	CY7C421-30DC	D22	
	CY7C421-30LC	L55	
	CY7C421-30DMB	D22	Military
	CY7C421-30LMB	L55	
40	CY7C421-40PC	P21	Commercial
	CY7C421-40JC	J65	
	CY7C421-40VC	V21	
	CY7C421-40DC	D22	
	CY7C421-40LC	L55	
	CY7C421-40DMB	D22	Military
	CY7C421-40LMB	L55	
65	CY7C421-65PC	P21	Commercial
	CY7C421-65JC	J65	
	CY7C421-65VC	V21	
	CY7C421-65DC	D22	
	CY7C421-65LC	L55	
	CY7C421-65DMB	D22	Military
	CY7C421-65LMB	L55	

Speed (ns)	Ordering Code	Package Type	Operating Range
30	CY7C424-30PC	P15	Commercial
	CY7C424-30DC	D16	
	CY7C424-30DMB	D16	Military
	CY7C424-40PC	P15	Commercial
	CY7C424-40DC	D16	
	CY7C424-40DMB	D16	Military
65	CY7C424-65PC	P15	Commercial
	CY7C424-65DC	D16	
	CY7C424-65DMB	D16	Military

Speed (ns)	Ordering Code	Package Type	Operating Range
30	CY7C425-30PC	P21	Commercial
	CY7C425-30JC	J65	
	CY7C425-30VC	V21	
	CY7C425-30DC	D22	
	CY7C425-30LC	L55	
	CY7C425-30DMB	D22	Military
	CY7C425-30LMB	L55	
40	CY7C425-40PC	P21	Commercial
	CY7C425-40JC	J65	
	CY7C425-40VC	V21	
	CY7C425-40DC	D22	
	CY7C425-40LC	L55	
	CY7C425-40DMB	D22	Military
	CY7C425-40LMB	L55	
65	CY7C425-65PC	P21	Commercial
	CY7C425-65JC	J65	
	CY7C425-65VC	V21	
	CY7C425-65DC	D22	
	CY7C425-65LC	L55	
	CY7C425-65DMB	D22	Military
	CY7C425-65LMB	L55	

Ordering Information (Continued)

Speed (ns)	Ordering Code	Package Type	Operating Range
30	CY7C428-30PC	P15	Commercial
	CY7C428-30DC	D16	
	CY7C428-30DMB	D16	Military
40	CY7C428-40PC	P15	Commercial
	CY7C428-40DC	D16	
	CY7C428-40DMB	D16	Military
65	CY7C428-65PC	P15	Commercial
	CY7C428-65DC	D16	
	CY7C428-65DMB	D16	Military

Speed (ns)	Ordering Code	Package Type	Operating Range
30	CY7C429-30PC	P21	Commercial
	CY7C429-30JC	J65	
	CY7C429-30VC	V21	
	CY7C429-30DC	D22	
	CY7C429-30LC	L55	
	CY7C429-30DMB	D22	Military
	CY7C429-30LMB	L55	
40	CY7C429-40PC	P21	Commercial
	CY7C429-40JC	J65	
	CY7C429-40VC	V21	
	CY7C429-40DC	D22	
	CY7C429-40LC	L55	
	CY7C429-40DMB	D22	Military
	CY7C429-40LMB	L55	
65	CY7C429-65PC	P21	Commercial
	CY7C429-65JC	J65	
	CY7C429-65VC	V21	
	CY7C429-65DC	D22	
	CY7C429-65LC	L55	
	CY7C429-65DMB	D22	Military
	CY7C429-65LMB	L55	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$
I_{OS}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{RC}	9,10,11
t_{A}	9,10,11
$\mathrm{t}_{\text {RR }}$	9,10,11
tPR	9,10,11
$\mathrm{t}_{\text {LZR }}$	9,10,11
tDVR	9,10,11
$\mathrm{t}_{\mathrm{HZR}}$	9,10,11
twC	9,10,11
tpw	9,10,11
$t_{\text {HWZ }}$	9,10,11
twR	9,10,11
$\mathrm{t}_{\text {SD }}$	9,10,11
t_{HD}	9,10,11
$\mathrm{t}_{\text {MRSC }}$	9,10,11
tPMR	9,10,11
trMR	9,10,11
$t_{\text {RPW }}$	9,10,11
twPW	9,10,11
trTC	9,10,11
$\mathrm{tPRT}^{\text {Pr }}$	9,10,11
trer	9,10,11
tefl	9,10,11
$\mathrm{t}_{\mathrm{HFH}}$	9,10,11
tFFH	9,10,11

Parameters	Subgroups
$\mathrm{t}_{\text {REF }}$	9,10,11
$\mathrm{t}_{\text {RFF }}$	9,10,11
twEF	9,10,11
tWFF	9,10,11
tWHF	9,10,11
$\mathrm{t}_{\text {RHF }}$	9,10,11
$t_{\text {RAE }}$	9,10,11
$\mathrm{t}_{\text {RPE }}$	9,10,11
twaF	9,10,11
tWPF	9,10,11
t XOL	9,10,11
t XOH	9,10,11
$\mathbf{t}_{\mathbf{X C H}}$	9,10,11
tPXF	9,10,11
$\mathrm{t}_{\text {XIR }}$	9,10,11
${ }^{\text {XXIS }}$	9,10,11

Features

- Fast
- CY7C510-45 has a 45 ns (max.) clock cycle (commercial)
- CY7C510-55 has a 55 ns (max.) clock cycle (military)
- Low Power
- ICC (max. at 10 MHz$)=$ 100 mA (commercial)
- ICC (max. at 10 MHz$)=$ 110 mA (military)
- VCC Margin
$-5 V \pm 10 \%$
- All parameters guaranteed over commercial and military operating temperature range
- 16×16 bit parallel multiplication with accumulation to 35-bit result
- Two's complement or unsigned magnitude operation
- ESD Protection - Capable of withstanding greater than 2000 V static discharge voltage
- Pin compatible and functionally equivalent to Am29510 and TMC2110

Functional Description

The CY7C510 is a high-speed 16×16 parallel multiplier accumulator which operates at 45 ns clocked multiply accumulate (MAC) time (22 MHz multiply accumulate rate). The operands may be specified as either two's complement or unsigned magnitude 16-bit numbers. The accumulator functions
include loading the accumulator with the current product, adding or subtracting the accumulator contents and the current product, or preloading the accumulator from the external world.
All inputs (data and instructions) and outputs are registered. These independently clocked registers are positive edge triggered D-type flip-flops. The 35-bit accumulator/output register is divided into a 3-bit extended product (XTP), a 16-bit most significant product (MSP), and a 16-bit least significant product (LSP). The XTP and MSP have dedicated ports for threestate output; the LSP is multiplexed with the Y-input. The 35-bit accumulator/output register may be preloaded through the bidirectional output ports.

Logic Block Diagram

Selection Guide

		7C510-45	7C510-55	7C510-65	7C510-75
Maximum Multiply- Accumulate Time (ns)	Commercial	45	55	65	75
	Military		55	65	75

Operating Range

Range	Temperature	VCC
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[1]$	-55° to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Note:

1. T_{A} is the "instant on" case temperature.

0057-3

Pin Configurations (Continued)

Pin Configuration for 68-Pin Grid Array

Pin Definitions

Signal Name	I/O	Description
X_{15-0}	1	X-Input Data. This 16-bit number may be interpreted as two's complement or unsigned magnitude.
$\begin{aligned} & \mathbf{Y}_{15-0} \\ & \left(\mathbf{P}_{15-0}\right) \end{aligned}$	I/O	Y-Input Data/LSP Output Data. When this port is used to input a Y value, the 16-bit number may be interpreted as two's complement or unsigned magnitude. This bidirectional port is multiplexed with the LSP output (P_{15-0}), and can also be used to preload the LSP register.
P_{34-32}	I/O	Extended Product (XTP) Output Data. This port is bidirectional. The extended product emerges through this port. The XTP register may also be preloaded through this port.
P_{31-16}	I/O	MSP Output Data. This port is bidirectional. The most significant product emerges through this port. The MSP register may also be preloaded through this port.
\mathbf{P}_{15-0}	I/O	LSP Output Data. This port is bidirectional. The least significant product emerges through this port. The LSP register may also be preloaded through this port.
CLKX	I	X-Register Clock. X-Input Data are latched into the X -register at the rising edge of CLKX.
CLKY	I	Y-Register Clock. Y-Input Data are latched into the Y-register at the rising edge of CLKY.
CLKP	I	Product Register Clock. XTP, MSP, and LSP are latched into their respective registers at the rising edge of CLKP. If preload is selected, these registers are loaded with the preload data at the output pins via the bidirectional ports. If preload is not selected, these registers are loaded with the current accumulated product.
$\overline{\text { OEX }}$	I	Output Enable Extended. When LOW, the extended product bidirectional port is enabled for output. When HIGH, the outputs drivers are disabled (high impedance) and the XTP port may be used for preloading. See Preload Function Table.
$\overline{\text { OEM }}$	I	Output Enable Most. When LOW, the MSP bidirectional port is enabled for output. When HIGH, the output drivers are disabled (high impedance) and the MSP port may be used for preloading. See Preload Function Table.

| $\begin{array}{l}\text { Signal } \\ \text { Name }\end{array}$ | I/O | Description |
| :--- | :---: | :--- | \left\lvert\, \(\left.\left.\begin{array}{l|l|l|}\hline OEL \& I \& \begin{array}{l}Output Enable Least. When LOW, the

LSP bidirectional port is enabled for

output. When HIGH, the output drivers

are disabled (high impedance) and the

MSP port may be used for preloading. See

Preload Function Table.\end{array}

\hline PREL \& I \& $$
\begin{array}{l}\text { Preload. When HIGH, the three } \\
\text { bidirectional ports may be used to preload } \\
\text { data into the accumulator register at the } \\
\text { rising edge of CLKP. The three-state } \\
\text { controls (OEX, OEM, OEL) must be }\end{array}
$$

HIGH to preload data.

When LOW, the accumulated product is

loaded into the accumulator/output

register at the rising edge of CLKP. The

output drivers must be enabled (OEX,\end{array}\right.\right\} $$
\begin{array}{l}\text { OEM, OEL must be LOW) for the } \\
\text { accumulated product to be output. } \\
\text { Ordinarily, PREL, OEX, OEM, and OEL } \\
\text { are tied together. See accumulator } \\
\text { function table. }\end{array}
$$\right\}\)

Functional Description

The CY7C510 is a high-speed 16×16-bit multiplier accumulator (MAC). It comprises a 16 -bit parallel multiplier followed by a 35 -bit accumulator. All inputs (data and instructions) and outputs are registered. The 7C510 is divided into four sections: the input section, the 16×16 asynchronous multiplier array, the accumulator, and the output/preload section.
The input section has two 16-bit operand input registers for the X and Y operands, clocked by the rising edge of CLKX and CLKY, respectively. The four-bit instruction register (TC, RND, ACC, SUB) is clocked by the rising edge of the logical OR of CLKX, CLKY.
The 16×16 asynchronous multiplier array produces the 32-bit product of the input operands. Either two's complement or unsigned magnitude operation is selected, based on control TC. If rounding is selected, (RND = 1), a " 1 " is added to the MSB of the LSP (position P_{15}). The 32-bit product is zero-filled or sign-extended as appropriate and passed as a 35-bit number to the accumulator section.
The accumulator function is controlled by ACC, SUB, and PREL. Four functions may be selected: the accumulator may be loaded with the current product; the product may be added to the accumulator contents; the accumulator contents may be subtracted from the current product; or the accumulator may be preloaded from the bidirectional ports.
The output/preload section contains the accumulator/output register and the bidirectional ports. This section is controlled by the signals PREL, OEX, OEM, and OEL. When PREL is HIGH, the output buffers are in high impedance state. When the controls $\overline{\text { OEX, }} \overline{\mathrm{OEM}}$, and OEL are also high, data present at the output pins will be preloaded into the appropriate accumulator register at the rising edge of CLKP. When PREL is LOW, the signals OEX, OEM, and $\overline{\mathrm{OEL}}$ are enable controls for their respective three-state output ports.

Preload Function Table

PREL	$\overline{\text { OEX }}$	$\overline{\text { OEM }}$	$\overline{\text { OEL }}$	Output Register		
				XTP	MSP	LSP
0	0	0	0	Q	Q	Q
0	0	0	1	Q	Q	Z
0	0	1	0	Q	Z	Q
0	0	1	1	Q	Z	Z
0	1	0	0	Z	Q	Q
0	1	0	1	Z	Q	Z
0	1	1	0	Z	Z	Q
0	1	1	1	Z	Z	Z
1	0	0	0	Z	Z	Z
1	0	0	1	Z	Z	PL
1	0	1	0	Z	PL	Z
1	0	1	1	Z	PL	PL
1	1	0	0	PL	Z	Z
1	1	0	1	PL	Z	PL
1	1	1	0	PL	PL	Z
1	1	1	1	PL	PL	PL

Z = Output buffers at High impedance (disabled.)
$\mathrm{Q}=$ Output buffers at Low impedance. Contents of output register available through output ports.
PL $=$ Output disabled. Preload data supplied to the output pins will be loaded into the output register at the rising edge of CLKP.
Accumulator Function Table

PREL	ACC	SUB	P	OPERATION
L	L	X	Q	Load
L	H	L	Q	Add
L	H	H	Q	Subtract
H	X	X	PL	Preload

CY7C510

Input Formats

Fractional Two's Complement Input

Integer Two's Complement Input

Unsigned Fractional Input

Unsigned Integer Input

CY7C510

Output Formats

Two's Complement Fractional Output

 (Sign)

Two's Complement Integer Output

XTP
MSP
LSP

34	33	32

$-2342^{33} 2^{32}$ (Sign)

Unsigned Fractional Output

Unsigned Integer Output

XTP

34	33	32

$2342^{33} \quad 232$

MSP

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17
16														

LSP

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Electrical Characteristics Over Operating Range ${ }^{[4]}$

Parameters	Description		Test Conditions		Min.	Max.	Units
V_{OH}	Output HIGH Voltage		$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$		2.4		V
V_{OL}	Output LOW Voltage		$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}$			0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage				2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage					0.8	V
$\mathrm{IOH}^{\text {O}}$	Output HIGH Current		$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$		-0.4		mA
I_{OL}	Output LOW Current		$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$		4.0		mA
IIX	Input Leakage Current		$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	$+10$	$\mu \mathrm{A}$
II	Input Current, Max. Input Voltage		$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$			10	mA
$\mathrm{IOS}^{\text {[1] }}$	Output Short Circuit Current		$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$		-3	-30	mA
IOZL	Output OFF (Hi-Z) Current		$\mathrm{V}_{\mathrm{CC}}=$ Max., $\overline{\mathrm{OE}}=2.0 \mathrm{~V}$			-25	$\mu \mathrm{A}$
IozH	Output OFF (Hi-Z) Current		$\mathrm{V}_{\mathrm{CC}}=$ Max., $\overline{\mathrm{OE}}=2.0 \mathrm{~V}$		25		$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{CC}}(\mathrm{Q} 1)^{[2]}$	Supply Current (Quiescent)		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{V}_{\mathrm{IN}}=\left[\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{IL}}\right] \text { or }\left[\mathrm{V}_{\mathrm{IH}} \text { to } \mathrm{V}_{\mathrm{CC}}\right] \end{aligned}$			30	mA
$\mathrm{I}_{\mathrm{CC}}(\mathrm{Q} 2)^{[2]}$	Supply Current (Quiescent)		$\mathrm{V}_{\mathrm{CC}}=$ Max	Commercial		20	m
			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \geq \mathrm{V}_{\mathrm{IN}} \geq 3.85 \mathrm{~V} \\ & 0.4 \mathrm{~V} \geq \mathrm{V}_{\mathrm{IN}} \geq \text { GND } \end{aligned}$	Military		25	
$\mathrm{I}_{\text {CC }}$ (Max. ${ }^{\text {[2] }}$	Supply Current	Commercial	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{f}_{\text {CLK }}=10 \mathrm{MHz}$			100	mA
		Military				110	

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	8	pF
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	

5

Notes:

1. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second.
2. For ICC measurements, the outputs are three-stated. Two quiescent figures are given for different input voltage ranges. To calculate $I_{C C}$ at any given clock frequency, use $30 \mathrm{~mA}+\mathrm{I}_{\mathrm{CC}}$ (A.C.), where I_{CC} $(\mathrm{A} . \mathrm{C})=.(7 \mathrm{~mA} / \mathrm{MHz}) \times$ Clock Frequency for the Commercial temperature range. $\mathrm{I}_{\mathrm{CC}}(\mathrm{A} . \mathrm{C})=.(8 \mathrm{~mA} / \mathrm{MHz}) \times$ Clock Frequency for Military temperature range.
3. Tested initially and after any design or process changes that may affect these parameters.
4. See the last page of this specification for Group A subgroup testing information.

Output Loads Used for A.C. Performance Characteristics

Normal Load (Load 1)

0057-4

Three-State Delay Load (Load 2)

0057-5

Equivalent to: THÉVENIN EQUIVALENT

455Ω

Switching Characteristics Over Operating Range ${ }^{[3]}$

Parameters	Description		7C510-45		7C510-55		7C510-65		7C510-75		Units
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
tMA	Multiply Accumulate Time			45		55		65		75	ns
ts	Setup Time		20		20		25		25		ns
t_{H}	Hold Time		3		3		3		3		ns
$\mathrm{t}_{\text {PW }}$	Clock Pulse Width		25		25		30		30		ns
tPDP	Output Clock to P			30		30		35		35	ns
tPDY	Output Clock to Y			30		30		35		35	ns
tPHZ	$\overline{O E X}, \overline{O E M}$ to P; $\overline{\text { OEL }}$ to Y (Disable Time)	HIGH to Z		25		25		30		30	ns
tplZ		LOW to Z		25		25		30		30	ns
tPZH	$\overline{\mathrm{OEX}}, \overline{\mathrm{OEM}}$ to P ; $\overline{\text { OEL }}$ to Y (Enable Time)	Z to HIGH		30		30		35		35	ns
tPZL		Z to LOW		30		30		35		35	ns
$\mathrm{t}_{\mathrm{HCL}}$	Relative Hold Time		0		0		0				ns

Test Waveforms

TEST	V_{X}	OUTPUT WAVEFORM - MEASUREMENT LEVEL
ALL $t_{P D} ' s$	$V_{C C}$	$V_{O H}$ $V_{O L}$ $t_{P H Z}$
0.0 V	$V_{O H}$	
$t_{P L Z}$	2.6 V	V_{OL}
$t_{P Z H}$	0.0 V	0.0 V
$t_{P Z L}$	2.6 V	2.6 V

Setup and Hold Time

0057-8

Notes:

1. Diagram shown for HIGH data only. Output transition may be opposite sense.
2. Cross hatched area is don't care condition.

Pulse Width

0057-9
3. See the last page of this specification for Group A subgroup testing information.

CY7C510 Timing Diagram

Preload Timing Diagram

Three-State Timing Diagram

Typical AC and DC Characteristics

OUTPUT SOURCE CURRENT vs. OUTPUT VOLTAGE

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
45	CY7C510-45 PC CY7C510-45 LC CY7C510-45 JC CY7C510-45 DC CY7C510-45 GC	$\begin{aligned} & \text { P29 } \\ & \text { L81 } \\ & \text { J81 } \\ & \text { D30 } \\ & \text { G68 } \\ & \hline \end{aligned}$	Commercial
55	CY7C510-55 PC CY7C510-55 LC CY7C510-55 JC CY7C510-55 DC CY7C510-55 GC	$\begin{aligned} & \text { P29 } \\ & \text { L81 } \\ & \text { J81 } \\ & \text { D30 } \\ & \text { G68 } \end{aligned}$	Commercial
	CY7C510-55 LMB CY7C510-55 DMB CY7C510-55 GMB	$\begin{aligned} & \text { L81 } \\ & \text { D30 } \\ & \text { G68 } \end{aligned}$	Military
65	CY7C510-65 PC CY7C510-65 LC CY7C510-65 JC CY7C510-65 DC CY7C510-65 GC	$\begin{aligned} & \text { P29 } \\ & \text { L81 } \\ & \text { J81 } \\ & \text { D30 } \\ & \text { G68 } \\ & \hline \end{aligned}$	Commercial
	CY7C510-65 LMB CY7C510-65 DMB CY7C510-65 GMB	$\begin{aligned} & \text { L81 } \\ & \text { D30 } \\ & \text { G68 } \end{aligned}$	Military
75	CY7C510-75 PC CY7C510-75 LC CY7C510-75 JC CY7C510-75 DC CY7C510-75 GC	$\begin{aligned} & \text { P29 } \\ & \text { L81 } \\ & \text { J81 } \\ & \text { D30 } \\ & \text { G68 } \\ & \hline \end{aligned}$	Commercial
	CY7C510-75 LMB CY7C510-75 DMB CY7C510-75 GMB	$\begin{aligned} & \text { L81 } \\ & \text { D30 } \\ & \text { G68 } \end{aligned}$	Military

MILITARY SPECIFICATIONS
Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{OH}	$1,2,3$
I_{OL}	$1,2,3$
I_{IX}	$1,2,3$
I_{I}	$1,2,3$
I_{OS}	$1,2,3$
$\mathrm{I}_{\mathrm{OZL}}$	$1,2,3$
$\mathrm{I}_{\mathrm{OZH}}$	$1,2,3$

Parameters	Subgroups
I_{CC} (Q1)	$1,2,3$
I_{CC} (Q2)	$1,2,3$
I_{CC} (Max.)	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{MA}	7,8,9,10,11
ts	7,8,9,10,11
t_{H}	7,8,9,10,11
tPW	7,8,9,10,11
tPDP	7,8,9,10,11
tPDY	7,8,9,10,11
tPHZ	7,8,9,10,11
tplZ	7,8,9,10,11
tPZH	7,8,9,10,11
$t_{\text {PZL }}$	7,8,9,10,11
$\mathrm{t}_{\mathrm{HCL}}$	7,8,9,10,11

[^11]
Features

- Fast
- 38 ns clock cycle (commercial)
- 42 ns clock cycle (military)
- Low Power
- ICC (max. at 10 MHz) = 100 mA (commercial)
- ICC (max. at 10 MHz) $=$ 110 mA (military)
- $\mathbf{V}_{\mathbf{C C}}$ Margin
$-5 \mathrm{~V} \pm 10 \%$
- All parameters guaranteed over commercial and military operating temperature range
- 16×16 bit parallel
multiplication with full precision
32-bit product output
- Two's complement, unsigned magnitude, or mixed mode multiplication
- CY7C516 pin compatible and functionally equivalent to Am29516, MPY016K, MPY016H
- CY7C517 pin compatible and functionally equivalent to Am29517

Functional Description

The CY7C516/517 are high-speed 16 x 16 parallel multipliers which operate at 38 ns clocked multiply times (26 MHz multiplication rate). The two input operands may be independently specified
as either two's complement or unsigned magnitude numbers. Controls are provided for rounding and format adjustment of the full precision 32-bit product.
On the 7C516, individually clocked input and output registers are provided to maximize throughput and to simplify bus interfacing. On the 7C517, a single clock (CLK) is provided, along with three register enables. This facilitates the use of the 7C517 in microprogrammed systems. The input and output registers are positive edge triggered D-type flip-flops. The output register may be made transparent for asynchronous output.

Logic Block Diagrams

CY7C517

Selection Guide

		7C516-38	7C516-42	7C516-45	7C516-55	7C516-75
		7C517-38	7C517-42	7C517-45	7C517-55	7C517-75
Maximum Multiply Time (ns) Clocked/Unclocked	Commercial	$38 / 58$		$45 / 65$	$55 / 75$	$75 / 100$
	Military		$42 / 65$		$55 / 75$	$75 / 100$

Functional Description (Continued)

Two output modes may be selected by using the output multiplexer control, MSPSEL. Holding MSPSEL LOW causes the most significant product (MSP) to be available at the dedicated output port. The LSP is simultaneously available at the bidirectional port shared with the Y -inputs.

The other mode of output involves toggling of the MSPSEL control, allowing both the MSP and LSP to be available for output through the dedicated 16 -bit output port.

Pin Configurations

Pin Configurations (Continued)

Pin Configuration for 68-Pin Grid Array

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Ambient Temperature Under Bias $\ldots-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential $\ldots-0.5 \mathrm{~V}$ to +7.0 V
DC Input Voltage -0.5 V to +7.0 V
DC Voltage Applied to Outputs -0.5 V to V_{CC} Max.
Output Current, into Outputs (low) 10 mA
Static Discharge Voltage . $>1000 \mathrm{~V}$
(per MIL-STD-883 Method 3015)

Pin Definitions

Signal Name	I/O	Description
X ${ }_{15-0}$	I	X-Input Data. This 16 -bit number may be interpreted as two's complement or unsigned magnitude.
$\begin{aligned} & \mathbf{Y}_{15-0} \\ & \left(\mathbf{P}_{15-0}\right) \end{aligned}$		Y-Input/LSP Output Data. This 16-bit number may be interpreted as two's complement or unsigned magnitude. The Y-input port may be multiplexed with the LSP output (\mathbf{P}_{15-0}).
$\begin{aligned} & \mathbf{P}_{31-16} \\ & \left(\mathbf{P}_{15-0}\right) \end{aligned}$	0	Output Data. This 16-bit port may carryeither the MSP (\mathbf{P}_{31-16}) or the LSP (\mathbf{P}_{15-0}).
FT	I	The MSP and LSP registers are made transparent (asynchronous operation) if FT is HIGH.
FA	I	Format Adjust Control. If FA is HIGH, a full 32-bit product is output. If FA is LOW, a leftshifted product is output, with the sign bit replicated in the LSP. FA must be HIGH for two's complement integer, unsigned magnitude, and mixed mode multiplication.
$\overline{\text { MSPSEL }}$	I	Output Multiplexer Control. When MSPSEL is LOW, the MSP is available for output at the MSP output port, and the LSP is available at the Y-input/LSP output port. When MSPSEL is HIGH, the LSP is available at both ports (above) and the MSP is not available.
RND	I	Round Control. When RND is HIGH, a one is added to the MSB of the LSP. This position is dependent on the FA control; FA = HIGH means RND adds to the 2-15 bit (P_{15}), FA = LOW means RND adds to the 2-16 bit (P_{14}).
TCX	I	Two's Complement Control X. X-input data are interpreted as two's complement when TCX is HIGH. TCX LOW means the data are interpreted as unsigned magnitude.

Operating Range

Range	Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[1]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Note:

1. T_{A} is the "instant on" case temperature.

Signal

Name	I/O	Description
TCY	I	Two's Complement Control Y. Y-Input data
		are interpeted as two's complement when
		TCY is HIGH. TCY LOW means the data
		are interpreted as unsigned magnitude.

$\overline{\text { OEP }} \quad$ I $\quad \mathbf{P}_{31-16} / \mathbf{P}_{15-0}$ Output Port Three-State Control. When $\overline{\text { OEP }}$ is LOW, the output port is enabled; when $\overline{\text { OEP }}$ is HIGH, the drivers are in a high impedance state.
$\overline{\text { OEL }} \quad$ I \quad Y-in/P15-0 Port Three State Control. When $\overline{\mathrm{OEL}}$ is LOW, the timeshared port is enabled for LSP output. When OEL is HIGH, the output drivers are in a high impedance state. This is required for Y-input.

CY7C516 Only

CLKX I X-Register Clock. X-input data and TCX are latched in at the rising edge of CLKX.

CLKY I Y-Register Clock. Y-input data and TCY are latched in at the rising edge of CLKY.

CLKM I MSP Register Clock. The most significant product (MSP) is latched in at the MSP Register at the rising edge of CLKM.

CLKL I LSP Register Clock. The least significant product (LSP) is latched in at the LSP Register at the rising edge of CLKL.

CY7C517 Only
CLK I Clock. All enabled registers latch in their data at the rising edge of CLK.

ENX I X-Register Enable. When ENX is LOW, the X -Register is enabled. X-input data and TCX will be latched in at the rising edge of CLK when the register is enabled. When ENX is HIGH, the X-Register is in hold mode.
$\overline{\text { ENY }} \quad$ I X-Register Enable. $\overline{\text { ENY }}$ enables the Y-Register. (See ENX.)
$\overline{\text { ENP }} \quad$ I Product Register Enable. $\overline{\text { ENP }}$ enables the product register. Both the MSP and LSP Sections are enabled by ENP. (See ENX.)

Input Formats (All Devices)

Fractional Two's Complement Input Format

TCX, TCY $=1$

Integer Two's Complement Input Format

$\mathrm{TCX}, \mathrm{TCY}=1$

Unsigned Fractional Input Format

$\mathrm{TCX}, \mathrm{TCY}=0$

Unsigned Integer Input Format

$\mathrm{TCX}, \mathrm{TCY}=0$

Output Formats (All Devices)

Fractional Two's Complement (Shifted)* Format

$\mathrm{FA}=0$

MSP

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17
-20	2^{-1}	2^{-2}	2^{-3}	2^{-4}	2^{-5}	2^{-6}	2^{-7}	2^{-8}	2^{-9}	2^{-10}	2^{-11}	2^{-12}	2^{-13}	2^{-14}
2^{-15}														

LSP

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-20	2^{-16}	$2-17$	2^{-18}	2^{-19}	$2-20$	$2-21$	$2-22$	$2-23$	$2-24$	$2-25$	$2-26$	$2-27$	$2-28$	$2-29$	$2-30$

Fractional Two's Complement Output

$\mathrm{FA}=1$

MSP

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{llllllllllllll}-21 & 2^{0} & 2-1 & 2-2 & 2-3 & 2-4 & 2-5 & 2-6 & 2-7 & 2-8 & 2-9 & 2-10 & 2-11 & 2-12\end{array} 2-13 \quad 2-14$

LSP

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | (Sign)

Integer Two's Complement Output

$\mathrm{FA}=1$

Unsigned Fractional Output

$\mathrm{FA}=1$

Unsigned Integer Output

$\mathrm{FA}=1$

Electrical Characteristics Over Operating Range ${ }^{[4]}$

Parameters	Description		Test Conditions	Min.	Max.	Units
V_{OH}	Output HIGH Voltage		$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$	2.4		V
V_{OL}	Output LOW Voltage		$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}$		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V
$\mathrm{IOH}^{\text {O }}$	Output HIGH Current		$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$	-0.4		mA
I_{OL}	Output LOW Current		$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	4.0		mA
IIX	Input Leakage Current		$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=$ Max.	-10	10	$\mu \mathrm{A}$
$\mathrm{IOS}^{\text {[1] }}$	Output Short Circuit Current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}^{\text {., }} \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-3	-30	mA
IOZL	Output OFF (Hi-Z) Current		$\mathrm{V}_{\mathrm{CC}}=$ Max., $\overline{\mathrm{OE}}=2.0 \mathrm{~V}$		-25	$\mu \mathrm{A}$
IOZH	Output OFF (Hi-Z) Current		$\mathrm{V}_{\mathrm{CC}}=$ Max., $\overline{\mathrm{OE}}=2.0 \mathrm{~V}$	25		$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{CC}}\left(\mathrm{Q}_{1}\right)^{\text {[2] }}$	Supply Current (Quiescent)	Commercial (-38)	$\begin{aligned} & \mathrm{GND} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}} \text { or } \\ & \mathrm{V}_{\mathrm{IH}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{OE}=\mathrm{HIGH} \end{aligned}$		40	mA
		Military (-42)			45	
		All Others			30	
$\mathrm{I}_{\mathrm{CC}}\left(\mathrm{Q}_{2}\right)^{[2]}$	Supply Current (Quiescent)	Commercial	$\begin{aligned} & \text { GND } \leq \mathrm{V}_{\mathrm{IN}} \leq 0.4 \mathrm{~V} \text { or } \\ & 3.85 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}} ; \overline{\mathrm{OE}}=\mathrm{HIGH} \end{aligned}$		20	mA
		Military			25	
$\mathrm{I}_{\mathbf{C C}}(\text { Max. })^{[2]}$	Supply Current	Commercial	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{f}_{\mathrm{CLK}}=10 \mathrm{MHz} ; \\ & \mathrm{OE}=\mathrm{HIGH} \end{aligned}$		100	mA
		Military			110	

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	8	pF
	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10		

Notes:

1. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second.
2. Two quiescent figures are given for different input voltage ranges. To calculate $I_{C C}$ at any given clock frequency, use $30 \mathrm{~mA}+\mathrm{I}_{\mathrm{CC}}$ (A.C.), where $\mathrm{I}_{\mathrm{CC}}(\mathrm{A} . \mathrm{C})=.(7 \mathrm{~mA} / \mathrm{MHz}) \times$ Clock Frequency for the Commercial temperature range. $\mathrm{I}_{\mathrm{CC}}(\mathrm{A} . C)=.(8 \mathrm{~mA} / \mathrm{MHz}) \times$ Clock Frequency for the Military temperature range.
3. Tested initally and after any design or process changes that may affect these parameters.
4. See the last page of this specification for Group A subgroup testing information.

Output Loads Used for A.C. Performance Characteristics

Switching Characteristics Over Operating Range ${ }^{[2]}$

Parameters	Description		Test Conditions	$\begin{array}{\|l\|} \hline \text { 7C516-38 } \\ \text { 7C517-38 } \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline \text { 7C516-42 } \\ \text { 7C517-42 } \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 7 \mathrm{C} 516-45 \\ 7 \mathrm{C} 517-45 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline \text { 7C516-55 } \\ \text { 7C517-55 } \\ \hline \end{array}$		$\begin{array}{\|l\|} \mathbf{7 C 5 1 6 - 7 5} \\ \mathbf{7 C 5 1 7 - 7 5} \\ \hline \end{array}$		Units	
			Min.	Max.											
tMUC	Unclocked Multiply Time			Load 1		58		65		65		75		100	ns
$\mathrm{tmC}^{\text {m }}$	Clocked Multiply Time				38		42		45		55		75	ns	
ts	$\mathrm{X}_{\mathrm{i}}, \mathrm{Y}_{\mathrm{i}}$, RND, TCX, TCY Set-up Time		7			8		20		20		25		ns	
t_{H}	$\mathrm{X}_{\mathrm{i}}, \mathrm{Y}_{\mathrm{i}}, \mathrm{RND}, \mathrm{TCX}, \mathrm{TCY}$ Hold Time		3			3		3		3		3		ns	
tse	ENX, ENY, ENP Set-up Time (7C517 Only)		10			15		20		20		25		ns	
${ }^{\text {t HE }}$	ENX, ENY, ENP Hold Time (7C517 Only)		3			3		3		3		3		ns	
tPWH, tPWL	Clock Pulse Width (HIGH and LOW)		10			10		20		25		30		ns	
tPDSEL	$\overline{\text { MSPSEL }}$ to Product Out				18		21		25		25		30	ns	
tPDP	Output Clock to P				25		30		30		30		35	ns	
tPDY	Output Clock to Y				25		30		30		30		35	ns	
tPHZ	$\overline{\mathrm{OEP}}$ Disable Time	HIGH to Z	Load 2		15		17		25		25		30	ns	
tPLZ		LOW to Z			15		17		25		25		30	ns	
tPZH	$\overline{\mathrm{OEP}}$ Enable Time	Z to HIGH			23		25		30		30		35	ns	
tPZL		Z to LOW			23		25		30		30		35	ns	
tPHZ	OEL Disable Time	HIGH to Z			15		17		25		25		30	ns	
tPLZ		LOW to Z			15		17		25		25		30	ns	
$\mathrm{tPZH}^{\text {che }}$	$\overline{\text { OEL Enable Time }}$	Z to HIGH			23		25		30		30		35	ns	
tPZL		Z to LOW			23		25		30		30		35	ns	
${ }^{\text {t }} \mathrm{HCL}$	Clock Low Hold Time CLKXY Relative to CLKML ${ }^{[1]}$		Load 1	0		0		0		0		0		ns	

Notes:

1. To ensure that the correct product is entered in the output registers, new data may not be entered into the input registers before the output registers have been clocked.
2. See the last page of this specification for Group A subgroup testing information.

Test Waveforms (All Devices)

TEST	V_{X}	OUTPUT WAVEFORM - MEASUREMENT LEVEL
$A L L t_{P D} ' s$	$V_{C C}$	$V_{O H}$ $V_{O L}$ $t_{P H Z}$
0.0 V	$\mathrm{~V}_{\mathrm{OH}}$	
$\mathrm{t}_{\mathrm{PLZ}}$	2.6 V	$\mathrm{~V}_{\mathrm{OL}}$
$\mathrm{t}_{\mathrm{PZH}}$	0.0 V	0.5 V
$\mathrm{t}_{\mathrm{PZL}}$	2.6 V	2.6 V

0054-7

Setup and Hold Time (All Devices)

Pulse Width (All Devices)

Notes:

1. Diagram shown for HIGH data only. Output transition may be oppo-
2. Diagram shown for HIGH data only. Output transition may be opposite sense.

3. Cross hatched area is don't care condition.

Three-State Timing Diagram

Timing Diagram

7 C 516

Timing Diagram

7 C 517

Typical DC and AC Characteristics

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
38	$\begin{aligned} & \text { CY7C516-38PC } \\ & \text { CY7C517-38PC } \end{aligned}$	P29	Commercial
	$\begin{aligned} & \text { CY7C516-38LC } \\ & \text { CY7C517-38LC } \end{aligned}$	L81	
	CY7C516-38JC CY7C517-38JC	J81	
	CY7C516-38DC CY7C517-38DC	D30	
	$\begin{aligned} & \text { CY7C516-38GC } \\ & \text { CY7C517-38GC } \end{aligned}$	G68	
42	$\begin{aligned} & \text { CY7C516-42LMB } \\ & \text { CY7C517-42LMB } \end{aligned}$	L81	Military
	$\begin{aligned} & \text { CY7C516-42DMB } \\ & \text { CY7C517-42DMB } \end{aligned}$	D30	
	CY7C516-42GMB CY7C517-42GMB	G68	
45	$\begin{aligned} & \text { CY7C516-45PC } \\ & \text { CY7C517-45PC } \end{aligned}$	P29	Commercial
	$\begin{aligned} & \text { CY7C516-45LC } \\ & \text { CY7C517-45LC } \end{aligned}$	L81	
	$\begin{aligned} & \text { CY7C516-45JC } \\ & \text { CY7C517-45JC } \end{aligned}$	J81	
	CY7C516-45DC CY7C517-45DC	D30	
	CY7C516-45GC CY7C517-45GC	G68	

Speed (ns)	Ordering Code	Package Type	Operating Range
55	$\begin{aligned} & \text { CY7C516-55PC } \\ & \text { CY7C517-55PP } \end{aligned}$	P29	Commercial
	$\begin{aligned} & \text { CY7C516-55LC } \\ & \text { CY7C517-55LC } \end{aligned}$	L81	
	$\begin{aligned} & \text { CY7C516-55JC } \\ & \text { CY7C517-55JC } \end{aligned}$	J81	
	CY7C516-55DC CY7C517-55DC	D30	
	$\begin{aligned} & \text { CY7C516-55GC } \\ & \text { CY7C517-55GC } \end{aligned}$	G68	
	$\begin{aligned} & \text { CY7C516-55LMB } \\ & \text { CY7C517-55LMB } \end{aligned}$	L81	Military
	CY7C516-55DMB CY7C517-55DMB	D30	
	$\begin{aligned} & \text { CY7C516-55GMB } \\ & \text { CY7C517-55GMB } \end{aligned}$	G68	
75	$\begin{aligned} & \text { CY7C516-75PC } \\ & \text { CY7C517-75PC } \end{aligned}$	P29	Commercial
	$\begin{aligned} & \text { CY7C516-75LC } \\ & \text { CY7C517-75LC } \end{aligned}$	L81	
	$\begin{aligned} & \text { CY7C516-75JC } \\ & \text { CY7C517-75JC } \end{aligned}$	J81	
	CY7C516-75DC CY7C517-75DC	D30	
	CY7C516-75GC CY7C517-75GC	G68	
	$\begin{aligned} & \text { CY7C516-75LMB } \\ & \text { CY7C517-75LMB } \end{aligned}$	L81	Military
	CY7C516-75DMB CY7C517-75DMB	D30	
	CY7C516-75GMB CY7C517-75GMB	G68	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{OH}	$1,2,3$
I_{OL}	$1,2,3$
I_{IX}	$1,2,3$
I_{OS}	$1,2,3$
$\mathrm{I}_{\mathrm{OZL}}$	$1,2,3$
$\mathrm{I}_{\mathrm{OZH}}$	$1,2,3$
$\mathrm{I}_{\mathrm{CC}}\left(\mathrm{Q}_{1}\right)$	$1,2,3$

Parameters	Subgroups
$\mathrm{I}_{\mathrm{CC}}\left(\mathrm{Q}_{2}\right)$	$1,2,3$
I_{CC} (Max.)	$1,2,3$

Switching Characteristics

Parameters	Subgroups
$t_{\text {MUC }}$	$7,8,9,10,11$
$t_{\text {MC }}$	$7,8,9,10,11$
$t_{\text {s }}$	$7,8,9,10,11$
$t_{\text {H }}$	$7,8,9,10,11$
$t_{\text {SE }}$	$7,8,9,10,11$
$t_{\text {HE }}$	$7,8,9,10,11$
$t_{\text {PWH }}, t_{\text {PWL }}$	$7,8,9,10,11$
$t_{\text {PDSEL }}$	$7,8,9,10,11$
$t_{\text {PDP }}$	$7,8,9,10,11$
$t_{\text {PDY }}$	$7,8,9,10,11$
$t_{\text {PHZ }}$	$7,8,9,10,11$
$t_{\text {PLZ }}$	$7,8,9,10,11$
$t_{\text {PZH }}$	$7,8,9,10,11$
$t_{\text {PZL }}$	$7,8,9,10,11$
$t_{\text {PHZ }}$	$7,8,9,10,11$
$t_{\text {PLZ }}$	$7,8,9,10,11$
$t_{\text {PZH }}$	$7,8,9,10,11$
$t_{\text {PZL }}$	$7,8,9,10,11$
$t_{\text {HCL }}$	$7,8,9,10,11$

[^12]
CY7C901

CMOS Four-Bit Slice

Features

- Fast

CY7C901-23 has a 23 ns Read Modify-Write Cycle; Commercial 25\% Faster than "C" Spec 2901 CY7C901-27 has a 27 ns Read Modify-Write Cycle; Military $\mathbf{1 5 \%}$ Faster than "C" Spec 2901

- Low Power 70 mA (commercial)
90 mA (military)
- VCC 5V $\pm \mathbf{1 0 \%}$

Commercial and military

- Eight Function ALU
- Infinitely expandable in 4-bit increments
- Four Status Flags:

Carry, overflow, negative, zero

- Capable of withstanding greater than 2000 V static discharge voltage
- Pin Compatible and Functional Equivalent to Am2901B, C

Functional Description

The CY7C901 is a high-speed, expandable, 4-bit wide ALU that can be used to implement the arithmetic section of a CPU, peripheral controller, or programmable controller. The instruction set of the CY7C901 is basic but yet so versatile that it can emulate the ALU of almost any digital computer.
The CY7C901, as illustrated in the block diagram, consists of a 16 -word by 4-bit dual-port RAM register file, a 4-bit ALU and the required data manipulation and control logic.
The operation performed is determined by nine input control lines (I_{0} to I_{8})
that are usually inputs from a microinstruction register.
The CY7C901 is expandable in 4-bit increments, has three-state data outputs as well as flag output, and can use either a full look ahead carry or a ripple carry.
The CY7C901 is a pin compatible, functional equivalent, improved performance replacement for the Am2901.
The CY7C901 is fabricated using an advanced 1.2 micron CMOS process that eliminates latchup, results in ESD protection over 2000 V and achieves superior performance with low power dissipation.

Logic Block Diagram
Pin Configuration

Top View

Selection Guide See last page for ordering information.

Read Modify-Write Cycle (Min.) in ns	Operating ICC (Max.) in mA	Operating Range	Part Number
23	80	Commercial	CY7C901-23
27	90	Military	CY7C901-27
31	70	Commercial	CY7C901-31
32	90	Military	CY7C901-32

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Ambient Temperature with	
Power Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 10 to Pin 30)	-0.5 V to +7.0 V
DC Voltage Applied to Outputs in High Z State.	$-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}$
DC Input Voltage	-3.0 V to +7.0 V
Output Current into Outputs (Low)	30 mA

Pin Definitions

Signal

me	I/O	Description
$\mathrm{A}_{0}-\mathrm{A}_{3}$	I	These 4 address lines select one of the registers in the stack and output its contents on the (internal) A port.
$\mathrm{B}_{0}-\mathrm{B}_{3}$	I	These 4 address lines select one of the registers in the stack and output is contents on the (internal) B port. This can also be the destination address when data is written back into the register file.
$\mathrm{I}_{0}-\mathrm{I}_{8}$	I	These 9 instruction lines select the ALU data sources ($I_{0,1,2}$), the operation to be performed ($I_{3,4}, 5$) and what data is to be written into either the Q register or the register file ($I_{6,7,8}$).
$\mathrm{D}_{0}-\mathrm{D}_{3}$	I	These are 4 data input lines that may be selected by the $\mathrm{I}_{0,1,2}$ lines as inputs to the ALU.
Y_{0}	0	These are three-state data output lines that, when enabled, output either the output of the ALU or the data in the A latches, as determined by the code on the $\mathrm{I}_{6,7,8}$ lines.
$\overline{\mathrm{OE}}$	I	Output Enable. This is an active LOW input that controls the $\mathrm{Y}_{0}-\mathrm{Y}_{3}$ outputs. When this signal is LOW the Y outputs are enabled and when it is HIGH they are in the high impedance state.
CP	I	Clock Input. The LOW level of the clock write data to the 16×4 RAM. The HIGH level of the clock writes data from the RAM to the A-port and B-port latches. The operation of the \mathbf{Q} register is similar. Data is entered into the master latch on the LOW level of the clock and transferred from master to slave when the clock is HIGH.
Q3 RAM_{3}	1/O	These two lines are bidirectional and are controlled by the $\mathbf{I}_{6,7,8}$ inputs. Electrically they are three-state output drivers connected to the TTL compatible CMOS inputs.

Static Discharge Voltage . > $>2001 \mathrm{~V}$
(Per MIL-STD-883 Method 3015)
Latchup Current (Outputs) $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	VCC
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[1]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Note:

1. T_{A} is the "instant on" case temperature.

Signal

Name I/O

Description

Q3 I/O Outputs: When the destination code on lines $\mathrm{RAM}_{3} \quad \mathrm{I}_{6,7,8}$ indicates a shift left (UP) operation the (Cont.) three-state outputs are enabled and the MSB of the Q register is output on the Q_{3} pin and the MSB of the ALU output $\left(F_{3}\right)$ is output on the RAM 3 pin.
Inputs: When the destination code indicates a shift right (DOWN) the pins are the data inputs to the MSB of the Q register and the MSB of the RAM.
Qo I/O These two lines are bidirectional and function in a
$\mathrm{RAM}_{0} \quad$ manner similar to the Q_{3} and RAM_{3} lines, except that they are the LSB of the Q register and RAM.
C_{n}. I The carry-in to the internal ALU.
$\mathrm{C}_{\mathrm{n}}+4$ O The carry-out from the internal ALU.
$\overline{\mathrm{G}}, \overline{\mathbf{P}} \quad \mathrm{O}$ The carry generate and the carry propagate outputs of the ALU, which may be used to perform a carry look-ahead operation over the 4bits of the ALU.
OVR O Overflow. This signal is logically the exclusiveOR of the carry-in and the carry-out of the MSB of the ALU. This pin indicates that the result of the ALU operation has exceeded the capacity of the machine. It is valid only for the sign bit and assumes two's complement coding for negative numbers.
$F=0 \quad 0 \quad$ Open drain output that goes HIGH if the data on the ALU outputs ($\mathrm{F}_{0}, 1,2,3$) are all LOW. It indicates that the result of an ALU operation is zero (positive logic).
$\mathrm{F}_{3} \quad \mathrm{O}$ The most significant bit of the ALU output.

CY7C901

Functional Tables

Mnemonic	Micro Code				ALU Source Operands	
	I_{2}	I_{1}	I_{0}	Octal Code	R	S
AQ	L	L	L	0	A	Q
AB	L	L	H	1	A	B
ZQ	L	H	L	2	O	Q
ZB	L	H	H	3	O	B
ZA	H	L	L	4	O	A
DA	H	L	H	5	D	A
DQ	H	H	L	6	D	Q
DZ	H	H	H	7	D	O

Mnemonic	Micro Code				ALU Function	Symbol
	I5	I4	I_{3}	Octal Code		
ADD	L	L	L	0	R Plus S	$\mathrm{R}+\mathrm{S}$
SUBR	L	L	H	1	S Minus R	S - R
SUBS	L	H	L	2	R Minus S	$\mathbf{R}-\mathrm{S}$
OR	L	H	H	3	R OR S	R V S
AND	H	L	L	4	R AND S	$\underline{R} \wedge S$
NOTRS	H	L	H	5	$\overline{\mathrm{R}}$ AND S	$\overline{\mathrm{R}} \wedge \mathrm{S}$
EXOR	H	H	L	6	R EX-OR S	$\mathrm{R} \forall \mathrm{S}$
EXNOR	H	H	H	7	R EX-NOR S	$\bar{R} \forall \mathrm{~S}$

Figure 3. ALU Function Control

Figure 2. ALU Source Operand Control

Mnemonic	Micro Code				RAM Function		Q-Reg. Function		$\underset{\text { Output }}{\mathbf{Y}}$	RAM Shifter		Q Shifter	
	I_{8}	I_{7}	I_{6}	Octal Code	Shift	Load	Shift	Load		RAM ${ }_{0}$	RAM_{3}	\mathbf{Q}_{0}	Q3
QREG	L	L	L	0	X	None	None	$\mathrm{F} \rightarrow \mathrm{Q}$	F	X	X	X	X
NOP	L	L	H	1	X	None	X	None	F	X	X	X	X
RAMA	L	H	L	2	None	$\mathrm{F} \rightarrow \mathrm{B}$	X	None	A	X	X	X	X
RAMF	L	H	H	3	None	$\mathrm{F} \rightarrow \mathrm{B}$	X	None	F	X	X	X	X
RAMQD	H	L	L	4	DOWN	$\mathrm{F} / 2 \rightarrow \mathrm{~B}$	DOWN	$\mathrm{Q} / 2 \rightarrow \mathrm{Q}$	F	F_{0}	IN_{3}	Q_{0}	IN_{3}
RAMD	H	L	H	5	DOWN	$\mathrm{F} / 2 \rightarrow \mathrm{~B}$	X	None	F	F_{0}	IN_{3}	Q_{0}	X
RAMQU	H	H	L	6	UP	$2 \mathrm{~F} \rightarrow \mathrm{~B}$	UP	$2 \mathrm{Q} \rightarrow \mathrm{Q}$	F	IN_{0}	F_{3}	IN_{0}	Q_{3}
RAMU	H	H	H	7	UP	$2 \mathrm{~F} \rightarrow \mathrm{~B}$	X	None	F	IN_{0}	F_{3}	X	Q_{3}

$\mathrm{X}=$ Don't care. Electrically, the input shift pin is a TTL input internally connected to a three-state output which is in the high-impedance state.
$\mathrm{A}=$ Register Addressed by \mathbf{A} inputs.
$B=$ Register Addressed by \mathbf{B} inputs.
UP is toward MSB, DOWN is toward LSB.
Figure 4. ALU Destination Control

	I_{210} Octal	0	1	2	3	4	5	6	7
	ALU								
$\begin{gathered} \text { Octal } \\ \mathbf{I}_{543} \\ \hline \end{gathered}$	ALU Function	A, Q	A, B	O, Q	O, B	O, A	D, A	D, Q	D, 0
0	$\begin{aligned} & \mathbf{C}_{\mathbf{n}}=\mathbf{L} \\ & \mathbf{R} \text { plus } S \\ & \mathbf{C}_{\mathbf{n}}=\mathbf{H} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{A}+\mathrm{Q} \\ \mathrm{~A}+\mathrm{Q}+1 \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{A}+\mathbf{B} \\ \mathbf{A}+\mathbf{B}+1 \end{gathered}$	$\begin{gathered} \mathrm{Q} \\ \mathrm{Q}+1 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{B} \\ \mathrm{~B}+1 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{A} \\ \mathrm{~A}+1 \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{D}+\mathbf{A} \\ \mathbf{D}+\mathbf{A}+1 \end{gathered}$	$\begin{gathered} \mathrm{D}+\mathrm{Q} \\ \mathrm{D}+\mathrm{Q}+1 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{D} \\ \mathrm{D}+1 \\ \hline \end{gathered}$
1	$\begin{aligned} & \hline \mathbf{C}_{\mathrm{n}}=\mathrm{L} \\ & \mathrm{~S} \text { minus } \mathrm{R} \\ & \mathbf{C}_{\mathrm{n}}=\mathbf{H} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{Q}-\mathrm{A}-1 \\ \mathrm{Q}-\mathrm{A} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{B}-\mathrm{A}-1 \\ \mathrm{~B}-\mathrm{A} \\ \hline \end{gathered}$	$\mathrm{Q}-1$	$\mathrm{B}-1$	$\mathrm{A}-1$ A	$\begin{gathered} A-D-1 \\ A-D \end{gathered}$	$\begin{gathered} \mathrm{Q}-\mathrm{D}-1 \\ \mathrm{Q}-\mathrm{D} \end{gathered}$	$\begin{gathered} -\mathrm{D}-1 \\ -\mathrm{D} \end{gathered}$
2	$\begin{aligned} & \mathbf{C}_{\mathrm{n}}=\mathrm{L} \\ & \mathrm{R} \text { minus } \mathrm{S} \\ & \mathbf{C}_{\mathrm{n}}=\mathrm{H} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{A}-\mathrm{Q}-1 \\ \mathrm{~A}-\mathrm{Q} \end{gathered}$	$\begin{gathered} A-B-1 \\ A-B \end{gathered}$	$\begin{gathered} -\mathrm{Q}-1 \\ -\mathrm{Q} \\ \hline \end{gathered}$	$\begin{gathered} -\mathrm{B}-1 \\ -\mathrm{B} \end{gathered}$	$\begin{gathered} -\mathrm{A}-1 \\ -\mathrm{A} \end{gathered}$	$\begin{gathered} \mathrm{D}-\mathrm{A}-1 \\ \mathrm{D}-\mathrm{A} \end{gathered}$	$\begin{gathered} \mathrm{D}-\mathrm{Q}-1 \\ \mathrm{D}-\mathrm{Q} \end{gathered}$	$\begin{gathered} \mathrm{D}-1 \\ \mathrm{D} \\ \hline \end{gathered}$
3	R OR S	$A \vee Q$	$A \vee B$	Q	B	A	D \vee A	DVQ	D
4	R AND S	$A \wedge Q$	$A \wedge B$	0	0	0	$\mathrm{D} \wedge \mathrm{A}$	$D \wedge Q$	0
5	$\overline{\mathrm{R}}$ AND S	$\overline{\mathrm{A}} \wedge \mathrm{Q}$	$\overline{\mathrm{A}} \wedge \mathrm{B}$	Q	B	A	$\overline{\mathrm{D}} \wedge \mathrm{A}$	$\overline{\mathrm{D}} \wedge \mathrm{Q}$	0
6	R EX-OR S	$A \forall Q$	$A \forall B$	Q	B	A	$D \forall A$	$D \forall Q$	D
7	R EX-NOR S	$\overline{\mathrm{A} \forall \mathrm{Q}}$	$\overline{\mathrm{A} \forall \mathrm{B}}$	$\overline{\mathrm{Q}}$	$\overline{\mathrm{B}}$	$\overline{\mathrm{A}}$	$\overline{\mathrm{D} \forall \mathrm{A}}$	$\overline{\mathrm{D} \forall \mathrm{Q}}$	$\overline{\mathrm{D}}$

[^13]Figure 5. Source Operand and ALU Function Matrix

SEMICONDUCTOR

Description of Architecture

General Description

A block diagram of the CY7C901 is shown in Figure 1. The circuit is a 4-bit slice consisting of a register file (16×4 dual port RAM), the ALU, the Q register and the necessary control logic. It is expandable in 4-bit increments.

RAM

The RAM is addressed by two 4-bit address fields ($\mathrm{A}_{0}-\mathrm{A}_{3}$, $B_{0}-B_{3}$) that cause the data to appear at the \mathbf{A} or \mathbf{B} (internal) ports. If the A and B addresses are the same, the data at the A and B ports will be identical.
New data is written into the RAM location specified by the B address when the RAM write enable (RAM EN) is active and the clock input is LOW. Each of the four RAM inputs is driven by a 3 -input multiplexer that allows the outputs of the ALU ($\mathrm{F}_{0}, 1,2,3$) to be shifted one bit position to the left, the right, or not to be shifted. The other inputs to the multiplexer are from the RAM $_{3}$ and RAM $_{0}$ I/O pins.
For a shift left (up) operation, the RAM ${ }_{3}$ output buffer is enabled and the RAM ${ }_{0}$ multiplexer input is enabled. For a shift right (down) operation the RAM ${ }_{0}$ output buffer is enabled and the RAM3 multiplexer input is enabled.
The data to be written into the RAM is applied to the D inputs of the CY7C901 and is passed (unchanged) through the ALU to the RAM location addressed by the B word address.

The outputs of the RAM A and B ports drive separate 4bit latches that are enabled (follow the RAM data) when the clock is HIGH. The outputs of the A latches go to three multiplexers whose outputs drive the two inputs to the $\operatorname{ALU}\left(\mathrm{R}_{0,1,2,3}\right)$ and ($\left.\mathrm{S}_{0,1,2,3}\right)$ and the ($\mathrm{Y}_{0,1,2,3}$) chip outputs.

ALU (Arithmetic Logic Unit)

The ALU can perform three arithmetic and five logical operations on two 4-bit input words, R and S. The R inputs are driven from four 2 -input multiplexers whose inputs are from either the (RAM) A-port or the external data (D) inputs. The S inputs are driven from four 3 -input multiplexers whose inputs are from the A-port, the B-port, or the Q register. Both multiplexers are controlled by the
$\mathbf{I}_{0,1,2}$ inputs as shown in Figure 2. This configuration of multiplexers on the ALU R and S inputs enables the user to select eight pairs of combinations of A, B, D, Q and " 0 " (unselected) inputs as 4 -bits operands to the ALU. The logical and arithmetic operations performed by the ALU upon the data present at its R and S inputs are tabulated in Figure 3 . The ALU has a carry-in $\left(\mathrm{C}_{\mathrm{n}}\right)$ input, carry-propagate $(\overline{\mathrm{P}})$ output, carry-generate $(\overline{\mathrm{G}})$ output, carry-out $\left(\mathrm{C}_{\mathrm{n}}+4\right)$ and overflow (OVR) pins to enable the user to (1) speed up arithmetic operations by implementing carry look-ahead logic and (2) determine if an arithmetic overflow has occurred.
The ALU data outputs ($F_{0,1,2,3 \text {) are routed to the RAM, }}^{\text {R }}$ the Q register inputs and the Y outputs under control of the $\mathrm{I}_{6,7,8}$ control signal inputs as shown in Figure 4. In addition, the MSB of the ALU is output as F3 so that the user can examine the sign bit without enabling the threestate outputs. The $F=0$ output, used for zero detection, is HIGH when all bits of the F output are LOW. It is an open-drain output which may be wire OR'ed across multiple 7C901 processor slices.

Q Register

The Q register functions as an accumulator or temporary storage register. Physically it is a 4-bit register implemented with master-slave latches. The inputs to the Q register are driven by the outputs from four 3-input multiplexers under control of the $I_{6,7,8}$ inputs. The Q_{0} and $Q_{3} I / O$ pins function in a manner similar to the RAM_{0} and RAM_{3} pins. The other inputs to the multiplexer enable the contents of the Q register to be shifted up or down, or the outputs of the ALU to be entered into the master latches. Data is entered into the master latches when the clock is LOW and transferred from master to slave (output) when the clock changes from LOW to HIGH.

ALU Source Operand and ALU Functions

The ALU source operands and ALU function matrix is summarized in Figure 5 and separated by logic operation or arithmetic operation in Figures 6 and 7, respectively. The $I_{0,1,2}$ lines select eight pairs of source operands and the $I_{3,4,5}$ lines select the operation to be performed. The carry-in $\left(C_{n}\right)$ signal affects the arithmetic result and the internal flags; not the logical operations.

Conventional Addition and Pass-Increment/

Decrement

When the carry-in is HIGH and either a conventional addition or a PASS operation is performed, one (1) is added to the result. If the DECREMENT operation is performed when the carry-in is LOW, the value of the operand is reduced by one. However, when the same operation is performed when the carry-in is HIGH, it nullifies the DECREMENT operation so that the result is equivalent to the PASS operation.

Octal $\mathbf{I}_{\mathbf{5 4 3}}, \mathbf{I}_{210}$	Group	Function	
40	AND	$A \wedge \mathrm{Q}$	
41		$A \wedge B$	
45		$D \wedge A$	
46		$\mathrm{D} \wedge \mathrm{Q}$	
30	OR	$A \vee Q$	
31		$A \vee B$	
35		D \vee A	
36		D $\vee \mathrm{Q}$	
60	EX-OR	$A \forall Q$	
61		$A \forall B$	
65		D $\forall \mathrm{A}$	
66		D $\forall \mathrm{Q}$	
70	EX-NOR	$\overline{A \forall Q}$	
71		$\bar{A} \forall \mathrm{~B}$	
75		$\overline{D \forall A}$	
76		$\overline{\mathrm{D} \\| \mathrm{Q}}$	
72	INVERT	$\overline{\mathrm{Q}}$	
73		$\overline{\mathrm{B}}$	
74		$\overline{\text { A }}$	
77		$\overline{\mathrm{D}}$	
62	PASS	Q	
63		B	
64		A	
67		D	
32	PASS	Q	
33		B	
34		A	
37		D	
42	"ZERO"	0	
43		0	
44		0	
47		0	
50	MASK	$\overline{\mathbf{A}} \wedge \mathrm{Q}$	
51		$\overline{\mathrm{A}} \wedge \mathrm{B}$	
55		$\overline{\mathrm{D}} \wedge \mathrm{A}$	
56		$\overline{\mathrm{D}} \wedge \mathrm{Q}$	

Figure 6. ALU Logic Mode Functions

Subtraction

Recall that in two's complement integer coding -1 is equal to all ones and that in one's complement integer coding zero is equal to all ones. To convert a positive integer to its two's complement (negative) equivalent, invert (complement) the number and add 1 to it; i.e., TWC $=\mathrm{ONC}+1$. In Figure 7 the symbol $-Q$ represents the two's complement of Q so that the one's complement of Q is then $-\mathrm{Q}-1$.

$\begin{gathered} \text { Octal } \\ \mathbf{I}_{543}, \mathrm{I}_{210} \end{gathered}$	$\mathrm{C}_{\mathrm{n}}=0$ (Low)		$\mathrm{C}_{\mathrm{n}}=1$ (High)	
	Group	Function	Group	Function
$\begin{aligned} & 00 \\ & 01 \\ & 05 \\ & 06 \end{aligned}$	ADD	$\begin{aligned} & A+Q \\ & A+B \\ & D+A \\ & D+Q \end{aligned}$	ADD plus one	$\begin{aligned} & \mathrm{A}+\mathrm{Q}+1 \\ & \mathrm{~A}+\mathrm{B}+1 \\ & \mathrm{D}+\mathrm{A}+1 \\ & \mathrm{D}+\mathrm{Q}+1 \end{aligned}$
$\begin{aligned} & 02 \\ & 03 \\ & 04 \\ & 07 \end{aligned}$	PASS	$\begin{aligned} & \mathrm{Q} \\ & \mathrm{~B} \\ & \mathrm{~A} \\ & \mathrm{D} \end{aligned}$	Increment	$\begin{aligned} & \mathbf{Q}+1 \\ & \mathbf{B}+1 \\ & \mathbf{A}+1 \\ & \mathbf{D}+1 \end{aligned}$
$\begin{aligned} & 12 \\ & 13 \\ & 14 \\ & 27 \end{aligned}$	Decrement	$\begin{aligned} & \mathrm{Q}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{~A}-1 \\ & \mathrm{D}-1 \end{aligned}$	PASS	$\begin{aligned} & \mathrm{Q} \\ & \mathrm{~B} \\ & \mathrm{~A} \\ & \mathrm{D} \\ & \hline \end{aligned}$
$\begin{aligned} & 22 \\ & 23 \\ & 24 \\ & 17 \end{aligned}$	1's Comp.	$\begin{aligned} & -\mathrm{Q}-1 \\ & -\mathrm{B}-1 \\ & -\mathrm{A}-1 \\ & -\mathrm{D}-1 \end{aligned}$	2's Comp. (Negate)	$\begin{aligned} & -\mathrm{Q} \\ & -\mathrm{B} \\ & -\mathrm{A} \\ & -\mathrm{D} \end{aligned}$
$\begin{aligned} & 10 \\ & 11 \\ & 15 \\ & 16 \\ & 20 \\ & 21 \\ & 25 \\ & 26 \end{aligned}$	Subtract (1's Comp.)	$\begin{aligned} & \mathrm{Q}-\mathrm{A}-1 \\ & \mathrm{~B}-\mathrm{A}-1 \\ & \mathrm{~A}-\mathrm{D}-1 \\ & \mathrm{Q}-\mathrm{D}-1 \\ & \mathrm{~A}-\mathrm{Q}-1 \\ & \mathrm{~A}-\mathrm{B}-1 \\ & \mathrm{D}-\mathrm{A}-1 \\ & \mathrm{D}-\mathrm{Q}-1 \\ & \hline \end{aligned}$	Subtract (2's Comp.)	$\begin{aligned} & \mathrm{Q}-\mathrm{A} \\ & \mathrm{~B}-\mathrm{A} \\ & \mathrm{~A}-\mathrm{D} \\ & \mathrm{Q}-\mathrm{D} \\ & \mathrm{~A}-\mathrm{Q} \\ & \mathrm{~A}-\mathrm{B} \\ & \mathrm{D}-\mathrm{A} \\ & \mathrm{D}-\mathrm{Q} \end{aligned}$

Figure 7. ALU Arithmetic Mode Functions

Definitions ($+=$ OR)
$\mathbf{P}_{0}=\mathbf{R}_{0}+\mathbf{S}_{0} \quad \mathbf{G}_{0}=\mathbf{R}_{0} \mathbf{S}_{0}$
$\mathbf{P}_{1}=\mathbf{R}_{1}+\mathbf{S}_{1}$
$\mathbf{G}_{1}=\mathbf{R}_{1} \mathbf{S}_{1}$
$\mathbf{P}_{2}=\mathbf{R}_{2}+\mathbf{S}_{2}$
$G_{2}=R_{2} S_{2}$
$\mathbf{P}_{3}=\mathrm{R}_{3}+\mathrm{S}_{3}$
$\mathrm{G}_{3}=\mathrm{R}_{3} \mathrm{~S}_{3}$
$\mathrm{C}_{4}=\mathrm{G}_{3}+\mathrm{P}_{3} \mathrm{G}_{2}+\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{G}_{1}+\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{G}_{0}+\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \mathrm{C}_{\mathrm{n}}$
$\mathrm{C}_{3}=\mathrm{G}_{2}+\mathrm{P}_{2} \mathrm{G}_{1}+\mathrm{P}_{2} \mathrm{P}_{1} \mathrm{G}_{0}+\mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \mathrm{C}_{\mathrm{n}}$

Logic Functions for $\overline{\mathbf{G}}, \overline{\mathbf{P}}, \mathbf{C}_{\mathbf{n}}+\mathbf{4}$, and OVR 2

The four signals $G, P, C_{n}+4$, and $O V R$ are designed to indicate carry and overflow conditions when the CY7C901 is in the add or subtract mode. The table below indicates the logic equations for these four signals for each of the eight ALU functions. The R and S inputs are the two inputs selected according to Figure 2.

I543	Function	$\overline{\mathbf{P}}$	$\overline{\mathbf{G}}$	$\mathrm{CN}_{\mathrm{N}}+4$	OVR
0	R + S	$\overline{\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0}}$	$\overline{G_{3}+P_{3} \mathrm{G}_{2}+\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{G}_{1}+\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{G}_{0}}$	C_{4}	$\mathrm{C}_{3} \forall \mathrm{C}_{4}$
1	S-R	$\leftarrow \quad$ Same as $\mathbf{R}+\mathrm{S}$ equations, but substitute $\overline{\mathbf{R}}_{\mathbf{i}}$ for $\mathbf{R}_{\mathbf{i}}$ in definitions			
2	R-S	\leftarrow Same as $\mathrm{R}+\mathrm{S}$ equations, but substitute $\overline{\mathrm{S}_{\mathrm{i}}}$ for S_{i} in definitions			
3	R \vee S	LOW	$\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0}$	$\bar{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathbf{P}_{0}+\mathrm{C}_{\mathrm{n}}$	$\overline{\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0}}+\mathrm{C}_{\mathrm{n}}$
4	$\mathrm{R} \wedge \mathrm{S}$	LOW	$\overline{G_{3}+G_{2}+G_{1}+G_{0}}$	$\mathrm{G}_{3}+\mathrm{G}_{2}+\mathrm{G}_{1}+\mathrm{G}_{0}+\mathrm{C}_{\mathrm{n}}$	$\mathrm{G}_{3}+\mathrm{G}_{2}+\mathrm{G}_{1}+\mathrm{G}_{0}+\mathrm{C}_{\mathrm{n}}$
5	$\overline{\mathrm{R}} \wedge \mathrm{S}$	LOW	\leftarrow Same as $\mathrm{R} \wedge$ S equations, but substitute $\overline{\mathbf{R}}_{\mathbf{i}}$ for $\mathbf{R}_{\mathbf{i}}$ in definitions		
6	R $\forall \mathrm{S}$	$\leftarrow \quad$ Same as $\overline{\mathrm{R}} \forall \mathrm{S}$, but substitute $\overline{\mathrm{R}}_{\mathrm{i}}$ for R_{i} in def			
7	$\overline{\mathbf{R} \forall \mathbf{S}}$	$\mathrm{G}_{3}+\mathrm{G}_{2}+\mathrm{G}_{1}+\mathrm{G}_{0}$	$\mathrm{G}_{3}+\mathrm{P}_{3} \mathrm{G}_{2}+\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{G}_{1}+\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0}$	$\frac{\overline{\mathrm{G}_{3}+\mathrm{P}_{3} \mathrm{G}_{2}+\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{G}_{1}}}{+\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0}\left(\mathrm{G}_{0}+\bar{C}_{n}\right)}$	See note

Notes:

Figure 8

Electrical Characteristics Over Commercial and Military Operating Range ${ }^{[3]}$
V_{CC} Min. $=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}$ Max. $=5.5 \mathrm{~V}$

Parameters	Description	Test Conditions		Min.	Max.	Units
VOH	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{I}_{\mathrm{OH}}=-3.4 \mathrm{~mA} \end{aligned}$		2.4		V
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \text { Commercial } \\ & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \text { Military } \\ & \hline \end{aligned}$			0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.0	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} . \end{aligned}$		-10	10	$\mu \mathrm{A}$
I_{OH}	Output HIGH Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V} \end{aligned}$		-3.4		mA
$\mathrm{I}_{\mathbf{O L}}$	Output LOW Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\ & \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \end{aligned}$	Commercial	20		mA
			Military	16		
$\mathrm{I}_{\mathbf{O Z}}$	Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$		-40	$+40$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
ISC	Output Short Circuit Current[1]	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \end{aligned}$			-85	mA
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max.	Commercial -31		70	mA
			Commercial -23		80	
			Military -27, -32		90	
$\mathrm{I}_{\mathrm{CC}}^{1}$	Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \geq \mathrm{V}_{\mathrm{CC}}-1.2 \mathrm{~V}, 10 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{IL}} \leq 0.4 \mathrm{~V} \end{aligned}$	Commercial		26.5	mA
			Military		31	

Capacitance ${ }^{[2]}$

Parameters	Description	Test Conditions	Max.	Units
CIN	Input Capacitance	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	5	pF
Cout	Output Capacitance		7	

Notes:

1. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second.
2. Tested initially and after any design or process changes that may affect these parameters.
3. See the last page of this specification for Group A subgroup testing information.

Output Loads used for AC Performance Characteristics

0030-4
All outputs except open drain

Open drain (F = 0)

Notes:

1. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ includes scope probe, wiring and stray capacitance.
2. $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ for output disable tests.
3. Loads shown above are for commercial $(20 \mathrm{~mA}) I_{O L}$ spec only.

Cycle Time and Clock Characteristics ${ }^{[5]}$

CY7C901	$\mathbf{- 2 3}$	-27
Read-Modify-Write Cycle (from selection of A, B registers to end of cycle).	23 ns	27 ns
Maximum Clock Frequency to shift Q (50\% duty cycle, I $=432$ or 632)	43 MHz	37 MHz
Minimum Clock LOW Time	13 ns	15 ns
Minimum Clock HIGH Time	10 ns	12 ns
Minimum Clock Period	23 ns	27 ns

CY7C901-23 Commercial and CY7C901-27 Military AC Performance
 Characteristics

The tables below specify the guaranteed AC performance of these devices over the Commercial ($0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$) and Military ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) operating temperature range with V_{CC} varying from 4.5 V to 5.5 V . All times are in nanoseconds and are measured between the 1.5 V signal levels. The inputs switch between 0 V and 3 V with signal transition rates of 1 V per nanosecond. All outputs have maximum DC current loads. See "Electrical Characteristics" for loading circuit information.
This data applies to parts with the following numbers:
CY7C901-23PC
CY7C901-23DC
CY7C901-23LC
CY7C901-23JC CY7C901-27DMB CY7C901-27LMB

Combinational Propagation Delays. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ [5]

To Output From Input	Y		F3		$\mathrm{C}_{\mathrm{n}+4}$		$\overline{\mathbf{G}}, \overline{\mathbf{P}}$		$\mathbf{F}=0$		OVR		$\begin{aligned} & \mathbf{R A M}_{\mathbf{0}} \\ & \text { RAM }_{3} \end{aligned}$		$\begin{aligned} & \mathbf{Q}_{0} \\ & \mathbf{Q}_{3} \end{aligned}$	
CY7C901	23	27	23	27	23	27	23	27	23	27	23	27	23	27	23	27
A, B Address	30	33	30	33	30	33	28	33	30	33	30	33	30	33	-	-
Data	21	24	20	23	20	23	20	21	24	25	21	24	22	25	-	-
C_{n}	17	18	16	17	14	14	-	-	18	19	16	17	18	19	-	-
I_{012}	26	28	25	27	24	26	24	28	25	29	24	27	25	27	-	-
I 345	26	27	24	27	24	26	24	26	26	27	24	26	26	27	-	-
I_{678}	16	18	-	-	-	-	-	-	-	-	-	-	21	21	21	21
A Bypass ALU $(I=2 X X)$	24	26	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Clock -	24	27	23	26	23	26	23	25	24	27	24	26	24	27	19	20

Set-up and Hold Times Relative to Clock (CP) Input ${ }^{[5]}$

Output Enable/Disable Times ${ }^{[5]}$

Output disable tests performed with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ and measured to 0.5 V change of output voltage level.

Device	Input	Output	Enable	Disable
CY7C901-23	$\overline{\mathrm{OE}}$	Y	14	16
CY7C901-27	$\overline{\mathrm{OE}}$	Y	16	18

Notes:

1. A dash indicates a propagation delay path or set-up time constraint does not exist.
2. Certain signals must be stable during the entire clock LOW time to avoid erroneous operation. This is indicated by the phrase "do not change".
3. Source addresses must be stable prior to the clock $H \rightarrow L$ transition to allow time to access the source data before the latches close. The A address may then be changed. The B address could be changed if it is not a destination; i.e. if data is not being written back into the RAM. Normally A and B are not changed during the clock LOW time.
4. The set-up time prior to the clock $L \rightarrow H$ transition is to allow time for data to be accessed, passed through the ALU, and returned to the RAM. It includes all the time from stable A and B addresses to the clock $L \rightarrow H$ transition, regardless of when the clock $H \rightarrow L$ transition occurs.
5. See the last page of this specification for Group A subgroup testing information.

CY7C901-31 Commercial and
 CY7C901-32 Military AC Performance Characteristics

The tables below specify the guaranteed AC performance of these devices over the Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$ and Military $\left(-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$) operating temperature range with V_{CC} varying from 4.5 V to 5.5 V . All times are in nanoseconds and are measured between the 1.5 V signal levels. The inputs switch between 0 V and 3 V with signal transition rates of 1 V per nanosecond. All outputs have maximum DC current loads. See "Electrical Characteristics" for loading circuit information.

Cycle Time and Clock Characteristics ${ }^{[5]}$

CY7C901-	$\mathbf{- 3 1}$	$\mathbf{- 3 2}$
Read-Modify-Write Cycle (from selection of A, B registers to end of cycle).	31 ns	32 ns
Maximum Clock Frequency to shift Q (50\% duty cycle, I $=432$ or 632)	32 MHz	31 MHz
Minimum Clock LOW Time	16 ns	17 ns
Minimum Clock HIGH Time	15 ns	15 ns
Minimum Clock Period	31 ns	32 ns

For faster performance see CY7C901-23 specification on page 9 .

This data applies to parts with the following numbers:
CY7C901-31PC CY7C901-31DC CY7C901-31LC CY7C901-31JC CY7C901-32DMB CY7C901-32LMB
Combinational Propagation Delays. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}{ }^{[5]}$

To Output	Y		F3		$\mathrm{C}_{\mathrm{n}+4}$		$\overline{\mathbf{G}}, \overline{\mathbf{P}}$		F $=0$		OVR		$\begin{aligned} & \text { RAM }_{0} \\ & \text { RAM }_{3} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathbf{Q}_{0} \\ & \mathbf{Q}_{3} \end{aligned}$	
From Input	-31	-32	-31	-32	-31	-32	-31	-32	-31	-32	-31	-32	-31	-32	-31	-32
A, B Address	40	48	40	48	40	48	37	44	40	48	40	48	40	48	-	-
D	30	37	30	37	30	37	30	34	38	40	30	37	30	37	-	-
C_{n}	22	25	22	25	20	21	-	-	25	28	22	25	25	28	-	-
I_{012}	35	40	35	40	35	40	37	44	37	44	35	40	35	40	-	-
I_{345}	35	40	35	40	35	40	35	40	38	40	35	40	35	40	-	-
I_{678}	25	29	-	-	-	-	-	-	-	-	-	-	26	29	26	29
$\begin{aligned} & \text { A Bypass ALU } \\ & (\mathrm{I}=2 \mathrm{XX}) \end{aligned}$	35	40	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Clock $-\sqrt{ }$	35	40	35	40	35	40	35	40	35	40	35	40	35	40	28	33

Set-up and Hold Times Relative to Clock (CP) Input ${ }^{[5]}$

Input	$\begin{aligned} & \text { CP: } \\ & \text { Set-up Time } \\ & \text { Before } \mathbf{H} \rightarrow \text { L } \end{aligned}$	Hold Time After $\mathbf{H} \rightarrow \mathbf{L}$	Set-up Time Before L $\rightarrow \mathbf{H}$	Hold Time After $L \rightarrow \mathbf{H}$
A, B Source Address	15	$\begin{gathered} 0 \\ \text { (Note 3) } \end{gathered}$	$\begin{gathered} 30,15+\text { tpwL } \\ (\text { Note } 4) \\ \hline \end{gathered}$	0
B Destination Address	15	Do Not Change $\quad \rightarrow$		0
D	-	-	25	0
C_{n}	-	-	20	0
I_{012}	-	-	30	0
I_{345}	-	-	30	0
I_{678}	10	Do Not Change $\quad \rightarrow$		0
$\mathrm{RAM}_{0,3,} \mathrm{Q}_{0,3}$	-	-	12	0

Output Enable/Disable Times ${ }^{[5]}$

Output disable tests performed with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ and measured to 0.5 V change of output voltage level.

Device	Input	Output	Enable	Disable
CY7C901-31	$\overline{\mathrm{OE}}$	Y	23	23
CY7C901-32	$\overline{\mathrm{OE}}$	Y	25	25

Notes:

1. A dash indicates a propagation delay path or set-up time constraint does not exist.
2. Certain signals must be stable during the entire clock LOW time to avoid erroneous operation. This is indicated by the phrase "do not change".
3. Source addresses must be stable prior to the clock $\mathbf{H} \rightarrow \mathrm{L}$ transition to allow time to access the source data before the latches close. The A address may then be changed. The \mathbf{B} address could be changed if it is not a destination; i.e. if data is not being written back into the RAM. Normally A and B are not changed during the clock LOW time.
4. The set-up time prior to the clock $L \rightarrow \mathbf{H}$ transition is to allow time for data to be accessed, passed through the ALU, and returned to the RAM. It includes all the time from stable A and B addresses to the clock $L \rightarrow H$ transition, regardless of when the clock $H \rightarrow L$ transition occurs.
5. See the last page of this specification for Group A subgroup testing information.

CY7C901

Minimum Cycle Time Calculations for 16-Bit Systems

Speed used in calculations for parts other than CY7C901 are representative for MSI parts.

Pipelined System, Add without Simultaneous Shift
CY7C245
CY7C901
Carry Logic
CY7C901
Register

Data Loop			Control Loop	
Clock to Output	12	CY7C245	Clock to Output	12
A, B to $\overline{\mathrm{G}}, \overline{\mathbf{P}}$	28	MUX	Select to Output	12
$\overline{\mathrm{G}_{0}}, \overline{\mathrm{P}_{0}}$ to $\mathrm{C}_{\mathrm{n}}+\mathrm{Z}$	9	CY7C910	CC to Output	22
C_{n} to Worst Case	18	CY7C245	Access Time	$\underline{20}$
Setup	4			$\overline{66} \mathrm{~ns}$
	71 ns			
Minimum Clock Period $=71 \mathrm{~ns}$				

Pipelined System, Simultaneous Add and Shift Down (RIGHT)

Data Loop			
CY7C245	Clock to Output	12	CY7C245
CY7C901	A, B to $\overline{\mathrm{G}}, \overline{\mathbf{P}}$	28	MUX
Carry Logic	$\overline{\mathrm{G}_{0}}, \overline{\mathrm{P}_{0}}$ to $\mathrm{C}_{\mathrm{n}}+\mathrm{Z}$	9	CY7C910
CY7C901	C_{n} to Worst Case	18	CY7C245
XOR and MUX	Prop. Delay, Select to Output	20	
CY7C901	$\overline{96} \mathrm{~ns}$		
			96 ns

\quad Control Loop	
Clock to Output	12
Select to Output	12
CC to Output	22
Access Time	$\underline{20}$

Typical DC and AC Characteristics

NORMALIZED ICC vs. FREQUENCY

Ordering Information

Read Modify- Write Cycle (ns)	Ordering Code	Package Type	Operating Range
23	CY7C901-23PC CY7C901-23DC	P17 D18 CY7C901-23JC	Commercial Commercial Commercial C67
27	CY7C901-23LC	L67	Commercial
31	CY7C901-27LMB	D18	Military
	CY7C901-31PC	P17	Military
	CY7C901-31DC	D18	Commercial
	CY7C901-31JC	J67	Commercial
CY7C901-31LC	L67	Commercial	
32	CY7C901-32DMB	D18	Military
	CY7C901-32LMB	L67	Military

Pin Configuration

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{SC}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{CCl}}$	$1,2,3$

Cycle Time and Clock Characteristics

Parameters	Subgroups
Minimum Clock LOW Time	$7,8,9,10,11$
Minimum Clock HIGH Time	$7,8,9,10,11$

Combinational Propagation Delays

Parameters	Subgroups
From A, B Address to Y	$7,8,9,10,11$
From A, B Address to F_{3}	$7,8,9,10,11$
From A, B Address to $\mathrm{C}_{\mathrm{n}}+4$	$7,8,9,10,11$
From A, B Address to $\overline{\mathrm{G}}, \overline{\mathrm{P}}$	$7,8,9,10,11$
From A, B Address to F $=0$	$7,8,9,10,11$
From A, B Address to OVR	$7,8,9,10,11$
From A, B Address to RAM 0,3	$7,8,9,10,11$
From D to Y	$7,8,9,10,11$
From D to F_{3}	$7,8,9,10,11$
From D to $\mathrm{C}_{\mathrm{n}}+4$	$7,8,9,10,11$
From D to $\overline{\mathrm{G}}, \overline{\mathbf{P}}$	$7,8,9,10,11$
From D to F $=0$	$7,8,9,10,11$
From D to OVR	$7,8,9,10,11$
From D to RAM $\mathrm{O}_{0,3}$	$7,8,9,10,11$
From C_{n} to Y	$7,8,9,10,11$
From C_{n} to F_{3}	$7,8,9,10,11$

Combinational Propagation Delays (Continued)

Parameters	Subgroups
From C_{n} to $\mathrm{C}_{\mathrm{n}}+4$	7,8,9,10,11
From C_{n} to $\mathrm{F}=0$	7,8,9,10,11
From C_{n} to OVR	7,8,9,10,11
From C_{n} to $\mathrm{RAM}_{0,3}$	7,8,9,10,11
From I_{012} to Y	7,8,9,10,11
From I_{012} to F_{3}	7,8,9,10,11
From I_{012} to $\mathrm{C}_{\mathrm{n}+4}$	7,8,9,10,11
From I_{012} to $\overline{\mathrm{G}}, \overline{\mathrm{P}}$	7,8,9,10,11
From I_{012} to $\mathrm{F}=0$	7,8,9,10,11
From I_{012} to OVR	7,8,9,10,11
From I_{012} to $\mathrm{RAM}_{0,3}$	7,8,9,10,11
From I_{345} to Y	7,8,9,10,11
From I_{345} to F_{3}	7,8,9,10,11
From I_{345} to $\mathrm{C}_{\mathrm{n}+4}$	7,8,9,10,11
From I_{345} to $\overline{\mathrm{G}}, \overline{\mathbf{P}}$	7,8,9,10,11
From I_{345} to F $=0$	7,8,9,10,11
From I_{345} to OVR	7,8,9,10,11
From I_{345} to $\mathrm{RAM}_{0,3}$	7,8,9,10,11
From I_{678} to Y	7,8,9,10,11
From I_{678} to $\mathrm{RAM}_{0,3}$	7,8,9,10,11
From I_{678} to $\mathrm{Q}_{0,3}$	7,8,9,10,11
From A Bypass ALU to Y $(I=2 X X)$	7,8,9,10,11
From Clock \sim to Y	7,8,9,10,11
From Clock \sim to F_{3}	7,8,9,10,11
From Clock \sim to $\mathrm{C}_{\mathrm{n}+4}$	7,8,9,10,11
From Clock \sim to $\overline{\mathbf{G}}, \overline{\mathbf{P}}$	7,8,9,10,11
From Clock \sim to $\mathrm{F}=0$	7,8,9,10,11
From Clock \sim to OVR	7,8,9,10,11
From Clock \sim to RAM 0,3	7,8,9,10,11
From Clock \sim to $\mathrm{Q}_{0,3}$	7,8,9,10,11

Set-up and Hold Times Relative to Clock (CP) Input

Parameters	Subgroups
A, B Source Address Set-up Time Before H \rightarrow L	7,8,9,10,11
A, B Source Address Hold Time After $\mathbf{H} \rightarrow \mathbf{L}$	7,8,9,10,11
A, B Source Address Set-up Time Before L \rightarrow H	7,8,9,10,11
A, B Source Address Hold Time After L $\rightarrow \mathbf{H}$	7,8,9,10,11
B Destination Address Set-up Time Before $\mathbf{H} \rightarrow \mathrm{L}$	7,8,9,10,11
B Destination Address Hold Time After H \rightarrow L	7,8,9,10,11
B Destination Address Set-up Time Before L \rightarrow H	7,8,9,10,11
B Destination Address Hold Time After L $\rightarrow \mathbf{H}$	7,8,9,10,11
D Set-up Time Before L $\rightarrow \mathrm{H}$	7,8,9,10,11

Parameters	Subgroups
D Hold Time After L \rightarrow H	7,8,9,10,11
C_{n} Set-up Time Before L $\rightarrow \mathrm{H}$	7,8,9,10,11
C_{n} Hold Time After $\mathrm{L} \rightarrow \mathrm{H}$	7,8,9,10,11
I_{012} Set-up Time Before L \rightarrow H	7,8,9,10,11
I_{012} Hold Time After L \rightarrow H	7,8,9,10,11
I_{345} Set-up Time Before L $\rightarrow \mathbf{H}$	7,8,9,10,11
I_{345} Hold Time After L $\rightarrow \mathrm{H}$	7,8,9,10,11
I_{678} Set-up Time Before $\mathrm{H} \rightarrow \mathrm{L}$	7,8,9,10,11
I 678 Hold Time After H \rightarrow L	7,8,9,10,11
I678 Set-up Time Before L $\rightarrow \mathrm{H}$	7,8,9,10,11
I_{678} Hold Time After L $\rightarrow \mathrm{H}$	7,8,9,10,11
$\mathrm{RAM}_{0}, \mathrm{RAM}_{3}, \mathrm{Q}_{0}, \mathrm{Q}_{3}$ Set-up Time Before $\mathbf{L} \rightarrow \mathbf{H}$	7,8,9,10,11
RAM $_{0}$, RAM $_{3}, \mathrm{Q}_{0}, \mathrm{Q}_{3}$ Hold Time After L $\rightarrow \mathbf{H}$	7,8,9,10,11

Document \# : 38-00021-B

CMOS Micro Program Sequencers

Features

- Fast
- CY7C909/11 has a 30 ns (min.) clock to output cycle time; commercial and military
- Low Power
$-I_{\text {CC }}$ (max.) $=55 \mathrm{~mA}$; commercial and military
- VCC margin
$-5 \mathrm{~V} \pm 10 \%$
- All parameters guaranteed over commercial and military operating temperature range
- Expandable

Infinitely expandable in 4-bit increments

- Capable of withstanding greater than 2000 V static discharge voltage
- Pin compatible and functional equivalent to 2909A/2911A

Description

The CY7C909 and CY7C911 are highspeed, four-bit wide address sequencers intended for controlling the sequence of execution of microinstructions contained in microprogram memory. They may be connected in parallel to expand the address width in 4 bit increments. Both devices are implemented in high performance CMOS for optimum speed and power.
The CY7C909 can select an address from any of four sources. They are:

1) a set of four external direct inputs $\left.\left(D_{i}\right) ; 2\right)$ external data stored in an internal register (\mathbf{R}_{i}); 3) a four word deep push/pop stack; or 4) a program counter register (which usually contains the last address plus one). The push/pop stack includes control lines so that it can efficiently execute nested subroutine linkages. Each of the four outputs $\left(Y_{i}\right)$ can be OR'ed with an external input for conditional skip or branch instructions. A ZERO input line forces the outputs to all zeros. The outputs are three state, controlled by the Output Enable $(\overline{\mathrm{OE}})$ input.
The CY7C911 is an identical circuit to the CY7C909, except the four OR inputs are removed and the D and R inputs are tied together. The CY7C911 is available in a 20 -pin, 300 -mil package.

Logic Block Diagram

Pin Configurations

0042-2

0042-4

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Static Discharge Voltage
Ambient Temperature with
Power Applied
.$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
(per MIL-STD-883 Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage -3.0 V to +7.0 V
Output Current, into Outputs (Low) 30 mA

Operating Range

Range	Ambient Temperature	VCC
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[3]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range ${ }^{[4]}$

Capacitance ${ }^{[2]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	5	pF
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	7	

Notes:

1. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
2. Tested initially and after any design or process changes that may affect these parameters.
3. T_{A} is the "instant on" case temperature.
4. See the last page of this specification for Group A subgroup testing information.

AC Test Loads and Waveforms

Figure 1a

0042-7
Figure 2

	Commercial	Military
R_{1}	254Ω	258Ω
R_{2}	187Ω	216Ω

CYPRESS
CY7C911

Switching Characteristics Over Operating Range ${ }^{[4, ~ 5]}$

	$\begin{aligned} & \hline \text { 7C909-30 } \\ & \text { 7C911-30 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C909-30 } \\ & \text { 7C911-30 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C909-40 } \\ & \text { 7C911-40 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C909-40 } \\ & \text { 7C911-40 } \end{aligned}$		Units
	Commercial		Military		Commercial		Military		
Minimum Clock Low Time	15		15		20		20		ns
Minimum Clock High Time	15		15		20		20		ns
MAXIMUM COMBINATIONAL PROPAGATION DELAYS									
From Input To:	Y	$\mathrm{C}_{\mathrm{N}+4}$	Y	$\mathrm{C}_{\mathrm{N}+4}$	Y	$\mathrm{C}_{\mathrm{N}+4}$	Y	$\mathrm{C}_{\mathrm{N}+4}$	ns
D_{i}	17	18	18	19	17	22	20	25	ns
$\mathrm{S}_{0}, \mathrm{~S}_{1}$	18	18	20	20	29	34	29	34	ns
OR ${ }_{i}$ (7C909)	16	16	17	17	17	22	20	25	ns
C_{N}	-	13	-	15	-	14	-	16	ns
$\overline{\text { ZERO }}$	18	18	20	20	29	34	30	35	ns
$\overline{\mathrm{OE}}$ Low to Output	16	-	18	-	25	-	25	-	ns
$\overline{\text { OE }} \mathrm{HIGH}$ to HIGH Z ${ }^{\text {[5] }}$	16	-	18	-	25	-	25	-	ns
Clock HIGH, $\mathrm{S}_{1}, \mathrm{~S}_{0}=\mathrm{LH}$	20	20	22	22	39	44	45	50	ns
Clock HIGH, $\mathrm{S}_{1}, \mathrm{~S}_{0}=\mathrm{LL}$	20	20	22	22	39	44	45	50	ns
Clock HIGH, $\mathrm{S}_{1}, \mathrm{~S}_{0}=\mathrm{HL}$	20	20	22	22	44	49	53	58	ns
MINIMUM SET-UP AND HOLD TIMES (All Times Relative to Clock LOW to HIGH Transition)									
From Input	Set-up	Hold	Set-up	Hold	Set-up	Hold	Set-up	Hold	
$\overline{\mathrm{RE}}$	11	0	12	0	19	0	19	0	ns
$\mathrm{R}_{\mathrm{i}}{ }^{[6]}$	10	0	11	0	10	0	12	0	ns
Push/Pop	12	0	13	0	25	0	27	0	ns
FE	12	0	13	0	25	0	27	0	ns
C_{N}	10	0	11	0	18	0	18	0	ns
D_{i}	14	0	16	0	25	0	25	0	ns
OR ${ }_{\mathrm{i}}$ (7C909)	12	0	14	0	25	0	25	0	ns
$\mathrm{S}_{0}, \mathrm{~S}_{1}$	14	0	16	0	25	0	29	0	ns
ZERO	12	0	13	0	25	0	29	0	ns

Notes:

5. Output Loading as in Figure 1b.
6. R_{i} and D_{i} are internally connected on the CY7C911. Use R_{i} set-up and hold times when D_{i} inputs are used to load register.

Switching Waveforms

Functional Description

The tables below define the control logic of the 7C909/911. Table 1 contains the Multiplexer Control Logic which selects the address source to appear on the outputs.

Table 1. Address Source Selection

OCTAL	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{0}}$	SOURCE FOR Y OUTPUTS
0	L	L	Microprogram Counter (μ PC)
1	L	H	Address/Holding Register (AR)
2	H	L	Push-Pop stack (STK)
3	H	H	Direct inputs ($\mathbf{D}_{\mathfrak{i}}$)

Control of the Push/Pop Stack is contained in Table 2.
$\overline{\text { FILE ENABLE }}(\overline{\mathrm{FE}})$ enables stack operations, while Push/Pop (PUP) controls the stack.

Table 2. Synchronous Stack Control

$\overline{\mathbf{F E}}$	$\mathbf{P U P}$	PUSH-POP STACK CHANGE
\mathbf{H}	\mathbf{X}	No change
\mathbf{L}	\mathbf{H}	Push current PC into stack increment stack pointer
\mathbf{L}	\mathbf{L}	pop stack, decrement stack pointer

Table 3 illustrates the Output Control Logic of the
7C909/911. The $\overline{\text { ZERO }}$ control forces the outputs to zero. The OR inputs are OR'ed with the output of the multiplexer.

Table 3. Output Control

$\mathbf{O R}_{\mathbf{i}}$	$\overline{\text { ZERO }}$	$\overline{\mathbf{O E}}$	$\mathbf{Y}_{\mathbf{i}}$
\mathbf{X}	\mathbf{X}	\mathbf{H}	$\mathbf{H i g h} \mathbf{Z}$
\mathbf{X}	\mathbf{L}	L	L
\mathbf{H}	\mathbf{H}	L	\mathbf{H}
\mathbf{L}	\mathbf{H}	L	Source selected by $\mathrm{S}_{0} \mathrm{~S}_{1}$

Table 4 defines the effect of $S_{0}, S_{1}, \overline{F E}$ and PUP control signals on the 7C909. It illustrates the Address Source on the outputs and the contents of the Internal Registers for every combination of these signals. The Internal Register contents are illustrated before and after the Clock LOW to HIGH edge.

Table 4

CYCLE	$\mathbf{S}_{\mathbf{1}}, \mathbf{S}_{\mathbf{0}}, \overline{\mathbf{F E}}, \mathbf{P U P}$	$\mu \mathbf{P C}$	REG	STK0	STK1	STK2	STK3	Yout	COMMENT	$\begin{aligned} & \text { PRINCIPLE } \\ & \text { USE } \end{aligned}$
$\begin{gathered} \mathrm{N} \\ \mathrm{~N}+1 \end{gathered}$	0000	$\begin{gathered} \mathbf{J} \\ \mathbf{J}+1 \end{gathered}$	$\begin{aligned} & \mathrm{K} \\ & \mathbf{K} \end{aligned}$	$\begin{aligned} & \mathrm{Ra} \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Rc} \end{aligned}$	$\begin{aligned} & \mathrm{Rc} \\ & \mathrm{Rd} \end{aligned}$	$\begin{aligned} & \mathrm{Rd} \\ & \mathrm{Ra} \end{aligned}$	$\overline{\mathrm{J}}$	Pop Stack	End Loop
$\begin{gathered} \mathbf{N} \\ \mathbf{N}+1 \end{gathered}$	0001 -	$\begin{gathered} \mathbf{J} \\ \mathbf{J}+1 \end{gathered}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{~K} \end{aligned}$	$\underset{\mathbf{J}}{\mathrm{Ra}}$	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Ra} \end{aligned}$	$\begin{aligned} & \mathrm{Rc} \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & \mathrm{Rd} \\ & \mathrm{Rc} \end{aligned}$	$\overline{\mathbf{J}}$	Push μ PC	Set-up Loop
$\begin{gathered} \mathrm{N} \\ \mathrm{~N}+1 \end{gathered}$	001 X -	$\begin{gathered} \mathbf{J} \\ \mathbf{J}+1 \end{gathered}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{~K} \end{aligned}$	$\begin{aligned} & \mathrm{Ra} \\ & \mathrm{Ra} \end{aligned}$	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & \mathrm{Rc} \\ & \mathrm{Rc} \end{aligned}$	$\begin{aligned} & \text { Rd } \\ & \text { Rd } \end{aligned}$	J	Continue	Continue
$\begin{gathered} \mathrm{N} \\ \mathrm{~N}+1 \end{gathered}$	0100 -	$\begin{gathered} \mathbf{J} \\ \mathbf{K}+1 \end{gathered}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{~K} \end{aligned}$	$\begin{aligned} & \mathrm{Ra} \\ & \mathrm{Ra} \end{aligned}$	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Rc} \end{aligned}$	$\begin{aligned} & \mathrm{Rc} \\ & \mathrm{Rd} \end{aligned}$	$\begin{aligned} & \mathrm{Rd} \\ & \mathrm{Ra} \end{aligned}$	\bar{K}	Use AR for Address; Pop Stack	End Loop
$\begin{gathered} \mathbf{N} \\ \mathbf{N}+1 \end{gathered}$	0101 -	$\begin{gathered} \mathbf{J} \\ \mathbf{K}+1 \end{gathered}$	$\begin{aligned} & \mathbf{K} \\ & \mathbf{K} \end{aligned}$	$\underset{\mathrm{J}}{\mathrm{Ra}}$	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Ra} \end{aligned}$	$\begin{aligned} & \mathrm{Rc} \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & \mathrm{Rd} \\ & \mathrm{Rc} \end{aligned}$	K	Jump to Address in AR; Push μ PC	JSR AR
$\begin{gathered} \mathrm{N} \\ \mathrm{~N}+1 \end{gathered}$	011 X - 1000	$\begin{gathered} \mathbf{J} \\ \mathbf{K}+1 \end{gathered}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{~K} \end{aligned}$	$\begin{aligned} & \mathrm{Ra} \\ & \mathrm{Ra} \end{aligned}$	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & \mathrm{Rc} \\ & \mathrm{Rc} \end{aligned}$	$\begin{aligned} & \mathrm{Rd} \\ & \mathrm{Rd} \end{aligned}$	K	Jump to Address in AR	JMP AR
$\begin{gathered} \mathrm{N} \\ \mathrm{~N}+1 \end{gathered}$	1000 -	$\begin{gathered} \mathbf{J} \\ \mathbf{R a}+1 \end{gathered}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{~K} \end{aligned}$	$\begin{aligned} & \mathrm{Ra} \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Rc} \end{aligned}$	$\begin{aligned} & \mathrm{Rc} \\ & \mathrm{Rd} \end{aligned}$	$\begin{aligned} & \mathrm{Rd} \\ & \mathrm{Ra} \end{aligned}$	$\overline{\mathrm{Ra}}$	Jump to Address in STK0; Pop Stack	RTS
$\begin{gathered} \mathbf{N} \\ \mathbf{N}+1 \end{gathered}$	1001 -	$\begin{gathered} \mathbf{J} \\ \mathrm{Ra}+1 \end{gathered}$	$\begin{aligned} & \mathrm{K} \\ & \mathbf{K} \end{aligned}$	$\underset{\mathrm{J}}{\mathrm{Ra}}$	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Ra} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Rc} \\ & \mathrm{Rb} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Rd} \\ & \mathrm{Rc} \end{aligned}$	Ra	Jump to Address in STK0; Push μ PC	
$\begin{gathered} \mathbf{N} \\ \mathbf{N}+1 \end{gathered}$	101 X - 100	$\begin{gathered} \mathbf{J} \\ \mathbf{R a}+1 \end{gathered}$	$\begin{aligned} & \mathbf{K} \\ & \mathbf{K} \end{aligned}$	$\begin{aligned} & \mathrm{Ra} \\ & \mathrm{Ra} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & \mathrm{Rc} \\ & \mathrm{Rc} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Rd} \\ & \mathrm{Rd} \end{aligned}$	Ra	Jump to Address in STK0	Stack Ref (Loop)
$\begin{gathered} \mathbf{N} \\ \mathbf{N}+1 \end{gathered}$	1100 -	$\begin{gathered} \mathbf{J} \\ \mathrm{D}+1 \end{gathered}$	$\begin{aligned} & \mathbf{K} \\ & \mathbf{K} \end{aligned}$	$\begin{aligned} & \mathrm{Ra} \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Rc} \end{aligned}$	$\begin{aligned} & \mathrm{Rc} \\ & \text { Rd } \end{aligned}$	$\begin{aligned} & \mathrm{Rd} \\ & \mathrm{Ra} \end{aligned}$	D	Jump to Address on D; Pop Stack	End Loop
$\begin{gathered} \mathbf{N} \\ \mathbf{N}+1 \end{gathered}$	1101 -	$\begin{gathered} \mathbf{J} \\ \mathbf{D}+1 \end{gathered}$	$\begin{aligned} & \mathbf{K} \\ & \mathbf{K} \end{aligned}$	$\underset{\mathrm{J}}{\mathrm{Ra}}$	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Ra} \end{aligned}$	$\begin{aligned} & \mathrm{Rc} \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & \mathrm{Rd} \\ & \mathrm{Rc} \end{aligned}$	D	$\begin{aligned} & \text { Jump to Address on D; } \\ & \text { Push } \mu \text { PC } \end{aligned}$	JSR D
$\begin{gathered} \mathbf{N} \\ \mathbf{N}+1 \end{gathered}$	111 X	$\begin{gathered} \mathbf{J} \\ \mathbf{D}+1 \end{gathered}$	$\begin{aligned} & \mathbf{K} \\ & \mathbf{K} \end{aligned}$	$\begin{aligned} & \hline \mathrm{Ra} \\ & \mathrm{Ra} \end{aligned}$	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & \mathrm{Rc} \\ & \mathrm{Rc} \end{aligned}$	$\begin{aligned} & \mathrm{Rd} \\ & \mathrm{Rd} \end{aligned}$	D	Jump to Address on D	JMP D

[^14]
Functional Description (Continued)

Two examples of Subroutine Execution appear below. Figure 3 illustrates a single subroutine while Figure 4 illustrates two nested subroutines.
The instruction being executed at any given time is the one contained in the microword register ($\mu \mathrm{WR}$). The contents of the $\mu \mathrm{WR}$ also controls the four signals $\mathrm{S}_{0}, \mathrm{~S}_{1}, \overline{\mathrm{FE}}$, and PUP. The starting address of the subroutine is applied to the D inputs of the 7 C 909 at the appropriate time.
In the columns on the left is the sequence of microinstructions to be executed. At address $\mathbf{J}+2$, the sequence control portion of the microinstruction contains the command
"Jump to sub-routine at A". At the time T_{2}, this instruction is in the $\mu \mathrm{WR}$, and the 7C909 inputs are set-up to execute the jump and save the return address. The subroutine address A is applied to the D inputs from the $\mu \mathrm{WR}$ and appears on the Y outputs. The first instruction of the subroutine, $I(A)$, is accessed and is at the inputs of the μ WR. On the next clock transition, $I(A)$ is loaded into the $\mu \mathrm{WR}$ for execution, and the return address $\mathrm{J}+3$ is pushed onto the stack. The return instruction is executed at T_{5}. Figure 4 is a similar timing chart showing one subroutine linking to a second, the latter consisting of only one microinstruction.

CONTROL MEMORY

Execute Cycle	Microprogram	
	Address	Sequencer Instruction
$\mathbf{T}_{\mathbf{0}}$	$\mathbf{J - 1}$	-
\mathbf{T}_{1}	$\mathbf{J}+1$	-
\mathbf{T}_{2}	$\mathbf{J}+2$	JSR A
$\mathbf{T}_{\mathbf{6}}$	$\mathbf{J}+3$	-
$\mathbf{T}_{\mathbf{7}}$	$\mathbf{J}+\mathbf{4}$	-
	-	-
	-	-
	-	-
	-	-
\mathbf{T}_{3}	-	\mathbf{A}
\mathbf{T}_{4}	$\mathbf{A + 1}$	$\mathbf{I}(\mathbf{A})$
$\mathbf{T}_{\mathbf{5}}$	$\mathbf{A + 2}$	RTS
	-	-
	-	-
	-	-
	-	-
	-	-
	-	-

Execute Cycle		T0	T_{1}	T2	T3	T_{4}	T5	T6	T_{7}	T_{8}	T9
Clock Signals											
Inputs (from $\mu \mathrm{WR}$)	$\begin{gathered} \mathrm{S}_{1}, \mathrm{~S}_{0} \\ \mathrm{FE} \\ \text { PUP } \\ \mathrm{D} \end{gathered}$	$\begin{aligned} & \mathbf{O} \\ & \mathbf{H} \\ & \mathbf{X} \\ & \mathbf{X} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{H} \\ & \mathbf{X} \\ & \mathbf{X} \end{aligned}$	$\begin{aligned} & 3 \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathbf{A} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{H} \\ & \mathbf{X} \\ & \mathbf{X} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{H} \\ & \mathbf{X} \\ & \mathbf{X} \end{aligned}$	2 	0 \mathbf{H} \mathbf{X} \mathbf{X}	$\begin{aligned} & \mathrm{O} \\ & \mathbf{H} \\ & \mathbf{X} \\ & \mathbf{X} \end{aligned}$		
Internal Registers	$\begin{aligned} & \mu \text { PC } \\ & \text { STK0 } \\ & \text { STK } 1 \\ & \text { STK } 2 \\ & \text { STK } 3 \end{aligned}$	$\mathrm{J}+1$	$\mathrm{J}+2$ - - -	J+3 - - -	A+1 $\mathbf{J}+3$ - -	A+2 J+3 - - -	A+3 $\mathbf{J}+3$ - - -	J + 4 - - - -	J + 5 - \cdot - -		
Output	Y	$\mathrm{J}+1$	$\mathrm{J}+2$	A	A+1	A+2	$\mathbf{J}+3$	J + 4	J + 5		
ROM Output	(Y)	I(J+1)	JSR A	I(A)	$\mathrm{I}(\mathrm{A}+1)$	RTS	$\mathrm{I}(\mathrm{J}+3)$	I(J+4)	$\mathrm{I}(\mathrm{J}+5)$		
Contents of $\mu \mathrm{WR}$ (Instruction being executed)	μ WR	I(J)	I(J+1)	JSR A	I(A)	I(A+1)	RTS	I(J+3)	I(J + 4)		

0042-9
Figure 3. Subroutine Execution. $\quad \mathrm{C}_{\mathrm{n}}=\mathrm{HIGH}$
CONTROL MEMORY

Execute Cycle	Microprogram	
	Address	Sequencer Instruction
	J-1	-
T_{0}	J	-
T_{1}	$\mathrm{J}+1$	-
T	$\mathrm{J}+2$	JSR A
T9	J+3	-
	-	-
	-	$\stackrel{-}{ }$
	-	-
T3	A	-
T_{4}	A+1	-
Ts	A+2	JSR B
T_{7}	A+3	-
T_{8}	A+4	RTS
	-	-
	\cdot	$\stackrel{-}{-}$
	-	-
T_{6}	B	RTS
	-	\cdot
	-	-

Execute C	ycle	T_{0}	T1	T2	T3	T_{4}	T5	T6	T7	T8	T9
Clock Signals											
Inputs (from $\mu \mathrm{WR}$)	$\begin{gathered} \mathbf{S}_{1}, \mathbf{S}_{0} \\ \mathbf{F E} \\ \text { PUP } \\ \mathrm{D} \end{gathered}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{H} \\ & \mathbf{X} \\ & \mathbf{X} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathrm{H} \\ & \mathbf{X} \\ & \mathbf{X} \end{aligned}$	$\begin{aligned} & \mathbf{3} \\ & \mathbf{L} \\ & \mathbf{H} \\ & \mathbf{A} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{H} \\ & \mathbf{X} \\ & \mathbf{X} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathrm{H} \\ & \mathrm{X} \\ & \mathbf{X} \end{aligned}$	$\begin{aligned} & 3 \\ & \text { L } \\ & \text { H } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 2 \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \hline \mathbf{O} \\ & \mathbf{H} \\ & \mathbf{X} \\ & \mathbf{X} \end{aligned}$	$\begin{aligned} & 2 \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{H} \\ & \mathrm{X} \\ & \mathbf{X} \end{aligned}$
Internal Registers	$\begin{array}{\|l\|} \hline \mu \text { PC } \\ \text { STK0 } \\ \text { STK1 } \\ \text { STK2 } \\ \text { STK3 } \end{array}$	$\mathrm{J}+1$	$\mathbf{J}+2$	$\mathbf{J}+\mathbf{3}$	A+1 $\mathbf{J}+3$ - -	A + 2 $J+3$ - -	A+3 J +3 \cdot \cdot	$\mathbf{B}+1$ $\mathbf{A}+3$ $\mathbf{J}+3$ -	A +4 $\mathrm{~J}+3$ - -	A+5 J+3 - -	J+4 - - -
Output	Y	$\mathrm{J}+1$	$\mathrm{J}+2$	A	A+1	A+2	B	A+3	A+4	J + 3	$\mathrm{J}+4$
ROM Output	(Y)	I(J + 1)	JSR A	I(A)	I(A+1)	JSR B	RTS	$\mathbf{I}(\mathrm{A}+3)$	RTS	I(J+3)	I(J + 4)
Contents of $\mu \mathrm{WR}$ (Instruction being executed)	$\mu \mathrm{WR}$	I(J)	$\mathbf{I}(\mathbf{J}+1)$	JSR A	I(A)	$\mathrm{I}(\mathrm{A}+1)$	JSR B	RTS	$\mathbf{I}(\mathbf{A}+3)$	RTS	$\mathbf{I}(\mathbf{J}+3)$

Figure 4. Two Nested Subroutines. Routine B is Only One Instruction.
$\mathrm{C}_{\mathrm{n}}=\mathrm{HIGH}$

\mathbf{R}_{i} and \mathbf{D}_{i} connected together and OR_{i} Inputs removed on CY7C911
Figure 5. Microprogram Sequencer Block Diagram

Functional Description (Continued)

Architecture

The CY7C909 and CY7C911 are CMOS microprogram sequencers for use in high speed processor applications. They are cascadable in 4-bit increments. Two devices can address 256 words of microprogram, three can address up to 4 K words, and so on. The architecture of the
CY7C909/911 is illustrated in the logic diagram in Figure 5 . The various blocks are described below.

Multiplexer

The Multiplexer is controlled by the S_{0} and S_{1} inputs to select the address source. It selects either the Direct Inputs $\left(\mathrm{D}_{\mathbf{i}}\right)$, the Address Register (AR), the Microprogram Counter ($\mu \mathrm{PC}$), or the stack (SP) as the source of the next microinstruction address.

Direct Inputs

The Direct Inputs $\left(D_{i}\right)$ allow addresses from an external source to be output on the Y outputs. On the CY7C911, the direct inputs are also the inputs to the Address Register.

Address Register

The Address Register (AR) consists of four D-type, edgetriggered flip-flops which are controlled by the Register $\overline{\text { Enable }}(\overline{\mathrm{RE}})$ input. When Register Enable is LOW, new data is entered into the register on the LOW to HIGH clock transition.

Microprogram Counter

The Microprogram Counter ($\mu \mathrm{PC}$) is composed of a 4-bit incrementer followed by a 4-bit register. The incrementer has a Carry-in $\left(\mathrm{C}_{\mathrm{N}}\right)$ input and a Carry-out $\left(\mathrm{C}_{\mathrm{N}}+4\right)$ output to facilitate cascading. The Carry-in input controls the microprogram counter. When Carry-in is HIGH the incrementer counts sequentially. The counter register is loaded with the current Y output plus one ($\mathrm{Y}+1->\mu \mathrm{PC}$) on the next clock cycle. When Carry-in is LOW the incrementer does not count. The microprogram counter register is
loaded with the same Y output ($\mathrm{Y} \rightarrow>\mu \mathrm{PC}$) on the next clock cycle.

Stack

The Stack consists of a 4×4 memory array and a built-in Stack Pointer (SP) which always points to the last word written. The Stack is used to store return addresses when executing microsubroutines.
The Stack Pointer is an up/down counter controlled by File Enable (FE) and Push/Pop (PUP) inputs. The File Enable input allows stack operations only when it is LOW. The Push/Pop input controls the stack pointer position.
The PUSH operation is initiated at the beginning of a microsubroutine. Push/Pop is set HIGH while File Enable is kept LOW. The stack pointer is incremented and the memory array is written with the microinstruction address following the subroutine jump that initiated the push.
The POP operation is initiated at the end of a microsubroutine to obtain the return address. Both Push/Pop and File Enable are set LOW. The return address is already available to the multiplexer. The stack pointer is decremented on the next LOW to HIGH clock transition, effectively removing old information from the top of the stack. The stack is configured so that data will roll-over if more than four POPs are performed, thus preventing data from being lost.
The contents of the memory position pointed to by the Stack Pointer is always available to the multiplexer. Stack reference operations can thus be performed without a push or a pop. Since the stack is four words deep, up to four microsubroutines can be nested.
The $\overline{\text { ZERO }}$ input resets the four Y outputs to a binary zero state. The OR inputs (7C909 only) are connected to the Y outputs such that any output can be set to a logical one.
The Output Enable ($\overline{\mathrm{OE}}$) input controls the Y outputs. A HIGH on Output Enable sets the outputs into a high impedance state.

Definition of Terms

Name	
INPUTS	Description
$\mathrm{S}_{1}, \mathrm{~S}_{0}$	Multiplexer Control Lines, for Access Source Selection
$\overline{\mathrm{FE}}$	$\overline{\text { File Enable, Enables Stack Operation, Active LOW }}$
PUP	Push/Pop, Selects Stack Operation
$\overline{\mathrm{RE}}$	$\overline{\text { Register Enable, Enables Address Register Active LOW }}$
$\overline{\mathrm{ZERO}}$	Forces Output to Logical Zero
$\overline{\mathrm{OE}}$	$\overline{\text { Output Enable, Controls Three-State Outputs Active LOW }}$
OR_{i}	Logic OR Input to each Address Output Line (7C909 only)
C_{n}	Carry-In, Controls Microprogram Counter
R_{i}	Inputs to the Internal Address Register
D_{i}	Direct Inputs to the Multiplexer
CP	Clock Input

Definition of Terms (Continued)

Name	Description
OUTPUTS	
Y_{i}	Address Outputs
$\mathrm{C}_{\mathrm{N}+4}$	Carry-Out from Incrementer
INTERNAL SIGNALS	
$\mu \mathrm{PC}$	Contents of the Microprogram Counter
AR	Contents of the Address Register
$\begin{aligned} & \text { STK0- } \\ & \text { STK3 } \end{aligned}$	Contents of the Push/Pop Stack
SP	Contents of the Stack Pointer
EXTERNAL SIGNALS	
A	Address to the Counter Memory
I(A)	Instruction in Control Memory at Address A
$\mu \mathrm{WR}$	Contents of the Microword Register at the Output of the Control Memory
T_{N}	Time Period (Cycle) n

Typical DC and AC Characteristics

NORMALIZED OUTPUT DELAY vs. OUTPUT LOADING

NORMALIZED ICC vs. FREQUENCY

0042-12

CYPRESS

Ordering Information

Clock Cycle (ns)	Ordering Code	Package Type	Operating Range
30	CY7C909-30PC	P15	Commercial Commercial
30	CY7C909-40PC	P15	Comer
30	CY7C909-30JC	J64	Commercial
40	CY7C909-40JC	J64	Commercial
30	CY7C909-30DC	D16	Commercial
40	CY7C909-40DC	D16	Commercial
40	CY7C909-40LC	L64	Commercial
30	CY7C909-30DMB	D16	Military
40	CY7C909-40DMB	D16	Military
40	CY7C909-40LMB	L64	Military

Clock Cycle (ns)	Ordering Code	Package Type	Operating Range
30	CY7C911-30PC	P5	Commercial
40	CY7C911-40PC	P5	Commercial
30	CY7C911-30JC	J61	Commercial
40	CY7C911-40JC	J61	Commercial
30	CY7C911-30DC	D6	Commercial
Commercial			
40	CY7C911-40DC	D6	Commercial
40	CY7C911-40LC	L61	Comilary
30	CY7C911-30DMB	D6	Military
40	CY7C911-40DMB	D6	Military
40	CY7C911-40LMB	L61	Military

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{OS}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{CC} 1}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
Minimum Clock Low Time	7,8,9,10,11
Minimum Clock High Time	7,8,9,10,11
MAXIMUM COMBINATIONAL PROPAGATION DELAYS	
D_{i} to Y	7,8,9,10,11
D_{i} to $\mathrm{C}_{\mathrm{N}+4}$	7,8,9,10,11
$\mathrm{S}_{0}, \mathrm{~S}_{1}$ to Y	7,8,9,10,11
$\mathrm{S}_{0}, \mathrm{~S}_{1}$ to C_{N}	7,8,9,10,11
OR_{i} (7C909) to Y	7,8,9,10,11
$\mathrm{OR}_{\mathrm{i}}(7 \mathrm{C} 909)$ to $\mathrm{C}_{\mathrm{N}+}$	7,8,9,10,11
C_{N} to $\mathrm{C}_{\mathrm{N}+4}$	7,8,9,10,11
$\overline{\text { ZERO }}$ to $\mathrm{C}_{\mathrm{N}+}$	7,8,9,10,11
$\begin{aligned} & \text { Clock High, } \mathrm{S}_{0}, \mathrm{~S}_{1}=\mathrm{LH} \\ & \text { to } \mathrm{Y} \end{aligned}$	7,8,9,10,11
Clock High, $\mathrm{S}_{0}, \mathrm{~S}_{1}=\mathrm{LH}$ to $\mathrm{C}_{\mathrm{N}+4}$	7,8,9,10,11
$\text { Clock High, } S_{0}, S_{1}=\mathbf{L L}$ $\text { to } \mathrm{Y}$	7,8,9,10,11
$\begin{aligned} & \text { Clock High, } \mathrm{S}_{0}, \mathrm{~S}_{1}=\mathrm{LL} \\ & \text { to } \mathrm{C}_{\mathrm{N}+4} \end{aligned}$	7,8,9,10,11
Clock High, $\mathrm{S}_{0}, \mathrm{~S}_{1}=\mathrm{HL}$ to Y	7,8,9,10,11
Clock High, $\mathrm{S}_{0}, \mathrm{~S}_{1}=\mathrm{HL}$ to $\mathrm{C}_{\mathrm{N}+4}$	7,8,9,10,11

Parameters	Subgroups
MINIMUM SET-UP AND HOLD TIMES	
$\overline{\mathrm{RE}}$ Set-up Time	7,8,9,10,11
$\overline{\mathrm{RE}}$ Hold Time	7,8,9,10,11
Push/Pop Set-up Time	7,8,9,10,11
Push/Pop Hold Time	7,8,9,10,11
FE Set-up Time	7,8,9,10,11
FE Hold Time	7,8,9,10,11
C_{N} Set-up Time	7,8,9,10,11
C_{N} Hold Time	7,8,9,10,11
D_{i} Set-up Time	7,8,9,10,11
D_{i} Hold Time	7,8,9,10,11
OR_{i} (7C909) Set-up Time	7,8,9,10,11
OR_{i} (7C909) Hold Time	7,8,9,10,11
$\mathrm{S}_{0}, \mathrm{~S}_{1}$ Set-up Time	7,8,9,10,11
$\mathrm{S}_{0}, \mathrm{~S}_{1}$ Hold Time	7,8,9,10,11
$\overline{\text { ZERO }}$ Set-up Time	7,8,9,10,11
ZERO Hold Time	7,8,9,10,11

Document \#: 38-00015-B

Features

- Fast
- CY7C910-40 has a 40 ns (min.) clock cycle; commercial
- CY7C910-46 has a 46 ns (min.) clock cycle; military
- Low power
$-I_{C C}(\max)=.70 \mathrm{~mA}$
- $V_{\text {CC }}$ margin $5 \mathrm{~V} \pm 10 \%$
commercial and military
- Sixteen powerful microinstructions
- Three output enable controls for three-way branch
- Twelve-bit address word
- Four sources for addresses: microprogram counter (MPC), stack, branch address bus, internal holding register
- 12-bit internal loop counter
- Internal 17 -word by 12 -bit stack The internal stack can be used
for subroutine return address or data storage
- ESD protection

Capable of withstanding over 2000V static discharge voltage

- Pin compatible and functional equivalent to ANi2910A

Functional Description

The CY7C910 is a stand-alone microprogram controller that selects, stores, retrieves, manipulates and tests addresses that control the sequence of execution of instructions stored in an external memory. All addresses are 12-bit binary values that designate an absolute memory location.
The CY7C910, as illustrated in the block diagram, consists of a 17 -word by 12-bit LIFO (Last-In-First-Out) stack and SP (Stack Pointer), a 12-bit RC (Register/Counter), a 12 -bit MPC (Microprogram Counter) and incrementer, a 12 -bit wide by 4 -input multi-

CMOS Microprogram

 Controllerplexer and the required data manipulation and control logic.
The operation performed is determined by four input instruction lines ($\mathrm{I} 0-\mathrm{I} 3$) that in turn select the (internal) source of the next micro-instruction to be fetched. This address is output on the Y0-Y11 pins. Two additional inputs (CC and CCEN) are provided that are examined during certain instructions and enable the user to make the execution of the instruction either unconditional or dependent upon an external test.
The CY7C910 is a pin compatible, functional equivalent, improved performance replacement for the AM2910A.
The CY7C910 is fabricated using an advanced 1.2 micron CMOS process that eliminates latchup, results in ESD protection of over 2000 volts and achieves superior performance and low power dissipation.

Logic Block Diagram

Pin Configurations

Selection Guide

Clock Cycle (Min.) in ns	Stack Depth	Operating Range	Part Number
40	17 words	Commercial	CY7C910-40
46	17 words	Military	CY7C910-46
50	17 words	Commercial	CY7C910-50
51	17 words	Military	CY7C910-51
93	17 words	Commercial	CY7C910-93
99	17 words	Military	CY7C910-99

Pin Definitions

Signal Name	I/O	Description
D0-D11	I	Direct inputs to the RC (Register/ Counter) and multiplexer. D0 is LSB and D11 is MSB.
$\overline{\text { RLD }}$	I	Register load. Control input to RC that, when LOW, loads data on the D0-D11 pins into RC on the LOW to HIGH clock (CP) transition.
I0-I3	I	Instruction inputs that select one of sixteen instructions to be performed by the CY7C910.
$\overline{\mathrm{CC}}$	I	Control input that, when LOW, signifies that a test has passed.
$\overline{\mathrm{CCEN}}$	I	Enable for $\overline{\mathrm{CC}}$ input. When HIGH $\overline{\text { CC }}$ is ignored and a pass is forced. When LOW the state of $\overline{\text { CC is examined. }}$
$\mathbf{C P}$	I	Clock input. All internal states are changed on the LOW to HIGH clock transitions.

Signal Name	I/O	Description
CI	I	Carry input to the LSB of the incrementer for the MPC.
$\overline{\text { OE }}$	I	Control for Y0-Y11 outputs. LOW to enable; High to disable.
Y0-Y11	O	Address output to microprogram memory. Y0 is LSB and Y11 is MSB.
$\overline{\text { FULL }}$	O	When LOW indicates the stack is full.
$\overline{\text { PL }}$	O	When LOW selects the pipeline register as the direct input (D0-D11) source.
$\overline{\text { MAP }}$	O	When LOW selects the Mapping PROM (or PLA) as the direct input source.
$\overline{\mathrm{VECT}}$	O	When LOW selects the Interrupt Vector as the direct input source.

Architecture of the CY7C910

Introduction

The CY7C910 is a high performance CMOS microprogram controller that produces a sequence of 12 -bit addresses that control the execution of a microprogram. The addresses are selected from one of four sources, depending upon the (internal) instruction being executed (IO-I3), and other external inputs. The sources are (1) the (external) D0-D11 inputs, (2) the RC, (3) the stack and (4) the MPC. Twelve bit lines from each of these four sources are the inputs to a multiplexer, as shown in Figure 1, whose outputs are applied to the inputs of the Y0-Y11 three-state output drivers.

External Inputs: D0-D11

The external inputs are used as the source for destination addresses for the jump or branch type of instructions. These are shown as Ds in the two columns in the Table of Instructions. A second use of these inputs is to load the RC.

Register Counter: RC

The RC is implemented as 12 D-type, edge-triggered flipflops that are synchronously clocked on the LOW to HIGH transition of the clock, CP. The data on the D inputs is synchronously loaded into the RC when the load control input, RLD, is LOW. The output of the RC is available to the multiplexer as its R input and is output on the Y outputs during certain instructions, as shown by R in the Table of Instructions.
The RC is operated as a 12-bit down counter and its contents decremented and tested if zero during instructions 8 , 9 and 15. This enables micro-instructions to be repeated up to 4096 times. The RC is arranged such that if it is loaded with a number, N , the sequence will be executed exactly $\mathrm{N}+1$ times.

The Stack and Stack Pointer: SP

The 17 -word by 12 -bit stack is used to provide return addresses from micro-subroutines or from loops. Intergal to it is a SP, which points to (addresses) the last word written.

This permits reference to the data on the top of the stack without having to perform a POP operation.
The SP operates as an up/down counter that is incremented when a PUSH operation (instructions 1,4 or 5) is performed or decremented when a POP operation (instructions $8,10,11,13$ or 15) is performed. The PUSH operation writes the return address on the stack and the POP operation effectively removes it. The actual operation occurs on the LOW to HIGH clock transition following the instruction.

The stack is initialized by executing instruction zero (JUMP TO LOCATION 0 or RESET). Every time a "jump to subroutine" instruction $(1,5)$ or a loop instruction (4) is executed, the return address is PUSHed onto the stack; and every time a "return from subroutine (or loop)" instruction is executed, the return address is POPed off the stack.
When one subroutine calls another or a loop occurs within a loop (or a combination), which is called nesting, the Logical depth of the stack increases. The physical stack depth is 17 words. When this depth occurs, the FULL signal goes LOW on the next LOW to HIGH clock transition. Any further PUSH operations on a full stack will cause the data at that location to be over-written, but will not increment the SP. Similarily, performing a POP operation on a empty stack will not decrement the SP and may result in nonmeaningful data being available at the Y outputs.

The Microprocessor Counter: MPC

The MPC consists of a 12-bit incrementer followed by a 12 -bit register. The register usually holds the address of the instruction being fetched. When sequential instructions are fetched, the carry input (CI) to the incrementer is HIGH and one is added to the Y outputs of the multiplexer, which is loaded into the MPC on the next LOW to HIGH clock transition. When the CI input is LOW, the Y outputs of the multiplexer are loaded directly into the MPC, so that the same instruction is fetched and executed.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 10 to Pin 30) -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State.
-0.5 V to +7.0 V
DC Input Voltage -3.0 V to +7.0 V
Output Current into Outputs (Low) .30 mA

Static Discharge Voltage . > 2001 V
(Per MIL-STD-883 Method 3015)
Operating Range

Range	Ambient Temperature	V $_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[3]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Commercial and Military Operating Range, V_{CC} Min. $=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}} \mathrm{Max} .=5.5 \mathrm{~V}[4]$

Parameter	Description		Test Condition	Min.	Max.	Units
V_{OH}	Output HIGH Voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{IOH}_{\mathrm{OH}}=-1.6 \mathrm{~mA} \end{aligned}$	2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \end{aligned}$		0.4	V
V_{IH}	Input HIGH Voltage			2.0	V_{CC}	V
$V_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	V
I_{IH}	Input HIGH Current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \end{aligned}$		10	$\mu \mathrm{A}$
ILL	Input LOW Current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}} \end{aligned}$		-10	$\mu \mathrm{A}$
IOH	Output HIGH Current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V} \end{aligned}$	-1.6		mA
I_{OL}	Output LOW Current		$\begin{aligned} & \mathrm{v}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{v}_{\mathrm{OL}}=0.4 \mathrm{~V} \end{aligned}$	12		mA
I_{OZ}	Output Leakage Current		$\begin{aligned} & \mathrm{v}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{SS}} / \mathrm{V}_{\mathrm{CC}} \end{aligned}$	-40	+40	$\begin{aligned} & \mu \mathbf{A} \\ & \mu \mathbf{A} \\ & \hline \end{aligned}$
ISC	Output Short Circuit Current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V} \end{aligned}$		-85	mA
$\mathrm{I}_{\text {CC }}$	Supply Current	Commercial	$\mathrm{V}_{\text {CC }}=\mathrm{Max}$.		70	mA
		Military			90	
ICC_{1}	Supply Current	Commercial	$\mathrm{V}_{\mathrm{IH}} \geq 3.85 \mathrm{~V}, \mathrm{~V}_{\text {IL }} \leq 0.4 \mathrm{~V}$		35	mA
		Military			50	

Capacitance ${ }^{[2]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	8
	$\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	pF		
C OUT	Output Capacitance		10	pF

Notes:

1. Not more than one output should be tested at a time. Duration of the short circuit should not exceed one second.
2. Tested initially and after any design or process changes that may affect these parameters.

Output Load used for AC Performance Characteristics

3. T_{A} is the "instant on" case temperature.
4. See the last page of this specification for Group A subgroup testing information.

Switching Waveforms

Notes:

0041-4
2. $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ for output disable tests.

Guaranteed AC Performance Characteristics

The tables below specify the guaranteed AC performance of the CY7C910 over the commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$ and the military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ temperature ranges with V_{CC} varying from 4.5 V to 5.5 V . All times are in nanoseconds and are measured between the 1.5 V signal levels.

The inputs switch between 0 V and 3 V with signal transition rates of 1 Volt per nanosecond. All outputs have maximum DC current loads.

Clock Requirements ${ }^{[1,3]}$

	Commercial			Military		
CY7C910-	40	50	93	46	51	99
Minimum Clock LOW	20	20	50	23	25	58
Minimum Clock HIGH	20	20	35	23	25	42
Minimum Clock Period I =14	40	50	93	46	51	100
Minimum Clock Period $I=8,9,15$	40	50	113	46	51	114

Combinatorial Propagation Delays. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}^{[3]}$

	Commercial									Military								
From Input	Y			$\overline{\text { PL, }} \overline{\text { VECT }}, \overline{\text { MAP }}$			FULL			Y			$\overline{\mathbf{P L}}, \overline{\mathbf{V E C T}}, \overline{\mathrm{MAP}}$			FULL		
CY7C910-	40	50	93	40	50	93	40	50	93	46	51	99	46	51	99	46	51	99
D0-D11	17	20	20	-	-	-	-	-	-	21	25	25	-	-	-	-	-	-
I0-I3	25	35	50	20	30	51	-	-	-	30	40	54	25	35	58	-	-	-
$\overline{\mathrm{CC}}$	22	30	30	-	-	-	-	-	-	27	36	35	-	-	-	-	-	-
CCEN	22	30	30	-	-	-	-	-	-	27	36	37	-	-	-	-	-	-
$\begin{aligned} & \hline \mathbf{C P} \\ & \mathrm{I}=8,9,15 \\ & \quad(\text { Note } 2) \\ & \hline \end{aligned}$	30	40	75	-	-	-	25	31	60	35	46	77	-	-	-	30	35	67
$\begin{aligned} & \text { CP } \\ & \text { All Other I } \end{aligned}$	30	40	55	-	-	-	25	31	60	35	46	61	-	-	-	30	35	67
$\overline{\mathrm{OE}}$ (Note 2)	$\begin{aligned} & 21 \\ & 21 \\ & \hline \end{aligned}$	$\begin{array}{r} 25 \\ 27 \\ \hline \end{array}$	$\begin{aligned} & 35 \\ & 30 \\ & \hline \end{aligned}$	-	-	-	-	-	—	$\begin{aligned} & 22 \\ & 22 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 40 \\ & 30 \end{aligned}$	-	-	-	-	-	-

Minimum Set-Up and Hold Times Relative to clock LOW to HIGH Transition. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}^{[3]}$

	Commercial						Military					
Input	Set-Up			Hold			Set-Up			Hold		
CY7C910-	40	50	93	40	50	93	46	51	99	46	51	99
DI \rightarrow RC	13	16	24	0	0	0	13	16	28	0	0	0
DI \rightarrow MPC	20	30	58	0	0	0	20	30	62	0	0	0
I0-I3	25	35	75	0	0	0	27	38	81	0	0	0
$\overline{\mathrm{CC}}$	20	24	63	0	0	0	25	35	65	0	0	0
CCEN	20	24	63	0	0	0	25	35	63	0	0	0
CI	15	18	46	0	0	0	15	18	58	0	0	0
$\overline{\text { RLD }}$	15	19	36	0	0	0	15	20	42	0	0	0

Notes:

1. A dash indicates that a propagation delay path or set-up time does not exist.
2. The enable/disable times are measured to a 0.5 Volt change on the output voltage level with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.
3. See the last page of this specification for Group A subgroup testing information.

$$
\mathrm{OR}=
$$

Table of Instructions

$\mathrm{I}_{3}-\mathrm{I}_{0}$	Mnemonic	Name	Reg/ Cntr Contents	Result					
				$\stackrel{\text { Fail }}{\mathbf{C C E N}}=\mathbf{L} \text { and } \overline{\mathrm{CC}}=\mathbf{H}$		$\begin{gathered} \text { Pass } \\ \text { CCEN }=\mathbf{H} \text { or } \mathbf{C C}=L \end{gathered}$		Reg/ Cntr	Enable
				Y	Stack	Y	Stack		
0	JZ	Jump Zero	X	0	Clear	0	Clear	Hold	PL
1	CJS	Cond JSB PL	X	PC	Hold	D	Push	Hold	PL
2	JMAP	Jump Map	X	D	Hold	D	Hold	Hold	Map
3	CJP	Cond Jump PL	X	PC	Hold	D	Hold	Hold	PL
4	PUSH	Push/Cond LD CNTR	X	PC	Push	PC	Push	(Note 1)	PL
5	JSRP	Cond JSB R/PL	X	R	Push	D	Push	Hold	PL
6	CJV	Cond Jump Vector	X	PC	Hold	D	Hold	Hold	Vect
7	JRP	Cond Jump R/PL	X	R	Hold	D	Hold	Hold	PL
8	RFCT	Repeat Loop,$\text { CNTR } \neq 0$	$\neq 0$	F	Hold	F	Hold	Dec	PL
			=0	PC	POP	PC	Pop	Hold	PL
9	RPCT	$\begin{aligned} & \text { Repeat PL, } \\ & \text { CNTR } \neq 0 \end{aligned}$	$\neq 0$	D	Hold	D	Hold	Dec	PL
			=0	PC	Hold	PC	Hold	Hold	PL
10	CRTN	Cond RTN	X	PC	Hold	F	Pop	Hold	PL
11	CJPP	Cond Jump PL \& Pop	X	PC	Hold	D	Pop	Hold	PL
12	LDCT	LD Cntr \& Continue	X	PC	Hold	PC	Hold	Load	PL
13	LOOP	Test End Loop	X	F	Hold	PC	Pop	Hold	PL
14	CONT	Continue	X	PC	Hold	PC	Hold	Hold	PL
15	TWB	Three-Way Branch	$\neq 0$	F	Hold	PC	Pop	Dec	PL
			$=0$	D	Pop	PC	Pop	Hold	PL

Notes:

1. If $\overline{C C E N}=L$ and $\overline{C C}=H$, hold; else load.
$\mathbf{H}=\mathbf{H I G H} \quad$ L $=$ LOW $\quad \mathbf{X}=$ Don't Care

CY7C910 CMOS Microprogram Controller

CY7C910 Flow Diagrams

0 Jump Zero (JZ)	1 Cond JSB PL (CJS)	2 Jump Map (JMAP)
3 Cond Jump PL (CJP)	4 Push/Cond LD CNTR (PUSH)	5 Cond JSB R/PL (JSRP)
6 Cond Jump Vector (CJV)	$7 \text { Cond Jump R/PL (JRP) }$	
	$9 \text { Repeat PL, CNTR } \neq 0 \text { (RPCT) }$	10 Cond Return (CRTN)
11 Cond Jump PL \& POP (CJPP)	12 LD CNTR \& Continue (LDCT)	13 Test End Loop (LOOP)
$\left.\begin{array}{l} 14 \text { Continue (CONT) } \\ 65 \\ 66 \\ 67 \\ 68 \end{array}\right\}$	15 Three-Way Branch (TWB)	

$$
\mathbb{R}=
$$

One Level Pipeline Based Architecture (Recommended)

0041-6

0041-7

Typical DC and AC Characteristics

NORMALIZED FREQUENCY vs. SUPPLY VOLTAGE

NORMALIZED SUPPLY CURRENT vs. AMBIENT TEMPERATURE

NORMALIZED FREQUENCY vs. AMBIENT TEMPERATURE

OUTPUT SOURCE CURRENT vs. OUTPUT VOLTAGE

OUTPUT SINK CURRENT vs. OUTPUT VOLTAGE

0041-10

Ordering Information

Clock Cycle (ns)	Ordering Code	Package Type	Operating Range
40	CY7C910-40PC	P17	Commercial
	CY7C910-40DC	D18	
	CY7C910-40JC	J67	
	CY7C910-40LC	L67	
46	CY7C910-46DMB	D18	Military
	CY7C910-46LMB	L67	
50	CY7C910-50PC	P17	Commercial
	CY7C910-50DC	D18	
	CY7C910-50JC	J67	
	CY7C910-50LC	L67	
51	CY7C910-51DMB	D18	Military
	CY7C910-51LMB	L67	
93	CY7C910-93PC	P17	Commercial
	CY7C910-93DC	D18	
	CY7C910-93JC	J67	
	CY7C910-93LC	L67	
99	CY7C910-99DMB	D18	Military
	CY7C910-99LMB	L67	

FICATIONS
MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IH}	$1,2,3$
I_{IL}	$1,2,3$
I_{OH}	$1,2,3$
I_{OL}	$1,2,3$
I_{OZ}	$1,2,3$
I_{SC}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{CC} 1}$	$1,2,3$

Clock Requirements

Parameters	Subgroups
Minimum Clock LOW	$7,8,9,10,11$

Combinational Propagation Delays

Parameters	Subgroups
From D0-D11 to Y	$7,8,9,10,11$
From I0-I3 to Y	$7,8,9,10,11$
From I0-I3 to $\overline{\text { PL, }} \overline{\text { VECT, }} \overline{\text { MAP }}$	$7,8,9,10,11$
From $\overline{\text { CC }}$ to Y	$7,8,9,10,11$
From $\overline{\text { CCEN }}$ to Y	$7,8,9,10,11$
From CP (I $=8,9,15$) to $\overline{\text { FULL }}$	$7,8,9,10,11$
From CP (All Other I) to Y	$7,8,9,10,11$
From CP (All Other I) to $\overline{\text { FULL }}$	$7,8,9,10,11$

)ocument \#: 38-00016-B

Minimum Set-up and Hold Times

Parameters	Subgroups
DI \rightarrow RC Set-up Time	$7,8,9,10,11$
DI \rightarrow RC Hold Time	$7,8,9,10,11$
DI \rightarrow MPC Set-up Time	$7,8,9,10,11$
DI \rightarrow MPC Hold Time	$7,8,9,10,11$
I0-I3 Set-up Time	$7,8,9,10,11$
I0-I3 Hold Time	$7,8,9,10,11$
$\overline{\text { CC Set-up Time }}$	$7,8,9,10,11$
$\overline{\text { CC }}$ Hold Time	$7,8,9,10,11$
$\overline{\text { CCEN Set-up Time }}$	$7,8,9,10,11$
$\overline{\text { CCEN Hold Time }}$	$7,8,9,10,11$
CI Set-up Time	$7,8,9,10,11$
CI Hold Time	$7,8,9,10,11$
$\overline{\text { RLD Set-up Time }}$	$7,8,9,10,11$
$\overline{\text { RLD }}$ Hold Time	$7,8,9,10,11$

Features

- Fast
- CY7C9101-30 has a 30 ns (max.) clock cycle (commercial)
CY7C9101-35 has a 35 ns (max.) clock cycle (military)
- Low Power
- ICC (max. at $10 \mathrm{MHz})=60 \mathrm{~mA}$ (commercial)
- ICC (max. at $10 \mathrm{MHz})=85 \mathrm{~mA}$ (military)
- V_{CC} Margin
$-5 \mathrm{~V} \pm 10 \%$
- All parameters guaranteed over commercial and military operating temperature range
- Replaces four 2901's with carry look-ahead logic
- Eight Function ALU
- Performs three arithmetic and five logical operations on two 16-bit operands
- Expandable
- Infinitely expandable in 16-bit increments
- Four Status Flags
- Carry, overflow, negative, zero
- ESD Protection
- Capable of withstanding greater than 2000 V static discharge voltage
- Pin compatible and functionally equivalent to AM29C101

Functional Description

The CY7C9101 is a high-speed, expandable, 16 -bit wide ALU slice which can be used to implement the arithmetic section of a CPU, peripheral controller, or programmable controller. The instruction set of the CY7C9101 is basic, yet so versatile that it can emulate the ALU of almost any digital computer.

The CY7C9101, as shown in the block diagram, consists of a 16 -word by 16-bit dual-port RAM register file, a 16-bit ALU, and the necessary data manipulation and control logic.
The function performed is determined by the nine-bit instruction word (I_{8} to I_{0}) which is usually input via a microinstruction register.

The CY7C9101 is expandable in 16-bit increments, has three-state data outputs as well as flag outputs, and can implement either a full look-ahead carry or a ripple carry.
The CY7C9101 is a pin compatible, functional equivalent of the Am29C101 with improved performance. The 7C9101 replaces four 2901's and includes on-chip carry look-ahead logic.
Fabricated in an advanced 1.2 micron CMOS process, the 7C9101 eliminates latchup, has ESD protection greater than 2000 V , and achieves superior performance with low power dissipation.

Logic Block Diagram

Figure 1

Selection Guide

		7C9101-30 7C9101-35	7C9101-40 7C9101-45
Minimum Clock Cycle (ns)	Commercial	30	40
Maximum Operating Current at $10 \mathrm{MHz}(\mathrm{mA})$	Military	35	45
	Commercial	60	60
	Military	85	85

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature \qquad
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground
Potential . -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State . -0.5 V to +7.0 V
DC Input Voltage -3.0 V to +7.0 V
Output Current into Outputs (Low) 30 mA

Pin Definitions

Signal Name	I/O	Description
A_{3-0}	I	RAM Address A. This 4-bit address word selects one of the 16 registers in the register file for output on the (internal) A-port.
B_{3-0}	I	RAM Address B. This 4-bit address word selects one of the 16 registers in the register file for output on the (internal) B-port. When data is written back to the register file, this is the destination address.
I_{8-0}	I	Instruction Word. This nine-bit word is decoded to determine the ALU data sources $\left(I_{0,1,2}\right)$, the ALU operation ($I_{3}, 4,5$), and the data to be written to the Q-register or register file ($\mathrm{I}_{6,7}, 8$).
D $\mathbf{1 5 - 0}$	I	Direct Data Input. This 16-bit data word may be selected by the $\mathrm{I}_{0,1,2}$ lines as an input to the ALU.
Y_{15-0}	I	Data Output. These are three-state data output lines which, when enabled, output either the ALU result or the data in the A latch, as determined by the code on $\mathrm{I}_{6,7,8}$.
$\overline{\mathrm{OE}}$	I	Output Enable. This is an active LOW input which controls the Y_{15-0} outputs. A HIGH level on this signal places the output drivers at the high impedance state.
CP	I	Clock. The LOW level of CP is used to write data to the RAM register file. A HIGH level of CP writes data from the dual port RAM to the A and B latches. The operation of the Q register is similar; data is entered into the master latch on the LOW level of CP and transferred from master to slave during $\mathrm{CP}=\mathrm{HIGH}$.
Q15,		These two lines are bidirectional and are
RAM	I/O	controlled by $\mathrm{I}_{6,7,8}$. They are three-state output drivers connected to the TTL compatible CMOS inputs.

Static Discharge Voltage . > 2001 V
(Per MIL-STD-883 Method 3015)
Latchup Current (Outputs) > 200 mA
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[1]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Note:

1. T_{A} is the "instant on" case temperature.

Signal Name O	Description

Q15, Output Mode: When the destination code on lines
RAM $_{15}$ I/O $\mathrm{I}_{6,7,8}$ indicates a left shift (UP) operation, the
(Cont.) three-state outputs are enabled and the MSB of the Q register is output on the Q_{15} pin and likewise, the MSB of the ALU output (F_{15}) is output on the RAM 15 pin.
Input Mode: When the destination code indicates a right shift (DOWN), the pins are the data inputs to the MSB of the Q register and the RAM, respectively.
Q_{0}, \quad These two lines are bidirectional and function
RAM $_{C}$ I/O similarly to the Q_{15} and RAM_{15} lines. The Q_{0} and RAM_{0} lines are the LSB of the Q register and the RAM.
$\mathrm{C}_{\mathrm{n}} \quad$ I Carry In. The carry in to the internal ALU.
$\mathrm{C}_{\mathrm{n}}+16$ O Carry Out. The carry out from the internal ALU.
$\overline{\mathrm{G}}, \overline{\mathrm{P}} \quad \mathrm{O}$ Carry Generate, Carry Propagate. Outputs from the ALU which may be used to perform a carry look-ahead operation over the 16 -bits of the ALU.
OVR O Overflow. This signal is the logical exclusive-OR of the carry-in and carry-out of the MSB of the ALU. This indicates when the result of the ALU operation exceeded the capacity of the machine's two's complement number range. It is valid only for the sign bit.
$\mathrm{F}=0 \quad \mathrm{O}$ Zero Detect. Open drain output which goes HIGH when the data on outputs (F_{15-0}) are all LOW. It indicates that the result of an ALU operation is zero (positive logic assumed).
$\mathrm{F}_{15} \quad$ O Sign. The MSB of the ALU output.

Top View

Top View

0079-3

CY7C9101 Pinout for LCC/PLCC

$\mathrm{NC}=$ No Connect

Cin

Functional Tables

Table 1. ALU Source Operand Control

Mnemonic	Micro Code				ALU Source Operands		
	\mathbf{I}_{2}	$\mathbf{I}_{\mathbf{1}}$	$\mathbf{I}_{\mathbf{0}}$	Octal Code	R	S	
	L	L	L	0	A	Q	
AB	L	L	H	1	A	B	
ZQ	L	H	L	2	O	Q	
ZB	L	H	H	3	O	B	
ZA	H	L	L	4	O	A	
DA	H	L	H	5	D	A	
DQ	H	H	L	6	D	Q	
DZ	H	H	H	7	D	O	

Table 2. ALU Function Control

Mnemonic	Micro Code				ALU	Symbol
	$\mathbf{I}_{\mathbf{5}}$	$\mathbf{I}_{\mathbf{4}}$	$\mathbf{I}_{\mathbf{3}}$	Octal Code		

Table 3. ALU Destination Control

Mnemonic	Micro Code				RAM Function		Q-Reg. Function		\mathbf{Y} Output	RAM Shifter		Q Shifter	
	I8	I_{7}	I6	Octal Code	Shift	Load	Shift	Load		RAM0	RAM 15	\mathbf{Q}_{0}	Q15
QREG	L	L	L	0	X	None	None	$\mathrm{F} \rightarrow \mathrm{Q}$	F	X	X	X	X
NOP	L	L	H	1	X	None	X	None	F	X	X	X	X
RAMA	L	H	L	2	None	$\mathrm{F} \rightarrow \mathrm{B}$	X	None	A	X	X	X	X
RAMF	L	H	H	3	None	$\mathrm{F} \rightarrow \mathrm{B}$	X	None	F	X	X	X	X
RAMQD	H	L	L	4	DOWN	$\mathrm{F} / 2 \rightarrow \mathrm{~B}$	DOWN	$\mathrm{Q} / 2 \rightarrow \mathrm{Q}$	F	F_{0}	IN_{15}	Q_{0}	IN_{15}
RAMD	H	L	H	5	DOWN	$\mathrm{F} / 2 \rightarrow \mathrm{~B}$	X	None	F	F_{0}	IN_{15}	Q_{0}	X
RAMQU	H	H	L	6	UP	$2 \mathrm{~F} \rightarrow \mathrm{~B}$	UP	$2 \mathrm{Q} \rightarrow \mathrm{Q}$	F	IN_{0}	F_{15}	IN_{0}	Q_{15}
RAMU	H	H	H	7	UP	$2 \mathrm{~F} \rightarrow \mathrm{~B}$	X	None	F	IN_{0}	F_{15}	X	Q_{15}

$\mathbf{X}=$ Don't care. Electrically, the input shift pin is a TTL input internally connected to a three-state output which is in the high-impedance state.
$\mathbf{A}=$ Register Addressed by \mathbf{A} inputs.
$\mathbf{B}=$ Register Addressed by B inputs.
UP is toward MSB, DOWN is toward LSB.
Table 4. Source Operand and ALU Function Matrix

	I_{210} Octal	0	1	2	3	4	5	6	7
	ALU Source								
$\begin{gathered} \text { Octal } \\ \mathbf{I}_{543} \\ \hline \end{gathered}$	ALU Function	A, Q	A, B	O, Q	O, B	O, A	D, A	D, Q	D, 0
0	$\begin{aligned} & \mathbf{C}_{\mathbf{n}}=\mathbf{L} \\ & \mathbf{R} \text { plus } \mathbf{S} \\ & \mathbf{C}_{\mathbf{n}}=\mathbf{H} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{A}+\mathrm{Q} \\ \mathrm{~A}+\mathrm{Q}+1 \end{gathered}$	$\begin{gathered} \mathrm{A}+\mathrm{B} \\ \mathrm{~A}+\mathrm{B}+1 \end{gathered}$	$\begin{gathered} \mathrm{Q} \\ \mathrm{Q}+1 \end{gathered}$	$\begin{gathered} \mathrm{B} \\ \mathrm{~B}+1 \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{A} \\ \mathbf{A}+1 \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{D}+\mathbf{A} \\ \mathbf{D}+\mathbf{A}+1 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{D}+\mathrm{Q} \\ \mathrm{D}+\mathrm{Q}+1 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{D} \\ \mathrm{D}+1 \\ \hline \end{gathered}$
1	$\begin{aligned} & \mathbf{C}_{\mathrm{n}}=\mathbf{L} \\ & S_{\text {minus }} \mathbf{R} \\ & \mathbf{C}_{\mathrm{n}}=\mathbf{H} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{Q}-\mathrm{A}-1 \\ \mathrm{Q}-\mathrm{A} \end{gathered}$	$\begin{gathered} \mathrm{B}-\mathrm{A}-1 \\ \mathrm{~B}-\mathrm{A} \end{gathered}$	$\mathrm{Q}-1$ Q	$B-1$ B	A-1 A	$\begin{gathered} A-D-1 \\ A-D \end{gathered}$	$\begin{gathered} \mathrm{Q}-\mathrm{D}-1 \\ \mathrm{Q}-\mathrm{D} \end{gathered}$	$\begin{gathered} -\mathrm{D}-1 \\ -\mathrm{D} \\ \hline \end{gathered}$
2	$\mathbf{C}_{\mathbf{n}}=\mathbf{L}$ R minus S $\mathbf{C}_{\mathbf{n}}=\mathbf{H}$	$\begin{gathered} A-Q-1 \\ A-Q \end{gathered}$	$\begin{gathered} A-B-1 \\ \mathbf{A}-\mathbf{B} \end{gathered}$	$\begin{gathered} -Q-1 \\ -Q \end{gathered}$	$\begin{gathered} -\mathrm{B}-1 \\ -\mathrm{B} \\ \hline \end{gathered}$	$\begin{gathered} -\mathbf{A}-1 \\ -\mathbf{A} \end{gathered}$	$\begin{gathered} \mathrm{D}-\mathrm{A}-1 \\ \mathrm{D}-\mathbf{A} \end{gathered}$	$\begin{gathered} \mathrm{D}-\mathrm{Q}-1 \\ \mathrm{D}-\mathrm{Q} \end{gathered}$	$\begin{gathered} \mathrm{D}-1 \\ \mathrm{D} \end{gathered}$
3	R OR S	$A \vee Q$	$A \vee B$	Q	B	A	DVA	DVQ	D
4	R AND S	$A \wedge Q$	$A \wedge B$	0	0	0	$D \wedge A$	$D \wedge Q$	0
5	$\overline{\mathrm{R}}$ ANDS	$\bar{A} \wedge Q$	$\overline{\mathbf{A}} \wedge \mathrm{B}$	Q	B	A	$\overline{\mathrm{D}} \wedge \mathrm{A}$	$\overline{\mathrm{D}} \wedge \mathrm{Q}$	0
6	R EX-OR S	$A \forall Q$	$A \forall B$	Q	B	A	$D \forall A$	$D \forall Q$	D
7	R EX-NOR S	$\bar{A} \forall \mathrm{Q}$	$\overline{\mathrm{A} \forall \mathrm{B}}$	\bar{Q}	$\overline{\mathbf{B}}$	$\overline{\mathrm{A}}$	$\overline{\mathrm{D} \forall \mathrm{A}}$	$\overline{\mathrm{D} \forall \mathrm{Q}}$	$\overline{\mathrm{D}}$

$+=$ Plus; $-=$ Minus; $V=O R ; \wedge=A N D ; \forall=$ EX-OR

Description of Architecture

General Description

The 7C9101 block diagram is shown in Figure 1. Detailed block diagrams show the operation of specific sections as described below. The device is a 16 -bit slice consisting of a register file (16 -word by 16-bit dual port RAM), the ALU, the Q-register and the necessary control logic. It is expandable in 16-bit increments.

Register File

The dual port RAM is addressed by two 4-bit address fields (A_{3-0} and B_{3-0}) which cause the data to simultaneously appear at the A or B (internal) ports. Both the A and B addresses may be identical; in this case, the same data will appear at both the A and B ports.
Data to be written to RAM is applied to the D inputs of the 7C9101 and is passed (unchanged) through the ALU to the RAM location specified by the B-address word. New data is written into the RAM by specifying a B address
while RAM write enable (RAM EN) is active and the clock input is LOW. RAM EN is an internal signal decoded from the signals $I_{6,7}, 8$. As shown below, each of the 16 RAM inputs is driven by a three-input multiplexer that allows the ALU output (F_{15-0}) to be shifted one bit position to the left, right, or not shifted. The RAM 15 and $\mathrm{RAM}_{0} \mathrm{I} / \mathrm{O}$ pins are also inputs to the 16 -bit, 3 -input multiplexer.
During the left shift (upshift) operation, the RAM ${ }_{15}$ output buffer and RAM ${ }_{0}$ input multiplexer are enabled. For the down shift (right) operation, the RAM RA_{0} output buffer and the RAM 15 input multiplexer are enabled.

The A and B outputs of the RAM drive separate 16-bit latches that are enabled (track the RAM data) when the clock is HIGH. The outputs of the A latch go to three multiplexers which feed the two ALU inputs (R_{15-0} and S_{15-0}) and the chip output (Y_{15-0}). The B latch outputs are directed to the multiplexer which feeds the S input to the ALU.

0079-4
Figure 2. Register File

Description of Architecture (Continued)

Q-Register

The Q-register is mainly intended for use as a separate working register for multiplication and division routines. It may also function as an accumulator or temporary storage register. Sixteen master-slave latches are used to implement the Q-register. As shown below, the Q-register inputs are driven by the outputs of the Q -shifter (sixteen 3-input mul-
tiplexers, under the control of $\mathrm{I}_{6,7}, 8$). The function of the Q-register input multiplexers is to allow the ALU output (F_{15-0}) to be either shifted left, right, or directly entered into the master latches. The Q_{15} and Q_{0} pins (I/O) function similarly to the RAM 15 and RAM $_{0}$ pins described earlier. Data is entered into the master latches when the clock is LOW and transferred to the slave (output) at the clock LOW to HIGH transition.

Figure 3. Q-Register

Description of Architecture (Continued)

ALU (Arithmetic Logic Unit)

The ALU can perform three arithmetic and five logical operations on the two 16 -bit input operands, R and S. The R-input multiplexer selects between data from the RAM A-port and data at the external data input, D_{15-0}. The S-input multiplexer selects between data from the RAM A-port, the RAM B-port, and the Q-register. The R and S multiplexers are controlled by the $\mathrm{I}_{0,1,2}$ inputs as shown in Table 1. The \mathbf{R} and \mathbf{S} input multiplexers each have an "inhibit capability," offering a state where no data is passed. This is equivalent to a source operand consisting of all zeroes. The R and S ALU source multiplexers are configured to allow eight pairs of combinations of A, B, D, Q, and " 0 " to be selected as ALU input operands.
The ALU functions, which are controlled by $\mathrm{I}_{3,4}, 5$, are shown in Table 2. Carry lookahead logic is resident on the

7C9101, using the ALU inputs carry in $\left(\mathrm{C}_{\mathrm{n}}\right)$ and the ALU outputs carry propagate $(\overline{\mathbf{P}})$, carry generate $(\overline{\mathbf{G}})$, carry out $\left(C_{n}+16\right)$, and overflow to implement carry lookahead arithmetic and determine if arithmetic overflow has occurred. Note that the carry in (C_{n}) signal affects the arithmetic result and internal flags; it has no effect on the logical operations.
Control signals $\mathrm{I}_{6,7,8}$ route the ALU data output (F_{15-0}) to the RAM, the Q-register inputs, and the Y-outputs as shown in Table 3. The ALU result MSB (F_{15}) is output so the user may examine the sign bit without needing to enable the three-state outputs. The $F=0$ output, used for zero detection, is HIGH when all bits of the F output are LOW. It is an open drain output which may be wire OR'ed across multiple 7C9101 processor slices.

Figure 4. ALU

Description of Architecture (Continued)

Table 5. ALU Logic Mode Functions

$\begin{gathered} \text { Octal } \\ \mathbf{I}_{543}, \mathrm{I}_{210} \end{gathered}$	Group	Function
$\begin{aligned} & 40 \\ & 41 \\ & 45 \\ & 46 \end{aligned}$	AND	$\begin{aligned} & A \wedge Q \\ & A \wedge B \\ & D \wedge A \\ & D \wedge Q \end{aligned}$
$\begin{aligned} & 30 \\ & 31 \\ & 35 \\ & 36 \end{aligned}$	OR	$\begin{aligned} & A \vee Q \\ & A \vee B \\ & D \vee A \\ & D \vee Q \end{aligned}$
$\begin{aligned} & 60 \\ & 61 \\ & 65 \\ & 66 \end{aligned}$	EX-OR	$\begin{aligned} & A \forall Q \\ & A \forall B \\ & D \forall A \\ & D \forall Q \end{aligned}$
$\begin{aligned} & 70 \\ & 71 \\ & 75 \\ & 76 \end{aligned}$	EX-NOR	$\begin{aligned} & \overline{\mathrm{A} \forall Q} \\ & \overline{\mathrm{~A} \forall \mathrm{~B}} \\ & \overline{\mathrm{D} \forall \mathrm{~A}} \end{aligned}$
$\begin{aligned} & 72 \\ & 73 \\ & 74 \\ & 77 \end{aligned}$	INVERT	$\begin{aligned} & \overline{\mathrm{Q}} \\ & \overline{\mathrm{~B}} \\ & \overline{\mathrm{~A}} \\ & \overline{\mathrm{D}} \end{aligned}$
$\begin{aligned} & 62 \\ & 63 \\ & 64 \\ & 67 \end{aligned}$	PASS	$\begin{aligned} & \mathrm{Q} \\ & \mathbf{B} \\ & \mathbf{A} \\ & \mathrm{D} \end{aligned}$
$\begin{array}{r} 32 \\ 33 \\ 34 \\ 37 \end{array}$	PASS	$\begin{aligned} & \mathrm{Q} \\ & \mathrm{~B} \\ & \mathrm{~A} \\ & \mathrm{D} \end{aligned}$
$\begin{aligned} & 42 \\ & 43 \\ & 44 \\ & 47 \end{aligned}$	"ZERO"	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
$\begin{aligned} & 50 \\ & 51 \\ & 55 \\ & 56 \end{aligned}$	MASK	$\begin{aligned} & \overline{\mathbf{A}} \wedge Q \\ & \bar{A} \wedge B \\ & \bar{D} \wedge \mathbf{A} \\ & \overline{\mathbf{D}} \wedge Q \end{aligned}$

Table 6. ALU Arithmetic Mode Functions

Octal I $_{543}, \mathrm{I}_{210}$	$\mathrm{C}_{\mathbf{n}}=0$ (Low)		$\mathrm{C}_{\mathrm{n}}=1$ (High)	
	Group	Function	Group	Function
$\begin{aligned} & 00 \\ & 01 \\ & 05 \\ & 06 \end{aligned}$	ADD	$\begin{aligned} & A+Q \\ & A+B \\ & D+A \\ & D+Q \end{aligned}$	ADD plus one	$\begin{aligned} & \mathrm{A}+\mathrm{Q}+1 \\ & \mathrm{~A}+\mathrm{B}+1 \\ & \mathrm{D}+\mathrm{A}+1 \\ & \mathrm{D}+\mathrm{Q}+1 \end{aligned}$
$\begin{aligned} & 02 \\ & 03 \\ & 04 \\ & 07 \end{aligned}$	PASS	$\begin{aligned} & \mathrm{Q} \\ & \mathrm{~B} \\ & \mathrm{~A} \\ & \mathrm{D} \end{aligned}$	Increment	$\begin{aligned} & \mathrm{Q}+1 \\ & \mathrm{~B}+1 \\ & \mathrm{~A}+1 \\ & \mathrm{D}+1 \end{aligned}$
$\begin{aligned} & 12 \\ & 13 \\ & 14 \\ & 27 \end{aligned}$	Decrement	$\begin{aligned} & \mathrm{Q}-1 \\ & \mathrm{~B}-1 \\ & \mathrm{~A}-1 \\ & \mathrm{D}-1 \end{aligned}$	PASS	$\begin{aligned} & \mathrm{Q} \\ & \mathrm{~B} \\ & \mathrm{~A} \\ & \mathrm{D} \end{aligned}$
$\begin{aligned} & 22 \\ & 23 \\ & 24 \\ & 17 \end{aligned}$	1's Comp.	$\begin{aligned} & -\mathrm{Q}-1 \\ & -\mathrm{B}-1 \\ & -\mathrm{A}-1 \\ & -\mathrm{D}-1 \end{aligned}$	2's Comp. (Negate)	$\begin{aligned} & -\mathrm{Q} \\ & -\mathrm{B} \\ & -\mathrm{A} \\ & -\mathrm{D} \end{aligned}$
$\begin{aligned} & 10 \\ & 11 \\ & 15 \\ & 16 \\ & 20 \\ & 21 \\ & 25 \\ & 26 \end{aligned}$	Subtract (1's Comp.)	$\begin{aligned} & \mathrm{Q}-\mathrm{A}-1 \\ & \mathrm{~B}-\mathrm{A}-1 \\ & \mathrm{~A}-\mathrm{D}-1 \\ & \mathrm{Q}-\mathrm{D}-\mathrm{1} \\ & \mathrm{~A}-\mathrm{Q}-1 \\ & \mathrm{~A}-\mathrm{B}-1 \\ & \mathrm{D}-\mathrm{A}-1 \\ & \mathrm{D}-\mathrm{Q}-\mathbf{1} \end{aligned}$	Subtract (2's Comp.)	$\begin{aligned} & \mathrm{Q}-\mathrm{A} \\ & \mathrm{~B}-\mathrm{A} \\ & \mathrm{~A}-\mathrm{D} \\ & \mathrm{Q}-\mathrm{D} \\ & \mathrm{~A}-\mathrm{Q} \\ & \mathrm{~A}-\mathrm{B} \\ & \mathrm{D}-\mathrm{A} \\ & \mathrm{D}-\mathrm{Q} \end{aligned}$

Conventional Addition and Pass-Increment/ Decrement

When the carry-in is HIGH and either a conventional addition or a PASS operation is performed, one (1) is added to the result. If the DECREMENT operation is performed when the carry-in is LOW, the value of the operand is reduced by one. However, when the same operation is performed when the carry-in is HIGH, it nullifies the DECREMENT operation so that the result is equivalent to the PASS operation. In logical operations, the carry-in (C_{n}) will not affect the ALU output.

Subtraction

Recall that in two's complement integer coding -1 is equal to all ones and that in one's complement integer coding zero is equal to all ones. To convert a positive integer to its two's complement (negative) equivalent, invert (complement) the number and add 1 to it; i.e., $T W C=O N C+1$. In Table 6 the symbol $-Q$ represents the two's complement of Q so that the one's complement of Q is then $-\mathrm{Q}-1$.

SEMICONDUCTOR
Electrical Characteristics Over Commercial and Military Operating Range ${ }^{[4]}$
V_{CC} Min. $=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}$ Max. $=5.5 \mathrm{~V}$

Parameters	Description		Test Conditions	Min.	Max.	Units
V_{OH}	Output HIGH Voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{I}_{\mathrm{OH}}=-3.4 \mathrm{~mA} \end{aligned}$	2.4		V
V_{OL}	Output LOW Voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\ & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{aligned}$		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.0	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	V
IIX	Input Leakage Current		$\begin{aligned} & \mathbf{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathbf{V}_{\mathrm{CC}}=\mathrm{Max} . \end{aligned}$	-10	10	$\mu \mathrm{A}$
I_{OH}	Output HIGH Current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V} \end{aligned}$	-3.4		mA
I_{OL}	Output LOW Current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V} \end{aligned}$	16		mA
I_{OZ}	Output Leakage Current		$\begin{aligned} & \mathbf{v}_{\text {CC }}=\text { Max. } \\ & \mathbf{v}_{\text {OUT }}=\mathrm{V}_{\text {SS }} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	-40	$+40$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{I}_{\text {SC }}$	Output Short Cir	Current ${ }^{[1]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \end{aligned}$		-85	mA
$\mathrm{I}_{\mathrm{CC}}\left(\mathrm{Q}_{1}\right)^{[2]}$	Supply Current (Quiescent)	Commercial	$\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {IL }}$ or		30	A
		Military	$\mathrm{V}_{\text {IH }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}} ; \overline{\mathrm{OE}}=\mathrm{HIGH}$		35	mA
$\mathrm{I}_{\mathrm{CC}}\left(\mathrm{Q}_{2}\right)^{[2]}$	Supply Current (Quiescent)	Commercial	$\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {IN }} \leq 0.4 \mathrm{~V}$ or		25	mA
		Military	$3.85 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}} ; \overline{\mathrm{OE}}=\mathrm{HIGH}$		30	mA
$\mathrm{I}_{\mathrm{CC}}(\text { Max. })^{[2]}$	Supply Current	Commercial	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{f}_{\mathrm{CLK}}=10 \mathrm{MHz} ; \\ & \overline{\mathrm{OE}}=\mathrm{HIGH} \end{aligned}$		60	mA
		Military			85	

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	5	pF
	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	7		

Notes:

1. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second.
2. Two quiescent figures are given for different input voltage ranges. To calculate $I_{C C}$ at any given frequency, use $I_{C C}\left(Q_{1}\right)+I_{C C}(A . C$.$) where$ $\mathrm{I}_{\mathrm{CC}}\left(\mathrm{Q}_{1}\right)$ is shown above and $\mathrm{I}_{\mathrm{CC}}(\mathrm{A} . \mathrm{C})=.(3 \mathrm{~mA} / \mathrm{MHz}) \times$ Clock Frequency for the Commercial temperature range. $\mathbf{I}_{\mathrm{CC}}(\mathbf{A . C .)}=$ $(5 \mathrm{~mA} / \mathrm{MHz}) \times$ Clock Frequency for Military temperature range.
3. Tested initially and after any design or process changes that may affect these parameters.
4. See the last page of this specification for Group A subgroup testing information.

Output Loads used for AC Performance Characteristics

0079-9

Open Drain ($\mathbf{F}=0$)

All Outputs except Open Drain

[^15]CYPRESS
Table 7. Logic Functions for CARRY and OVERFLOW Conditions

I543	Function	$\overline{\mathbf{P}}$	$\overline{\mathbf{G}}$	$\mathrm{C}_{\mathrm{n}}+16$	OVR
0	$\mathbf{R}+\mathrm{S}$	$\overline{\mathbf{P}_{0}-\mathbf{P}_{15}}$	$\overline{\mathbf{G}_{15}+\frac{\mathbf{P}_{15} \mathrm{G}_{14}+\mathrm{P}_{15} \mathrm{P}_{14} \mathrm{G}_{13}+}{\ldots+\mathrm{P}_{1-15} \mathbf{G}_{0}}}$	C_{16}	$\mathrm{C}_{16} \forall \mathrm{C}_{15}$
1	$\mathbf{S}-\mathbf{R}$	\leftarrow	Same as $\mathrm{R}+\mathrm{S}$ equations, but substitute $\overline{\mathbf{R}_{\mathrm{i}}}$ for R_{i} in definitions		\rightarrow
2	R-S	\leftarrow	Same as $R+S$ equations, but substitute \bar{S}_{i} for S_{i} in definitions		\rightarrow
3	R \vee S	HIGH	HIGH	LOW	LOW
4	$\mathrm{R} \wedge \mathrm{S}$				
5	$\overline{\mathrm{R}} \wedge \mathrm{S}$				
6	$\mathrm{R} \forall \mathrm{S}$				
7	$\overline{\mathrm{R} \forall \mathrm{S}}$				

Definitions: $+=\mathbf{O R}$

\mathbf{P}_{0-15}	$=\mathbf{P}_{15} \mathbf{P}_{14} \mathbf{P}_{13} \mathbf{P}_{12} \mathbf{P}_{11} \mathbf{P}_{10} \mathbf{P}_{9} \mathbf{P}_{8} \mathbf{P}_{7} \mathbf{P}_{6} \mathbf{P}_{5} \mathbf{P}_{4} \mathbf{P}_{3} \mathbf{P}_{2} \mathbf{P}_{1} \mathbf{P}_{0}$
\mathbf{P}_{0}	$=\mathbf{R}_{0}+\mathbf{S}_{0}$
\mathbf{P}_{1}	$=\mathbf{R}_{1}+\mathbf{S}_{2}$
\mathbf{P}_{2}	$=\mathbf{R}_{2}+\mathbf{S}_{2}$
\mathbf{P}_{3}	$=\mathbf{R}_{3}+\mathbf{S}_{3}$, etc.

$G_{0-15}=G_{15} G_{14} G_{13} G_{12} G_{11} G_{10} G_{9} G_{8} G_{7} G_{6} G_{5} G_{4} G_{3} G_{2} G_{1} G_{0}$
$\mathbf{G}_{0}=\mathbf{R}_{0} \mathbf{S}_{0}$
$\mathrm{G}_{1}=\mathrm{R}_{1} \mathbf{S}_{1}$
$G_{2}=R_{2} S_{2}$
$\mathbf{G}_{3}=\mathbf{R}_{3} \mathbf{S}_{3}$, etc.
$\mathrm{C}_{16}=\mathrm{G}_{15}+\mathrm{P}_{15} \mathrm{G}_{14}+\mathrm{P}_{15} \mathrm{P}_{14} \mathrm{G}_{13}+\ldots+\mathrm{P}_{0-15} \mathrm{C}_{\mathrm{n}}$
$\mathrm{C}_{15}=\mathrm{G}_{14}+\mathrm{P}_{14} \mathrm{G}_{13}+\mathrm{P}_{14} \mathrm{P}_{13} \mathrm{G}_{12}+\ldots+\mathrm{P}_{0-14} \mathrm{C}_{\mathrm{n}}$

CY7C9101-30 and CY7C9101-40 Guaranteed
 Commercial Range AC Performance
 Characteristics

The tables below specify the guaranteed AC performance of these devices over the Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$ and Military ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) operating temperature range with V_{CC} varying from 4.5 V to 5.5 V . All times are in nanoseconds and are measured between the 1.5 V signal levels. The inputs switch between 0 V and 3 V with signal transition rates of 1 V per nanosecond. All outputs have maximum DC current loads. See also loading circuit informa-

Cycle Time and Clock Characteristics

CY7C9101-	$\mathbf{3 0}$	$\mathbf{4 0}$
Read-Modify-Write Cycle (from selection of A, B registers to end of cycle).	30 ns	40 ns
Maximum Clock Frequency to shift Q (50\% duty cycle, I $=432$ or 632)	33 MHz	25 MHz
Minimum Clock LOW Time	20 ns	25 ns
Minimum Clock HIGH Time	10 ns	15 ns
Minimum Clock Period	30 ns	40 ns

This data applies to parts with the following numbers:

CY7C9101-30PC	CY7C9101-30DC	CY7C9101-30LC	CY7C9101-30JC	CY7C9101-30GC
CY7C9101-40PC	CY7C9101-40DC	CY7C9101-40LC	CY7C9101-40JC	CY7C9101-40GC

Combinational Propagation Delays. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

$\begin{array}{\|c} \text { To Output } \\ \hline \text { From Input } \end{array}$	Y		F_{15}		$\mathrm{C}_{\mathrm{n}}+16$		$\overline{\mathbf{G}}, \overline{\mathbf{P}}$		$\mathbf{F}=0$		OVR		$\begin{aligned} & \text { RAM }_{0} \\ & \text { RAM15 } \end{aligned}$		$\begin{aligned} & \mathbf{Q}_{0} \\ & \mathbf{Q}_{15} \end{aligned}$	
CY7C9101-	30	40	30	40	30	40	30	40	30	40	30	40	30	40	30	40
A, B Address	37	47	36	47	35	44	32	41	35	46	32	42	32	40	-	-
D	29	34	28	34	25	32	25	30	29	36	21	26	27	33	-	-
C_{n}	22	27	22	27	20	25	-	-	22	26	22	26	24	30	-	-
$\mathrm{I}_{0,1,2}$	32	40	32	40	30	38	28	36	34	42	26	32	27	35	-	-
$\mathrm{I}_{3,4,5}$	34	43	33	42	33	42	27	35	34	40	32	42	29	38	-	-
$\mathrm{I}_{6,7,8}$	19	22	-	-	-	-	-	-	-	-	-	-	22	26	22	26
A Bypass ALU $(\mathrm{I}=2 \mathrm{XX})$	25	30	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Clock \sim	31	40	30	39	30	38	27	34	28	37	27	34	27	35	20	23

Set-Up and Hold Times Relative to Clock (CP) Input ${ }^{[1]}$

Input	$\begin{aligned} & \text { CP: } \\ & \text { Set } \\ & \text { Befor } \end{aligned}$	me \mathbf{L}			$\begin{array}{r} \mathrm{Se} \\ \text { Befo } \end{array}$			
CY7C9101-	30	40	30	40	30	40	30	40
A, B Source Address	10	15	3 [3]	$3{ }^{[3]}$	$30[4]$	$40^{[4]}$	0	0
B Destination Address	10	15	\leftarrow	D	ge ${ }^{[2]}$	\rightarrow	0	0
D	-	-	-	-	22	28	0	0
C_{n}	-	-	-	-	16	22	0	0
$\mathrm{I}_{0,1,2}$	-	-	-	-	26	35	0	0
$\mathrm{I}_{3,4,5}$	-	-	-	-	29	37	0	0
$\mathrm{I}_{6,7,8}$	10	12	\leftarrow	Do Not Change ${ }^{2]}$		\rightarrow	0	0
$\mathrm{RAM}_{0}, \mathrm{RAM}_{15}, \mathrm{Q}_{0}, \mathrm{Q}_{15}$	-	-	-	-	11	14	0	0

Output Enable/Disable Times

Output disable tests performed with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ and measured to 0.5 V change of output voltage level.

Device	Input	Output	Enable	Disable
CY7C9101-30	$\overline{\mathrm{OE}}$	Y	18	16
CY7C9101-40	$\overline{\mathrm{OE}}$	Y	22	19

Notes:

1. A dash indicates a propagation delay path or set-up time constraint does not exist.
2. Certain signals must be stable during the entire clock LOW time to avoid erroneous operation. This is indicated by the phrase "do not change".
3. Source addresses must be stable prior to the clock $\mathbf{H} \rightarrow \mathrm{L}$ transition to allow time to access the source data before the latches close. The A address may then be changed. The B address could be changed if it is not a destination; i.e. if data is not being written back into the RAM. Normally A and B are not changed during the clock LOW time.
4. The set-up time prior to the clock $L \rightarrow H$ transition is to allow time for data to be accessed, passed through the ALU, and returned to the RAM. It includes all the time from stable A and B addresses to the clock $L \rightarrow H$ transition, regardless of when the clock $H \rightarrow L$ transition occurs.

Cycle Time and Clock Characteristics ${ }^{\text {[5] }}$

CY7C9101-	35	45
Read-Modify-Write Cycle (from selection of A, B registers to end of cycle).	35 ns	45 ns
Maximum Clock Frequency to shift Q (50\% duty cycle, I $=432$ or 632)	28 MHz	22 MHz
Minimum Clock LOW Time	23 ns	28 ns
Minimum Clock HIGH Time	12 ns	17 ns
Minimum Clock Period	35 ns	45 ns

CY7C9101-35 and CY7C9101-45 Guaranteed Military Range AC Performance Characteristics

The tables below specify the guaranteed AC performance of these devices over the Military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ operating temperature range with $V_{C C}$ varying from 4.5 V to 5.5 V . All times are in nanoseconds and are measured between the 1.5 V signal levels. The inputs switch between 0 V and 3 V with signal transition rates of 1 V per nanosecond. All outputs have maximum DC current loads. See also loading circuit information.

This data applies to parts with the following numbers:
CY7C9101-35DMB CY7C9101-35LMB CY7C9101-35GMB
CY7C9101-45DMB CY7C9101-45LMB CY7C9101-45GMB
Combinational Propagation Delays $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}^{[5]}$

$\begin{array}{\|c} \hline \text { To Output } \\ \hline \text { From Input } \end{array}$	Y		F_{15}		$\mathrm{C}_{\mathrm{n}}+16$		$\overline{\mathbf{G}, ~} \overline{\mathbf{P}}$		$\mathbf{F}=\mathbf{0}$		OVR		$\begin{gathered} \mathbf{R A M}_{0} \\ \text { RAM }_{15} \end{gathered}$		$\begin{aligned} & \mathbf{Q}_{0} \\ & \mathbf{Q}_{15} \end{aligned}$	
CY7C9101-	35	45	35	45	35	45	35	45	35	45	35	45	35	45	35	45
A, B Address	41	52	40	51	38	48	37	45	40	48	36	46	36	43	-	-
D	31	37	31	36	29	36	28	32	33	40	23	32	30	35	-	-
C_{n}	25	30	24	29	23	27	-	-	24	29	23	27	26	31	-	-
$\mathrm{I}_{0,1,2}$	36	44	35	43	33	41	31	38	38	46	29	38	30	38	-	-
$\mathrm{I}_{3,4,5}$	38	48	37	47	37	46	31	38	38	45	36	45	33	41	-	-
$\mathrm{I}_{6,7,8}$	21	24	-	-	-	-	-	-	-	-	-	-	24	28	24	28
A Bypass ALU $(\mathrm{I}=2 \mathrm{XX})$	28	33	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Clock -	35	44	34	43	34	42	30	37	34	40	28	38	30	37	21	25

Set-Up and Hold Times Relative to Clock (CP) Input ${ }^{[1,5]}$

Input	CP: Set-Up Time Before $\mathbf{H} \rightarrow \mathrm{L}$		Hold Time After $\mathbf{H} \rightarrow \mathbf{L}$		Set-Up Time Before L $\rightarrow \mathbf{H}$		Hold Time After L $\rightarrow \mathbf{H}$	
CY7C9101-	35	45	35	45	35	45	35	45
A, B Source Address	12	17	$3{ }^{[3]}$	3 [3]	35[4]	45[4]	0	0
B Destination Address	12	17	$\leftarrow \quad$ Do Not Change ${ }^{[2]}$			\rightarrow	1	1
D	-	-	-	-	25	30	0	0
C_{n}	-	-	-	-	19	24	0	0
$\mathrm{I}_{0,1,2}$	-	-	-	-	30	37	0	0
$\mathrm{I}_{3,4,5}$	-	-	-	-	33	40	0	0
$\mathrm{I}_{6,7,8}$	12	16	\leftarrow	D	nge[2]	\rightarrow	0	0
$\mathrm{RAM}_{0}, \mathrm{RAM}_{15}, \mathrm{Q}_{0}, \mathrm{Q}_{15}$	-	-	-	-	13	15	1	1

Output Enable/Disable Times ${ }^{[5]}$

Output disable tests performed with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ and measured to 0.5 V change of output voltage level.

Device	Input	Output	Enable	Disable
CY7C9101-35	$\overline{\mathrm{OE}}$	Y	20	17
CY7C9101-45	$\overline{\mathrm{OE}}$	Y	23	20

Notes:

1. A dash indicates a propagation delay path or set-up time constraint does not exist.
2. Certain signals must be stable during the entire clock LOW time to avoid erroneous operation. This is indicated by the phrase "do not change".
3. Source addresses must be stable prior to the clock $\mathrm{H} \rightarrow \mathrm{L}$ transition to allow time to access the source data before the latches close. The A address may then be changed. The B address could be changed if it is not a destination; i.e. if data is not being written back into the RAM. Normally \mathbf{A} and B are not changed during the clock LOW time.
4. The set-up time prior to the clock $\mathrm{L} \rightarrow \mathrm{H}$ transition is to allow time for data to be accessed, passed through the ALU, and returned to the RAM. It includes all the time from stable A and B addresses to the clock $L \rightarrow H$ transition, regardless of when the clock $H \rightarrow L$ transition occurs.
5. See the last page of this specification for Group A subgroup testing information.

Applications

Minimum Cycle Time Calculations for 16-Bit Systems

Speeds used in calculations for parts other than CY7C9101 and CY7C910 are representative for available MSI parts.

0079-15
Pipelined System, Add without Simultaneous Shift

CY7C245
CY7C901
Register

Data Loop
Clock to Output
A, B to Y, $\mathrm{C}_{\mathrm{n}+16}$, OVR Setup

Control Loop
CY7C245 Clock to Output MUX Select to Output CY7C910 CC to Output CY7C245

Access Time

Minimum Clock Period $=\mathbf{6 6}$ ns

0079-13
Pipelined System, Simultaneous Add and Shift Down (RIGHT)

CY7C245
CY7C9101
XOR and MUX

CY7C9101

Data Loop
Clock to Output 12
A, B to Y, $\mathrm{C}_{\mathrm{n}}+16$, OVR $\quad 37$
Prop. Delay, Select 20
to Output
RAM $_{15}$ Setup

CY7C245
MUX
CY7C910
CY7C245

Control Loop
Clock to Output
12
Select to Output CC to Output Access Time 12
22
20 66 ns

[^16]
Typical DC and AC Characteristics

0079-14

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
30	CY7C9101-30 PC	P29	Commercial
	CY7C9101-30 LC	L81	
	CY7C9101-30 JC	J81	
	CY7C9101-30 DC	D30	
40	CY7C9101-30 GC	G68	
	CY7C9101-40 PC	P29	
	CY7C9101-40 LC	L81	
	CY7C9101-40 JC	J81	
	CY7C9101-40 DC	D30	
35	CY7C9101-40 GC	G68	
	CY7C9101-35 LMB	L81	Military
	CY7C9101-35 DMB	D30	
45	CY7C9101-35 GMB	G68	
	CY7C9101-45 LMB	L81	
	CY7C9101-45 DMB	D30	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
$\mathrm{I}_{\mathbf{I X}}$	$1,2,3$
I_{OZ}	$1,2,3$
I_{SC}	$1,2,3$
$\mathrm{I}_{\mathrm{CC}}(\mathrm{Q} 1)$	$1,2,3$
I_{CC} (Q2)	$1,2,3$
I_{CC} (Max.)	$1,2,3$

Combinational Propagation Delays

Parameters	Subgroups
From A, B Address to Y	7,8,9,10,11
From A, B Address to F_{15}	7,8,9,10,11
From A, B Address to $\mathrm{C}_{\mathrm{n}+16}$	7,8,9,10,11
From A, B Address to $\overline{\mathbf{G}, \overline{\mathbf{P}} \text { }}$	7,8,9,10,11
From A, B Address to F $=0$	7,8,9,10,11
From A, B Address to OVR	7,8,9,10,11
From A, B Address to RAM ${ }_{0,15}$	7,8,9,10,11
From D to Y	7,8,9,10,11
From D to F_{15}	7,8,9,10,11
From D to $\mathrm{C}_{\mathrm{n}}+16$	7,8,9,10,11
From D to $\overline{\mathrm{G}}, \overline{\mathbf{P}}$	7,8,9,10,11
From \mathbf{D} to $\mathrm{F}=0$	7,8,9,10,11
From D to OVR	7,8,9,10,11
From D to RAM ${ }_{0,15}$	7,8,9,10,11
From C_{n} to Y	7,8,9,10,11
From C_{n} to F_{15}	7,8,9,10,11
From C_{n} to $\mathrm{C}_{\mathrm{n}+16}$	7,8,9,10,11

Combinational Propagation Delays (Continued)

Parameters	Subgroups
From C_{n} to $\mathrm{F}=0$	7,8,9,10,11
From C_{n} to OVR	7,8,9,10,11
From C_{n} to $\mathrm{RAM}_{0,15}$	7,8,9,10,11
From I_{012} to Y	7,8,9,10,11
From I_{012} to F_{15}	7,8,9,10,11
From I_{012} to $\mathrm{C}_{\mathrm{n}+16}$	7,8,9,10,11
From I_{012} to $\overline{\mathrm{G}}, \overline{\mathrm{P}}$	7,8,9,10,11
From I_{012} to $\mathrm{F}=0$	7,8,9,10,11
From I_{012} to OVR	7,8,9,10,11
From I_{012} to $\mathrm{RAM}_{0,15}$	7,8,9,10,11
From I 345 to Y	7,8,9,10,11
From I_{345} to F_{15}	7,8,9,10,11
From I_{345} to $\mathrm{C}_{\mathrm{n}+16}$	7,8,9,10,11
From I 345 to $\overline{\mathrm{G}}, \overline{\mathbf{P}}$	7,8,9,10,11
From I_{345} to $\mathrm{F}=0$	7,8,9,10,11
From I_{345} to OVR	7,8,9,10,11
From I345 to $\mathrm{RAM}_{0,15}$	7,8,9,10,11
From I678 to Y	7,8,9,10,11
From I_{678} to $\mathrm{RAM}_{0,15}$	7,8,9,10,11
From I_{678} to $\mathrm{Q}_{0,15}$	7,8,9,10,11
From A Bypass ALU to Y $(\mathrm{I}=2 \mathrm{XX})$	7,8,9,10,11
From Clock \sim to Y	7,8,9,10,11
From Clock \sim to F_{15}	7,8,9,10,11
From Clock \sim to $\mathrm{C}_{\mathrm{n}+16}$	7,8,9,10,11
From Clock \sim to $\overline{\mathbf{G}, ~ \overline{\mathbf{P}}}$	7,8,9,10,11
From Clock \sim to $\mathrm{F}=0$	7,8,9,10,11
From Clock \sim to OVR	7,8,9,10,11
From Clock \sim to $\mathrm{RAM}_{0,15}$	7,8,9,10,11
From Clock \sim to $\mathrm{Q}_{0,15}$	7,8,9,10,11

Set-up and Hold Times Relative to Clock (CP) Input

Parameters	Subgroups
A, B Source Address Set-up Time Before H $\rightarrow \mathrm{L}$	$7,8,9,10,11$
A, B Source Address Hold Time After H $\rightarrow \mathrm{L}$	$7,8,9,10,11$
A, B Source Address Set-up Time Before L $\rightarrow \mathrm{H}$	$7,8,9,10,11$
A, B Source Address Hold Time After L $\rightarrow \mathrm{H}$	$7,8,9,10,11$
B Destination Address Set-upTime Before H $\rightarrow \mathrm{L}$	$7,8,9,10,11$
B Destination Address Hold Time After H $\rightarrow \mathrm{L}$	$7,8,9,10,11$
B Destination Address Set-upTime Before L $\rightarrow \mathrm{H}$	$7,8,9,10,11$
B Destination Address Hold Time After L $\rightarrow \mathrm{H}$	$7,8,9,10,11$
D Set-up Time Before L $\rightarrow \mathrm{H}$	

Parameters	Subgroups
D Hold Time After L \rightarrow H	7,8,9,10,11
C_{n} Set-up Time Before L $\rightarrow \mathrm{H}$	7,8,9,10,11
C_{n} Hold Time After $\mathrm{L} \rightarrow \mathrm{H}$	7,8,9,10,11
I_{012} Set-up Time Before $\mathrm{L} \rightarrow \mathrm{H}$	7,8,9,10,11
I_{012} Hold Time After $\mathrm{L} \rightarrow \mathrm{H}$	7,8,9,10,11
I_{345} Set-up Time Before L $\rightarrow \mathrm{H}$	7,8,9,10,11
I_{345} Hold Time After L $\rightarrow \mathrm{H}$	7,8,9,10,11
I_{678} Set-up Time Before H \rightarrow L	7,8,9,10,11
I_{678} Hold Time After $\mathrm{H} \rightarrow \mathrm{L}$	7,8,9,10,11
I_{678} Set-up Time Before $\mathrm{L} \rightarrow \mathrm{H}$	7,8,9,10,11
I_{678} Hold Time After $\mathrm{L} \rightarrow \mathrm{H}$	7,8,9,10,11
RAM $_{0}$, RAM $_{15}, \mathrm{Q}_{0}, \mathrm{Q}_{15}$ Set-up Time Before L $\rightarrow \mathbf{H}$	7,8,9,10,11
$\begin{aligned} & \mathrm{RAM}_{0}, \mathrm{RAM}_{15}, \mathrm{Q}_{0}, \mathrm{Q}_{15} \\ & \text { Hold Time After L } \rightarrow \mathrm{H} \end{aligned}$	7,8,9,10,11

Document \#: 38-00017-B

Features

- Fast
- 45 ns worst case propagation delay, I to Y
- Low power CMOS
- ICC (max. at 10 MHz$)=$ 150 mA (commercial)
- I $\mathbf{I C C}_{\text {(max. static) }}=\mathbf{3 0} \mathbf{~ m A}$ (commercial)
- VCC margin
- 5V $\pm 10 \%$
- All parameters guaranteed over commercial and military operating temperature range
- Instruction set and architecture optimized for high speed controller applications
- CY7C9117 separate I/O
- One and two operand arithmetic and logical operations
- Bit manipulation, field insertion/extraction instructions
- Eleven types of instructions
- Immediate instruction capability
- 16-bit barrel shifter capability
- 32-word x 16-bit register file
- 8-bit status register
- Four ALU status bits
- Link bit and three user definable status bits
- ESD protection
- Capable of withstanding greater than 2001V static discharge voltage
- Pin compatible and functionally equivalent to 29116, 29116A, 29C116, 29117, 29117A, 29C117

Functional Description

The CY7C9116 and CY7C9117 are high speed 16-bit microprogrammed Arithmetic and Logic Units, (ALU).

The architecture and instruction set of the devices are optimized for peripheral controller applications such as disk controllers, graphics controllers, communications controllers, and modems.

Figure 1. CY7C9116 Block Diagram

Figure 2. CY7C9117 Block Diagram

Selection Guide

		$\begin{array}{r} 7 \mathrm{C} 9116-45 \\ 7 \mathrm{C} 9117-45 \end{array}$	$\begin{array}{r} 7 \mathrm{C} 9116-53 \\ 7 \mathrm{C} 9117-53 \\ \hline \end{array}$	$\begin{array}{r} \text { 7C9116-79 } \\ \text { 7C9117-79 } \\ \hline \end{array}$	$\begin{array}{r} 7 C 9116-100 \\ \text { 7C9117-100 } \\ \hline \end{array}$
Worst Case I-Y Propagation Delay (ns)	Commercial	45	53	79	
	Military			79	100
Maximum Operating Current @ $12.5 \mathrm{MHz}(\mathrm{mA})$	Commercial	150	150	150	
	Military			210	210 *

[^17]
Functional Description (Continued)

When used with the CY7C517 multiplier, the CY7C9116 and CY7C9117 also support microprogrammed processor applications.
The CY7C9116 and CY7C9117 are shown in the block diagram, consists of a 32 -word by 16 -bit single-port RAM register file, a 16-bit arithmetic unit and logic unit, an instruction latch and decoder, a data latch, an accumulator register, a 16-bit barrel shifter, a priority encoder, a status register, a condition code generator and multiplexer, and three-state output buffers.
The instruction set of the CY7C9116 and CY7C9117 can be divided into eleven instruction types: single-operand, two-operand, single-bit shifts, rotate and merge, rotate and
compare, rotate by n -bits, bit oriented instructions, prioritize, Cyclic Redundancy Check (CRC), status, and NOOP. Instruction execution occurs in a single clock cycle except for Immediate Instructions, which require two clock cycles to execute.
The CY7C9116 and CY7C9117 are pin compatible, functional equivalent of the industry standard 29116, 29116A, $29 \mathrm{C} 116,29117,29117 \mathrm{~A}, 29 \mathrm{C} 117$ with improved performance.
Fabricated in an advanced 1.2 micron, two-level metal CMOS process, the CY7C9116 and CY7C9117 eliminates latchup, has ESD protection greater than 2001V, and achieves superior performance with low power dissipation.

Pin Configurations CY7C9116

Pin Configurations CY7C9117

Top View

0085-6
LCC/PLCC
NC $=$ No Connect
Top View
 SEMICONDUCTOR

Description of Architecture

The CY7C9116 and CY7C9117 are 16-bit microprogrammed arithmetic and logic units comprised of the following sections (see block diagram):

- 32 Word x 16-Bit Register File
- Data Latch
- Instruction Latch and Decoder
- Accumulator
- Logic Unit with a 16-bit Barrel Shift Capability
- Arithmetic Unit
- Priority Encoder
- Condition Code Generator and Multiplexer
- Status Register
- Output Buffers

32-Word x 16-Bit Register File

The 32 -word x 16 -bit register file is a single port RAM with a 16 -bit latch at the output. The latch is transparent while CP is HIGH and latched when CP is LOW. If IEN is LOW and the current instruction specifies the RAM at its destination, data is written into the RAM while CP is LOW. Word instructions write into all 16-bits of the RAM word addressed; byte instructions write into only the lower eight bits.
Use of an external multiplexer on five of the instruction inputs makes it possible to select separate read and write addresses for the same NON-IMMEDIATE instruction. Immediate Instructions do not allow this two-address operation for the 7C9116. The 7C9117 does support two-address Immediate Instructions.

Data Latch

The data latch holds the 16-bit input to the CY7C9116 and CY7C9117 from the Y (bidirectional) bus for the 7C9116 and the data bus for the 7C9117. When DLE is HIGH, the latch is transparent, it is latched when DLE is LOW.

Instruction Latch and Decoder

The 16 -bit instruction latch is always transparent, except when Immediate Instructions are executed. The Instruction Decoder decodes the instruction inputs into the internal signals which control the CY7C9116 and CY7C9117. All instructions other than Immediate Instructions execute in a single clock cycle.
Execution of Immediate Instructions takes two clock cycles. During the first clock cycle, the Instruction Decoder identifies the instruction as an Immediate Instruction and the Instruction Latch captures the instruction at the instruction inputs. For Immediate Instructions, the data at the instruction inputs during the second clock cycle is used as one of the operands for the Immediate Instruction specified during the first clock cycle. Upon completion of the Immediate Instruction (the end of the second clock cycle), the Instruction Latch again becomes transparent.

Accumulator

The accumulator is a 16-bit edge triggered register. If the IEN is LOW and the current instruction specifies the accumulator as its destination, the accumulator accepts Y input
data at the clock LOW to HIGH transition. Word instructions write into all 16 bits of the accumulator, byte instructions write into the lower eight bits.

16-Bit Barrel Shifter

The barrel shifter can rotate data input to it from either the register file, the accumulator, or the data latch from 0 to 15 bit positions. In word mode, the barrel shifter rotates a 16-bit word; in byte mode, it only affects the lower eight bits. The barrel shifter is used as one of the ALU inputs.

Arithmetic and Logic Unit

The CY7C9116 and the CY7C9117 have an arithmetic unit and a logic unit. The arithmetic unit is capable of operating on one or two operands while the logic unit is capable of operating on one, two or three operands. The two units in parallel are able to execute the one and two operand instructions such as pass, complement, two's complement, add, subtract, AND, OR, EXOR, NAND, NOR, and EXNOR. Three operand instructions include rotate/merge and rotate/masked compare. There are three data types supported by the CY7C9116 and CY7C9117; bit, byte, and 16-bit word.
All arithmetic and logic unit operations can be performed in either word or byte mode, with byte instructions performed only on the lower eight bits.

Three status output are generated by the arithmetic unit: carry (C), negative (N), and overflow (OVR). A zero flag (Z) detects a zero condition, though this flag is not generated by the arithmetic unit or the logic unit. These flags are generated in either word or byte mode, as appropriate.

The arithmetic unit uses full carry look-ahead across all 16 bits during arithmetic operations. The carry input to the arithmetic unit comes from the carry multiplexer, which can select either zero, one, or a stored carry bit (QC) from the status register. Multiprecision arithmetic uses QC as the carry input.

Priority Encoder

The priority encoder generates a binary-weighted code based on the location of the highest order ONE in its input word or byte. The operand to be prioritized may be AND-ed with a mask to eliminate certain bits from the priority encoding. This masking is performed by the logic unit.

In word mode, the output is a binary one if bit 15 is the first (unmasked) HIGH encountered, a binary two if bit 14 is the first HIGH and so on. If bit 0 is the only HIGH, the output of the priority encoder is binary 16 . If no bits are HIGH, a binary zero is output.
In byte mode, only bits 7 through 0 are examined. Bit 7 HIGH produces a binary one, bit 6 a binary two, and so on. If bit 0 is the only HIGH, a binary eight is output; if no bits are HIGH, a binary zero is output.

Condition Code Generator and Multiplexer

The twelve condition code test signals are generated in this section. The multiplexer selects one of these twelve and places it at the CT output. The multiplexer is addressed by either using the Test Instruction or by using the bidirec-

SEMICONDUCTOR

Description of Architecture (Continued)

tional T bus as an input. The test instruction specifies the test condition to be placed at the CT output, but it does not allow an ALU operation at the same time. Using the T bus as input, the CY7C9116 and CY7C9117 may simultaneously test and execute an instruction. The test instruction lines (I_{4-0}) take precedence over T_{4-1} for testing status.

Status Register

The 8 -bit status word is held by the status register. The status register is updated at the end of all instructions except NO-OP, Save Status, and Test Status, provided the status register enable ($\overline{\text { SRE }}$) and instruction enable ($\overline{\text { IEN }}$) are both LOW. The status register is inhibited from changing if either $\overline{\text { SRE }}$ or $\overline{\text { IEN }}$ are HIGH.
The lower four status bits are the ALU status: OVR (overflow), \mathbf{N} (negative), C (carry), and Z (zero). The upper four bits are a link bit and three user-defined status bits (Flag1, Flag2, Flag3).
As stated above, when IEN and $\overline{\text { SRE }}$ are LOW, the status register is updated at the end of all instructions other than NO-OP, Save Status, and Test Status. The lower four status bits are updated under the above conditions, with the additional exception of when IEN and SRE are LOW and the Status Set/Reset instruction is performed on the upper four bits. When IEN and SRE are LOW, the upper four status bits are only changed during their corresponding Status Set/Reset instructions and during Status Load instructions in word mode. The Link-Status bit is also updated after every shift instruction.
The status register can be loaded via the internal Y bus; it can also be selected as a source for the internal Y bus. Loading the status register in word mode updates all eight bits of the status register. In byte mode, only the lower four bits are updated.
Using the status register as a source in the word mode loads all eight bits into the lower byte of the destination; the upper byte is zero-filled. In byte mode, the status register loads the lower byte of the destination; however the upper byte is unchanged. Interrupt and subroutine processing is facilitated by this store/load combination, which allows saving and restoring the status register. The lower four bits of the status register can be read directly by outputting them to the T_{4-1} outputs. These outputs are enabled when OE_{T} is HIGH .

Output Buffers

Two sets of bidirectional buses exist on the CY7C9116. The bidirectional Y bus (16 bits) is controlled by $\overline{\mathrm{OE}}_{\mathrm{Y}}$. The three state outputs are enabled when $\overline{\mathrm{OE}}_{\mathrm{Y}}$ is LOW, they are at high impedance when $\overline{\mathrm{OE}}_{\mathrm{Y}}$ is HIGH. This will allow data to be input to the data latch from the external world. The second bidirectional bus is the four-bit T bus. These three state buffers are enabled by a HIGH on OE_{T}, which will output the internal ALU status bits (OVR, N, C, Z). If OE_{T} is LOW, the T outputs are at high impedance, and a test condition can be input on the T bus to determine the CT output.
The 7C9117 has separate Y bus output and Data Input buses. All other pins are functionally equivalent to the 7 C 9116.

Pin Definitions

Signal
Name
I/O
Description
Y_{15-0} I/O Data Input/Output. These bidirectional lines are used to directly load the 16 -bit data latch when $\overline{\mathrm{OE}}_{\mathrm{Y}}$ is HIGH. When $\overline{\mathrm{OE}}_{\mathrm{Y}}$ is LOW, the arithmetic unit or the logic unit output data is output on Y_{15-0}.
$\mathrm{I}_{15-0} \quad \mathrm{I} \quad$ Instruction Word. This 16 -bit word selects the functions performed by the 7C9116. These lines are also used to input data when executing Immediate Instructions.
T_{4-1} I/O Status Input/Output. These bidirectional pins are used to output the lower four status bits $\left(\mathrm{OV}_{\mathrm{R}}\right.$, N, C, and Z) when OE_{T} is HIGH. When OE_{T} is LOW, these lines are used as inputs to generate the conditional test (CT) output.
CT O Conditional Test. One of twelve condition code signals is selected by the condition code multiplexer to be placed on the CT output.
CT $=$ HIGH for a pass condition; CT $=$ LOW for a fail condition.
DLE I Data Latch Enable. The 16-bit data latch is transparent when DLE is HIGH and latched when DLE is LOW.
$\overline{\text { IEN }} \quad$ I Instruction Enable. The following occurs with IEN LOW: Data may be written into the RAM when the clock is LOW, the Accumulator can accept data during the clock LOW to HIGH transition, and the Status Register can be updated when $\overline{\text { SRE }}$ is LOW. If $\overline{\text { IEN }}$ is HIGH, CT is disabled as a function of the instruction inputs. IEN should be LOW during the first half of the first cycle of Immediate Instructions.
$\overline{\text { SRE }} \quad$ I Status Register Enable. The Status Register is updated at the end of all instructions except NOOP, Save Status, and Test Status when SRE and $\overline{\mathrm{IEN}}$ are both LOW. The Status Register is inhibited from changing when either SRE or IEN are HIGH.
$\overline{\mathrm{OE}}_{\mathrm{Y}} \quad$ I Y Output Enable. This controls the 16-bit Y_{15-0} I/O port. When $\overline{O E}_{Y}$ is LOW, the Y-outputs are enabled, when $\overline{\mathrm{OE}}_{\mathrm{Y}}$ is HIGH, the Y outputs are disabled (high impedance).
$\mathrm{OE}_{\mathrm{T}} \quad$ I T Output Enable. The four bit T outputs are enabled when OE_{T} is HIGH: they are disabled (high impedance) when OE_{T} is LOW.
CP I Clock Pulse. The RAM output latch is transparent when CP is HIGH; the RAM output is latched when CP goes LOW. If IEN is LOW and the current instruction specifies the RAM as the destination, then data is written into the RAM while CP is LOW. If IEN is LOW, the Accumulator and Status Register will accept data at the clock LOW to HIGH transition. The instruction latch becomes transparent upon exiting an Immediate Instruction during a LOW to HIGH clock transition.
$\mathbf{D}_{15-0} \quad$ I These input lines are used to directly load the data latch.
Y_{15-0} I/O These output lines are used to present the arithmetic unit or the logic unit output when $\overline{\mathrm{OE}}_{\mathrm{Y}}$ is LOW. (CY7C9117 Y $15-0$ and output only)

Instruction Set

The instruction set of the CY7C9116 and CY7C9117 is optimized for peripheral controller applications. It features: Bit Set, Bit Reset, Bit Test, Rotate and Merge, Rotate and Compare, and Cyclic-Redundancy-Check (CRC) generation, in addition to standard Single- or Two-Operand logical and arithmetic instructions. A single clock cycle will execute all but the Immediate Instructions which take 2 clock cycles.
The CY7C9116 and CY7C9117 can operate in three different data modes: bit, byte and word (16 bits). The LSB of the word is used for Byte Mode. Also in Byte Mode when the status register is specified as the destination, only the LSH (OVR, N, C, Z) of the register is updated. Save Status
and Test Status instructions do not change the status register. During Test Status instructions the Y-bus (or D-bus for the CY7C9117) is undefined; the result is in the CT output.
The eleven instruction types outlined below are described in detail on the following pages.

Single-Operand	Rotate and Compare
Two-Operand	Prioritize
Single Bit Shift	CRC
Rotate and Merge	Status
Bit-Oriented	No-Op
Rotate by n Bits	

Table 1. Operand Source-Destination Combinations

Instruction Type	Operand Combinations (Note 1)		
$\begin{gathered} \text { Single Operand } \\ \text { SOR } \\ \text { SONR } \end{gathered}$	Source (R/S)		Destination
		Jote 2) E) E)	RAM ACC Y Bus Status ACC and Status
Two Operand TOR1 TOR2 TONR	Source (R)	Source (S)	Destination
	$\begin{gathered} \hline \text { RAM } \\ \text { RAM } \\ \text { D } \\ \text { D } \\ \text { ACC } \\ \text { D } \\ \hline \end{gathered}$	$\begin{gathered} \text { ACC } \\ \text { I } \\ \text { RAM } \\ \text { ACC } \\ \text { I } \\ \text { I } \\ \hline \end{gathered}$	RAM ACC Y Bus Status ACC and Status
Single Bit Shift SHFTR SHFTNR	Source (U)		Destination
	$\begin{gathered} \hline \text { RAM } \\ \text { ACC } \\ \text { ACC } \\ \text { D } \\ \text { D } \\ \text { D } \\ \hline \end{gathered}$		RAM ACC Y Bus RAM ACC Y Bus
Rotate n Bits ROTR1 ROTR2 ROTNR	Source (U)		Destination
	$\begin{gathered} \text { RAM } \\ \text { ACC } \\ \text { D } \end{gathered}$		RAM ACC Y Bus
Bit Oriented BOR1 BOR2 BONR	Source (R/S)		Destination
	$\begin{gathered} \text { RAM } \\ \text { ACC } \\ \text { D } \end{gathered}$		RAM ACC Y Bus
Rotate and Merge ROTM ROTC	Rotated Source (U)	Mask (S)	Non-Rotated Source/ Destination (R)
	$\begin{gathered} \text { D } \\ \text { ACC } \\ \text { RAM } \end{gathered}$	I RAM I ACC I I	ACC ACC RAM RAM RAM ACC

Notes:

1. If there is no division between the R/S operand or SOURCE and DESTINATION, the two are a given pair. If a division exists, any combination is possible.
2. RAM cannot be used as source when both ACC and STATUS are designated as a DESTINATION.
3. OPERAND and MASK must be different sources.

Instruction Type	Operand Combinations (Note 1)		
Rotate and Compare CDAI CDRI CDRA CRAI	Rotated Source (U)	Mask (S)	Non-Rotated Source/ Destination (R)
	$\begin{gathered} \mathrm{D} \\ \mathrm{D} \\ \mathrm{D} \\ \text { RAM } \end{gathered}$	$\begin{gathered} \mathrm{I} \\ \mathrm{I} \\ \mathrm{ACC} \\ \mathrm{I} \\ \hline \end{gathered}$	RAM RAM ACC
$\begin{gathered} \text { Prioritize (Note 3) } \\ \text { PRT1 } \\ \text { PRT2 } \\ \text { PRTNR } \\ \hline \end{gathered}$	Source (R)	Mask (S)	Destination
	$\begin{gathered} \text { RAM } \\ \text { ACC } \\ \text { D } \end{gathered}$	$\begin{gathered} \hline \text { RAM } \\ \text { ACC } \\ \text { I } \\ \mathrm{O} \\ \hline \end{gathered}$	$\begin{aligned} & \text { RAM } \\ & \text { ACC } \\ & \text { Y Bus } \end{aligned}$
Cyclic Redundancy Check CRCF CRCR	Data In	Destination	Polynominal
	QLINK	RAM	ACC
No Operation NOOP		-	
$\begin{gathered} \text { Set Reset Status } \\ \text { SETST } \\ \text { RSTST } \\ \text { SVSTR } \\ \text { SVSTNR } \\ \text { TEST } \end{gathered}$	Bits Affected		
	OVR, N, C, Z LINK Flag1 Flag2 Flag3		
Store Status	Source		Destination
	Status		RAM ACC Y Bus
Status Load	Source (R)	Source (S)	Destination
	$\begin{gathered} \mathrm{D} \\ \mathrm{ACC} \\ \mathrm{D} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{ACC} \\ \mathrm{I} \\ \mathrm{I} \\ \hline \end{gathered}$	Status Status and ACC
Test Status	Test Condition (CT)		
	$\begin{gathered} \hline(\mathrm{N} \oplus \mathrm{OVR})+\mathrm{Z} \\ \mathrm{~N} \oplus \mathrm{OVR} \\ \mathrm{Z} \\ \text { OVR } \\ \text { Low } \\ \mathrm{C} \\ \hline \end{gathered}$		$\begin{gathered} \hline \mathrm{Z}+\overline{\mathrm{C}} \\ \text { N } \\ \text { LINK } \\ \text { Flag1 } \\ \text { Flag2 } \\ \text { Flag3 } \\ \hline \end{gathered}$

Instruction Set (Continued)

$\overline{\mathrm{OE}}_{\mathrm{Y}}$ is assumed LOW for all cases, allowing ALU outputs on the Y - or D-bus.
Instructions are individually distinguished by using
OP-CODES and 2 assigned quadrant bits. Four quadrants, 0 to 3, have been assigned to each instruction type in order to ease groupings of instructions and addressing modes.

Single Operand Instructions

Each Single Operand Instruction contains four designators:

1. Mode (Byte or Word)
2. Opcode
3. Source
4. Address or Destination

These designators are divided into two basic categories, those which use RAM addresses and those that do not.

The instruction formats shown below are unique for each category. In both cases the desired operation, controlled by the instruction inputs, is performed on the source with the result either placed on the Y-bus or stored in the destination or both. The functions of Extending Sign Bit (D(SE)) and Binary Zero ($\mathrm{D}(\mathrm{OE})$) over 16 bits in the Word Mode are available for cases where 8 -bit to 16 -bit conversion is necessary. The functions performed using Single Operand instructions update the LSB of the Status Register (OVR, N, C, Z) but do not effect the MSB (FLAG1, FLAG2, FLAG3, LINK). Single Operation instructions are limited when both the ACC and Status Register are the destination, the source cannot be RAM.

Single Operand Instruction Set

Notes:

1. Instruction mnemonic.
2. $\mathbf{B}=$ Byte Mode, $\mathrm{W}=$ Word Mode.
3. Quadrant subdivides instuctions into categories.
4. $\mathrm{R}=$ Source; $\mathrm{S}=$ Source; Dest $=$ Destination.
5. Status is destination,

Status $\mathrm{i} \leftarrow \mathrm{Yi} \quad \mathrm{i}=0$ to 3 (byte mode)

$$
\mathrm{i}=0 \text { to } 7(\text { word mode })
$$

Y Bus and Status

Instruction	Opcode	Description	B/W	Y-Bus	Flag3	Flag2	Flag1	LINK	OVR	N	C	\mathbf{Z}
$\begin{aligned} & \text { SOR } \\ & \text { SONR } \end{aligned}$	COMP	$\overline{\mathrm{SCR}} \rightarrow$ Dest	$\begin{aligned} & 1=W \\ & 0=B \end{aligned}$	$\mathrm{Y} \rightarrow \overline{\text { SRC }}$	NC	NC	NC	NC	0	U	0	U
	INC	SCR + $1 \rightarrow$ Dest		$\mathrm{Y} \rightarrow \mathrm{SRC}+1$	NC	NC	NC	NC	U	U	U	U
	MOVE	SCR \rightarrow Dest		$\mathrm{Y} \rightarrow$ SRC	NC	NC	NC	NC	0	U	0	U
	NEG	$\overline{\text { SCR }}+1 \rightarrow$ Dest		$\mathrm{Y} \rightarrow$ SRC + 1	NC	NC	NC	NC	U	U	U	U

SEMICONDUCTOR

Instruction Set (Continued)

Each Two Operand Instruction is constructed of 5 fields:

1. Mode (Byte or Word)
2. Opcode
3. R Source
4. S Source
5. Address or Destination

These instructions are further divided into those using RAM addresses and those that do not. The first type uses two formats which differ only by quadrant designator.

Functions are performed on the specified R and S sources and results are stored in the specified destination and/or placed on the Y-bus. Arithmetic functions update the least significant nibble of the Status Register (OVR, N, C, Z) while logical functions affect only the \mathbf{N} and \mathbf{Z} bits. Execution of logical functions clear the OVR and C bits of the Status Register.

Two Operand Field Definitions								
TOR1	15	14 13	13	12	9	8	5	40
	B/W	Quadrant		Opcode		SRC-SRC, Dest		RAM Address
	15	$14 \quad 1$	13	12	9	8	5	40
TOR2	B/W	Quadrant		Opcode		SRC-SRC, Dest		RAM Address
	15	$14 \quad 13$	13	12	9	8	5	40
TONR	B/W	Quadrant		Opcode		SRC-SRC, Dest		Destination

Two Operand Instruction Set

Notes:

1. $\mathrm{R}=$ Source
2. For subtraction the carry is interpreted as borrow.
S = Source
Dest $=$ Destination

SEMICONDUCTOR
Instruction Set (Continued)
Two Operand Instruction Set

Instruction	B/W	Quad			$\mathrm{R}^{[1]}$	$S^{[1]}$	Opcode			Destination		
TONR	$\begin{aligned} & 0=\mathbf{B} \\ & 1=\mathrm{W} \end{aligned}$	11	$\begin{aligned} & 0001 \\ & 0010 \\ & 0101 \end{aligned}$	$\begin{aligned} & \text { TODA } \\ & \text { TOAI } \\ & \text { TODI } \end{aligned}$	D ACC D	$\begin{aligned} & \mathrm{ACC} \\ & \mathrm{I} \\ & \mathrm{I} \end{aligned}$	0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011	SUBR SUBRC SUBS SUBSC ADD ADDC AND NAND EXOR NOR OR EXNOR	S minus R S minus R with carry R minus S R minus S with carry R plus S R plus S with carry R•S $\bar{R} \cdot \mathrm{~S}$ $R \oplus S$ $\overline{\mathbf{R}+\mathbf{S}}$ $\mathbf{R}+\mathbf{S}$ $\overline{\mathbf{R} \oplus \mathbf{S}}$	$\begin{aligned} & 00000 \\ & 00001 \\ & 00100 \\ & 00101 \end{aligned}$	NRY NRA NRS NRAS	$\begin{aligned} & \text { Y Bus } \\ & \text { ACC } \\ & \text { Status }[2] \\ & \text { ACC, Status }[2] \end{aligned}$

Notes:

1. $\mathbf{R}=$ Source
$\mathrm{s}=$ Source
2. Status is destination,

Status $\mathrm{i} \leftarrow \mathrm{Yi}, \mathrm{i}=0$ to 3 (byte mode)

$$
i=0 \text { to } 7 \text { (word mode) }
$$

3. For subtraction the carry is inverted.

Y Bus and Status Contents

Instruction	Opcode	Description	B/W	Y-Bus	Flag3	Flag2	Flag1	LINK	OVR	\mathbf{N}	C	\mathbf{Z}
TOR1TOR2TONR	ADD	R plus S	$\begin{aligned} & 0=\mathbf{B} \\ & 1=\mathbf{W} \end{aligned}$	$\mathrm{Y} \leftarrow \mathrm{R}+\mathrm{S}$	NC	NC	NC	NC	U	U	U	U
	ADDC	R plus S with carry		$\mathrm{Y} \leftarrow \mathrm{R}+\mathrm{S}+\mathrm{QC}$	NC	NC	NC	NC	U	U	U	U
	AND	$\mathrm{R} \cdot \mathrm{S}$		$\mathrm{Y} \leftarrow \mathrm{R}_{\mathrm{i}}$ AND S $_{\mathrm{i}}$	NC	NC	NC	NC	0	U	0	U
	EXOR	$\mathrm{R} \oplus \mathrm{S}$		$\mathrm{Y}_{\mathrm{i}} \leftarrow \mathrm{R}_{\mathrm{i}}{\text { EXOR } \mathrm{S}_{\mathrm{i}} \text { }}^{\text {d }}$	NC	NC	NC	NC	0	U	0	U
	EXNOR	$\overline{\mathrm{R} \oplus \mathrm{S}}$		$\mathrm{Y}_{\mathrm{i}} \leftarrow \mathrm{R}_{\mathrm{i}}$ EXNOR S_{i}	NC	NC	NC	NC	0	0	0	U
	NAND	$\overline{\mathrm{R} \bullet \mathrm{S}}$		$\mathrm{Y}_{\mathrm{i}} \leftarrow \mathrm{R}_{\mathrm{i}}$ NAND $^{\text {i }}$	NC	NC	NC	NC	0	U	0	U
	NOR	$\overline{\mathrm{R}+\mathrm{S}}$		$\mathrm{Y}_{\mathrm{i}} \leftarrow \mathrm{R}_{\mathrm{i}}{\text { NOR } \mathrm{S}_{\mathrm{i}}}$	NC	NC	NC	NC	0	U	0	U
	OR	$\mathrm{R}+\mathrm{S}$		$\mathrm{Y}_{\mathrm{i}} \leftarrow \mathrm{R}_{\mathrm{i}}$ OR S_{i}	NC	NC	NC	NC	0	U	0	U
	SUBR	S minus R		$\mathrm{Y} \leftarrow \mathrm{S}+\overline{\mathrm{R}}+1$	NC	NC	NC	NC	U	U	U	U
	SUBRC	S minus R with carry		$\mathrm{Y} \leftarrow \mathrm{S}+\overline{\mathrm{R}}+\mathrm{QC}$	NC	NC	NC	NC	U	U	U	U
	SUBS	R minus S		$\mathrm{Y} \leftarrow \mathrm{R}+\overline{\mathrm{S}}+1$	NC	NC	NC	NC	U	U	U	U
	SUBSC	R minus S with carry		$\mathrm{Y} \leftarrow \mathrm{R}+\overline{\mathrm{S}}+\mathrm{QC}$	NC	NC	NC	NC	U	U	U	U

$\mathbf{U}=$ Update
NC = No Change
$0=$ Reset
$1=$ Set
$\mathrm{i}=0$ to 15 when not specified

Single Bit Shift Instructions are constructed of four fields:

1. Mode (Byte or Word)
2. Direction (up or down) and shift linkage
3. Source
4. Destination

These instructions are further divided into those using RAM addresses and those that do not. The shift linkage indicator indicates what is to be loaded into the vacant bit. During a shift up the LSB may be loaded with a zero, one
or with the link status bit (QLINK), while the MSB is shifted into the QLINK bit. During a shift down, the MSB is loaded with a zero, one, the Status Carry bit (QC), the Exclusive-Or of the Negative-Status bit and the OverflowStatus bit ($\mathrm{QN} \oplus \mathrm{QOVR}$), or the Link-Status bit. The Status Register's N and Z bits are updated, while the OVR and C bits are reset. Shift down with $\mathrm{QN} \oplus$ QOVR can be used in Two's Complement Multiplication.

Instruction Set (Continued)
Single Bit Shift Field Definitions

	15		14	13	12
SHFTR	9	8	5		4
	B/W	Quadrant	SRC-Dest	Opcode	RAM Address
	SHFTNR	B/W	Quadrant	Source	Opcode
	Qestination				

Shift Down Function

0085-8
0085-9
Single Bit Shift Instruction Set

Note:

1. $\mathrm{U}=$ Source

Dest $=$ Destination
Y Bus and Status

Instruction	Opcode	Description	B/W	Y-Bus	Flag3	Flag2	Flag1	LINK	OVR	N		\mathbf{Z}
$\begin{array}{\|l} \text { SHR } \\ \text { SHNR } \end{array}$	$\begin{aligned} & \text { SHUPZ } \\ & \text { SHUP1 } \\ & \text { SHUPL } \end{aligned}$	Up 0 Up 1 Up QLINK	$1=\mathrm{W}$	$\begin{aligned} & \mathrm{Y}_{\mathrm{i}} \leftarrow \mathrm{SRC}_{\mathrm{i}-1}, \mathrm{i}=1 \text { to } 15 ; \\ & \mathrm{Y}_{0} \leftarrow \text { Shift Input } \\ & \hline \end{aligned}$	NC	NC	NC	SRC ${ }_{15 *}$	0	SRC_{14}	0	U
			$0=\mathrm{B}$		NC	NC	NC	SRC7*	0	SRC_{6}	0	U
	SHDNZ SHDN1 SHDNL SHDNC SHCNOV	Down 0 Down 1	$1=\mathrm{W}$	$\begin{aligned} & \mathrm{Y}_{\mathrm{i}} \leftarrow \mathrm{SRC}_{\mathrm{i}}+1, \mathrm{i}=0 \text { to } 14 ; \\ & \mathrm{Y}_{15} \leftarrow \text { Shift Input } \\ & \hline \end{aligned}$	NC	NC	NC	SRC 0^{*}	0	Shift Input	0	U
		Down QLINK Down QC Down QN \oplus QOVR	$0=B$	$\begin{aligned} & \mathrm{Y}_{\mathrm{i}} \leftarrow \mathrm{SRC}_{\mathrm{i}+1}, \mathrm{i}=0 \text { to } 6 ; \\ & \mathrm{Y}_{\mathrm{i}} \leftarrow \mathrm{SRC}_{\mathrm{i}-7, \mathrm{i}=8} \text { to } 14 ; \\ & \mathrm{Y}_{7,15} \leftarrow \mathrm{Shift}^{2} \text { Input } \\ & \hline \end{aligned}$	NC	NC	NC	SRC ${ }_{0}{ }^{*}$	0	Shift Input	0	U

[^18]
Instruction Set (Continued)

Bit-Oriented Instructions

Bit-Oriented Instructions are constructed from four fields:

1. Mode (Byte or Word)
2. Operation
3. Source or Destination
4. Bit position operated on $(0=$ LSB $)$

These instructions are further divided into those using RAM addresses and those that do not. The specified function operates on the given source and the result is stored in the specified destination and/or on the Y-bus.
Set Bit n: Forces the nth bit to ONE without affecting other bit positions.

Reset Bit n : Forces the nth bit to ZERO without affecting other bit positions.
Test Bit n : Sets the Z status bit to the state of bit n .
$\overline{\text { Load 2n }}$: Loads ZERO in bit position n and sets all other bits.
Load $\mathbf{2 n}^{\text {n }}$ Loads ONE in bit position n and clears all other bits.
Increment $\mathbf{2 n}^{\mathbf{n}}$: Adds $\mathbf{2 n}^{\mathrm{n}}$ to the operand.
Decrement 2n: Subtracts 2^{n} from the operand.
Load, Set, Reset and Test instructions update \mathbf{N} and \mathbf{Z} status bits while forcing OVR and C bits to ZERO. Arithmetic operations affect the entire lower nibble of the Status Register (OVR, C, N, and Z).

Bit Oriented Field Definitions

15	14	1312		58		
BOR1	B/W	Quadrant	N	Opcode		
	RAM Address					

	15	1312		98	54
BOR2	B/W	Quadrant	N	Opcode	RAM Address

Bit Oriented Instruction Set

Instruction	B/W	Quadrant	n	Opcode			RAM Address		
BOR1	$\begin{aligned} & 0=\mathbf{B} \\ & 1=\boldsymbol{W} \end{aligned}$	11	0 to 15	$\begin{aligned} & 1101 \\ & 1110 \\ & 11111 \end{aligned}$	SETNR RSTNR TSTNR	Set RAM, bit n Reset RAM, bit n Test RAM, bit n	$\begin{gathered} 0000 \\ 1 \\ 112 \end{gathered}$	$\begin{gathered} \text { R00 } \\ \text { R31 } \end{gathered}$	RAM Reg 00 RAM Reg 31
Instruction	B/W	Quadrant	n			Opcode			M Address
BOR2	$\begin{aligned} & 0=\mathbf{B} \\ & 1=\mathbf{W} \end{aligned}$	10	0 to 15	$\begin{array}{\|l\|} \hline 1100 \\ 1101 \\ 1110 \\ 1111 \\ \hline \end{array}$	LD2NR LDC2NR A2NR S2NR	$\begin{aligned} & 2^{\mathrm{n}} \rightarrow \text { RAM } \\ & \frac{2^{\mathrm{n}}}{} \rightarrow \text { RAM } \\ & \text { RAM plus } 2^{\mathrm{n}} \rightarrow \text { RAM } \\ & \text { RAM } \text { minus } 2^{\mathrm{n}} \rightarrow \text { RAM } \\ & \hline \end{aligned}$	00000 1111	$\begin{aligned} & \text { R00 } \\ & \text { R3 } \end{aligned}$	RAM Reg 00 RAM Reg 31
Instruction	B/W	Quadrant	n			Opcode			Opcode
BONR	$\begin{aligned} & 0=\mathrm{B} \\ & 1=\mathrm{W} \end{aligned}$	11	0 to 15	1100			0000 0000 0001 00100 0010 0011 0011 10000 1000 1001 10100 1010 1011	TSTNA RSTNA SSTNA A2NA S2NA LD2NA LDC2NA TSTND RSTND SETND A2NDY S2NDY LS2NY LDC2NY	Test ACC, bit n Reset ACC, bit n Set ACC, bit n ACC plus $2^{n} \rightarrow$ ACC ACC minus $2 \mathrm{n} \rightarrow \mathrm{ACC}$ $2^{n} \rightarrow$ ACC $\overline{2^{\mathrm{n}}} \rightarrow \mathrm{ACC}$ Test D, bit n Reset D, bit n Set D, bit n D plus $2^{\mathrm{n}} \rightarrow$ Y Bus D minus $2^{\mathrm{n}} \rightarrow \mathrm{Y}$ Bus $2^{n} \rightarrow$ Y Bus $\overline{2^{\mathrm{n}}} \rightarrow$ Y Bus

Instruction Set (Continued)

Rotate By n Bits Instructions

The Rotate by n Bits Instructions contain four indicators: byte or word mode, source, destination and the number of places the source is to be rotated. They are further subdivided into two types. The first type uses RAM as a source and/or a destination and the second type does not use RAM as a source or destination. The first type has two different formats and the only difference is in the quadrant. The second type has only one format as shown in the table. Under the control of instruction inputs, the n indicator
specifies the number of bit positions the source is to be rotated up (0 to 15), and the result is either stored in the specified destination or placed on the Y bus or both. An example of this instruction is given in Figure 5. In the Word mode, all 16-bits are rotated up; while in the Byte mode, only the lower 8 -bits ($0-7$) are rotated up. In the Word Mode, a rotate up by n bits is equivalent to a rotate down by (16 -n) bits. Similarly, in the Byte mode a rotate up by n bits is equivalent to a rotate down by ($8-n$) bits. The N and Z bits of the Status Register are affected and OVR and C bits are forced to ZERO.

Rotate by n Example
EXAMPLE: $\mathrm{n}=4$, Word Mode

Source	0001	0011	0111	1111
Destination	0011	0111	1111	0001
XAMPLE: $n=4$,	Byte Mode			
Source	0001	0011	0111	1111
Destination	0001	0011	1111	0111

Rotate By n Bits Instruction Set

Instruction	B/W	Quadrant	n			$\mathrm{U}^{[1]}$	Dest ${ }^{[1]}$	RAM Address			
ROTR1	$\begin{aligned} & 0=\mathbf{B} \\ & 1=\mathbf{W} \end{aligned}$	00	0 to 15	$\begin{aligned} & 1100 \\ & 1110 \\ & 1111 \end{aligned}$		RAM RAM RAM	ACC Y Bus RAM	$\begin{gathered} 00000 \\ \dot{11111} \end{gathered}$	$\begin{array}{r} \mathrm{R} 00 \\ \mathrm{R} 31 \\ \hline \end{array}$	$\begin{aligned} & \text { RAM } \\ & \text { RAM } \end{aligned}$	
Instruction	B/W	Quadrant	n			U[1]	Dest ${ }^{[1]}$	RAM Address			
ROTR2	$\begin{aligned} & 0=\mathbf{B} \\ & 1=\mathbf{W} \end{aligned}$	01	0 to 15	$\begin{aligned} & 0000 \\ & 0001 \end{aligned}$	RTAR RTDR	$\begin{aligned} & \mathrm{ACC} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & \text { RAM } \\ & \text { RAM } \end{aligned}$	00000 11111	$\begin{gathered} \mathrm{R} 00 \\ \mathrm{R} 31 \\ \hline \end{gathered}$		
Instruction	B/W	Quadrant	n							U[1]	Dest ${ }^{[1]}$
ROTNR	$\begin{aligned} & 0=\mathrm{B} \\ & 1=\mathrm{W} \end{aligned}$	11	0 to 15	1100				$\begin{aligned} & 11000 \\ & 11001 \\ & 11100 \\ & 11101 \end{aligned}$	RTDY RTDA RTAY RTAA	D D ACC ACC	Y Bus ACC Y Bus ACC

Note:

1. $\mathbf{U}=$ Source

Dest $=$ Destination

Y Bus and Status

Instruction	Opcode	B/W	Y-Bus	Flag3	Flag2	Flag1	LINK	OVR	N	C	\mathbf{Z}
ROTR1		$1=\mathrm{W}$	$\mathrm{Y}_{\mathrm{i}} \leftarrow \mathrm{SRC}_{(\mathrm{i}-\mathrm{n}) \mathrm{mod} 16}$	NC	NC	NC	NC	0	SRC_{15-n}	0	U
ROTR2 ROTNR		$0=\mathrm{B}$	$\begin{aligned} & \mathrm{Y}_{\mathrm{i}} \leftarrow \mathrm{SRC}_{\mathrm{i}}+8=\mathrm{SRC}_{(\mathbf{i}-\mathrm{n}) \bmod 8} \\ & \text { for } \mathrm{i}=0 \text { to } 7 \end{aligned}$	NC	NC	NC	NC	0	$\mathrm{SRC}_{6-\mathrm{n}}$	0	U

[^19]
Rotate and Merge Instructions

Each Rotate and Merge instruction consists of five fields:

1. Mode (Byte or Word)
2. Rotated Source (U)
3. Non-Rotated Source (R)
4. Mask Location (S)
5. Number of bits Rotated (n)

The shift register rotates source U up n places. ANDing with the mask causes any bit i to be passed from the rotated source that corresponds to a set bit in mask position i . The R input is not shifted, but is masked by the compliment of mask S, so that a ZERO in mask bit i will pass bit i of R. The ORed result is stored in register R. Rotate and Merge operations update the N and Z status bits, while clearing the OVR and C bits.

Rotate and Merge Function

Rotate and Merge Field Definitions

	1514		1312	
ROTM	B/W	Quadrant	n	U,R,S

EXAMPLE: $\mathrm{N}=4$, Word Mode

U	0011	0001	0101	0110
Rotated U	0001	0101	0110	0011
R	1010	1010	1010	1010
Mask (S)	0000	1111	0000	1111
Destination	1010	0101	1010	0011

Rotate and Merge Instruction Set

Instruction	B/W	Quadrant	n			$\mathrm{U}^{[1]}$	R/Dest ${ }^{[1]}$	$S^{[1]}$		RAM	ddress
ROTM	$\begin{aligned} & 0=\mathbf{B} \\ & 1=\mathbf{W} \end{aligned}$	01	0 to 15	0111	MDAI	D	ACC	I			
				1000	MDAR	D	ACC	RAM	00000	R00	RAM Reg 00
				1001	MDRI	D	RAM				
				1010	MDRA	D	RAM	ACC	11111	R31	RAM Reg 31
				1100	MARI	ACC	RAM	I	1111	R31	RAM Reg 31

Note:

1. $\mathbf{U}=$ Rotated Source

R/Dest = Non-Rotated Source/Destination
$\mathrm{s}=$ Mask
Y Bus and Status

Instruction	Opcode	B/W	Y-Bus	Flag3	Flag2	Flag1	LINK	OVR	N	C	Z
ROTM		$1=W$	$\mathrm{Y}_{\mathrm{i}} \leftarrow\left(\right.$ Non Rot Op) $\mathrm{i}^{*}(\overline{\text { mask }})_{\mathrm{i}}+$ $(\text { Rot } \mathrm{Op})_{(\mathrm{i}-\mathrm{n}) \bmod 16^{*}(\text { mask })_{\mathrm{i}}}$	NC	NC	NC	NC	0	U	0	U
		$0=\mathrm{B}$	$\mathrm{Y}_{\mathrm{i}} \leftarrow\left(\right.$ Non Rot Op) $\mathrm{I}^{*}(\overline{\mathrm{mask}})_{\mathrm{i}}+$ (Rot Op$)_{(\mathrm{i}-\mathrm{n}) \bmod 8^{*}(\text { mask })_{\mathrm{i}}}$	NC	NC	NC	NC	0	U	0	U

[^20]
Instruction Set (Continued)

Rotate and Compare Instructions

The five fields of the Rotate and Compare instructions are:

1. Mode (Byte or Word)
2. Rotated Source (U)
3. Non-Rotated Source (R)
4. Mask (S)
5. Number of bits Rotated (n)

Input U is rotated n bits, ANDed with the inversion of S and compared with the input R ANDed with the inversion of S. Thus, a zero in the mask S will allow that bit of both inputs to be compared. The \mathbf{Z} bit of the Status Register is set if the comparison passes, and reset if it does not. OVR and \mathbf{C} bits are reset in the Status Register.

Rotate and Compare Function

Rotate and Compare Field Definitions

1514	1312		98	
ROTC	B/W	Quadrant	n	U,R,S
	RAM Address			

EXAMPLE: $N=4$, Word Mode

U	0011	0001	0101	0110
Rotated U	0001	0101	0110	0011
R	0001	0101	1111	0000
Mask (S)	0001	0101	1111	1111
Z (Status) $=1$				

Rotate and Compare Instruction Set

Instruction	B/W	Quad	n			$\mathrm{U}^{[1]}$	$\mathrm{R}^{[1]}$	$\mathrm{S}^{[1]}$	RAM Address		
ROTC	$\begin{aligned} & 0=\mathrm{B} \\ & 1=\mathrm{W} \end{aligned}$	01	0 to 15	$\begin{aligned} & 0010 \\ & 0011 \\ & 0100 \\ & 0101 \end{aligned}$	CDAI CDRI CDRA CRAI	D D D RAM	ACC RAM RAM ACC	$\begin{aligned} & \text { I } \\ & \text { I } \\ & \text { ACC } \\ & \text { I } \\ & \hline \end{aligned}$	$\begin{gathered} 00000 \\ \text { • } \\ 11111 \end{gathered}$	$\begin{gathered} \text { R00 } \\ \text { R31 } \end{gathered}$	RAM Reg 00 RAM Reg 31

Note:

1. $\mathrm{U}=$ Rotated Source

R $=$ Non-Rotated Source
$\mathrm{S}=$ Mask
Y Bus and Status

Instruction	Opcode	B/W	Y-Bus	Flag3	Flag2	Flag1	LINK	OVR	N	C	\mathbf{Z}
ROTC		$1=\mathrm{W}$	$\mathrm{Y}_{\mathrm{i}} \leftarrow(\text { Non Rot Op })_{\mathrm{i}^{*}}(\overline{\mathrm{mask}})_{\mathrm{i}} \oplus$ (Rot Op) $)_{(\mathrm{i}-\mathrm{n}) \bmod 16 *(\text { mask })_{i}}$	NC	NC	NC	NC	0	U	0	U
		$0=\mathrm{B}$	$\mathrm{Y}_{\mathrm{i}} \leftarrow\left(\right.$ Non Rot Op) $\mathrm{i}^{*}(\overline{\text { mask }})_{\mathrm{i}} \oplus$ $\left.(\text { Rot } O p)_{(i-n)}^{\bmod 8^{*}(\text { mask }}\right)_{i}$	NC	NC	NC	NC	0	U	0	U

[^21]
Instruction Set (Continued)

Prioritize Instruction

The four fields of the Prioritize instruction are:

1. Mode (Byte or Word)
2. Mask Source (S)
3. Operand Source (R)
4. Destination

The inverted mask, S is ANDed with R. A "one" in S prohibits that bit from participating in the priority encoding. From the 16 -bit input, the priority encoder outputs a 5-bit binary weighted code indicating the bit-position of the highest priority active bit. If there are no active bits, the output is zero. See Figure for operation in both word and byte mode. Using Prioritize updates the N and Z bits of the Status Register, and forces C and OVR to zero. This instruction is limited in that the operand and the mask must be different sources.

Prioritize Function

0085-12
Prioritize Instruction Field Definitions

1514	1312		54	
B/W	Quad	Destination	Source (R)	RAM Address/ Mask (S)
B/W	Quad	Mask (S)	Destination	RAM Address/ Source (R)
B/W	Quad	Mask (S)	Source (R)	RAM Address/ Destination
B/W	Quad	Destination	Source (R)	Destination

Highest Priority Bit Active	Encoder Output	Highest Priority Bit Active	Encoder Output
None	0	None	0
15	1	7	1
14	2	6	2
$*$	$*$	$*$	$*$
$*$	$*$	$*$	$*$
1	15	1	7
0	16	0	8

*Bits 8 through 15 not available.
Prioritize Instruction

Instruction	B/W	Quad	Destination			Source (R)			RAM Address/Mask (S)		
PRT1	$\begin{aligned} & 0=\mathbf{B} \\ & 1=\mathrm{W} \end{aligned}$	10	$\begin{aligned} & 1000 \\ & 1010 \\ & 1011 \end{aligned}$	PRIA PR1Y PR1R	$\begin{aligned} & \text { ACC } \\ & \text { Y Bus } \\ & \text { RAM } \end{aligned}$	$\begin{aligned} & 0111 \\ & 1001 \end{aligned}$	RPT1A PR1D	$\begin{aligned} & \mathrm{ACC} \\ & \mathrm{D} \end{aligned}$	00000 11111	$\begin{array}{r} \text { R00 } \\ \text { R31 } \end{array}$	$\begin{gathered} \text { RAM Reg } 00 \\ \text { RAM Reg } 31 \\ \hline \end{gathered}$
Instruction	B/W	Quad	Destination			Source (R)			RAM Address/Mask (S)		
PRT2	$\begin{aligned} & 0=\mathbf{B} \\ & 1=\mathbf{W} \end{aligned}$	10	$\begin{aligned} & 1000 \\ & 1010 \\ & 1011 \end{aligned}$	PRA PRZ PRI	$\begin{aligned} & \text { ACC } \\ & 0 \\ & \text { I } \\ & \hline \end{aligned}$	$\begin{aligned} & 0000 \\ & 0010 \end{aligned}$	PR2A PR2Y	ACC Y Bus	00000 11111	$\begin{array}{r} \mathrm{R} 00 \\ \text { R } 31 \\ \hline \end{array}$	$\begin{gathered} \text { RAM Reg } 00 \\ \text { RAM Reg } 31 \end{gathered}$
Instruction	B/W	Quad	Destination			Source (R)			RAM Address/Mask (S)		
PRT3	$\begin{aligned} & 0=\mathbf{B} \\ & 1=\mathbf{W} \end{aligned}$	10	$\begin{aligned} & 1000 \\ & 1010 \\ & 1011 \end{aligned}$	PRA PRZ PRI	$\begin{aligned} & \text { ACC } \\ & \mathrm{O} \\ & \mathrm{I} \\ & \hline \end{aligned}$	$\begin{aligned} & 0011 \\ & 0100 \\ & 0110 \end{aligned}$	PR3R PR3A PR3D	RAM ACC D	$\begin{gathered} 00000 \\ \text { 11111 } \end{gathered}$	$\begin{array}{r} \mathrm{R} 00 \\ \text { R } 31 \\ \hline \end{array}$	RAM Reg 00 RAM Reg 31
Instruction	B/W	Quad	Destination			Source (R)			RAM Address/Mask (S)		
PRTNR	$\begin{aligned} & 0=\mathrm{B} \\ & 1=\mathrm{W} \end{aligned}$	11	$\begin{aligned} & 1000 \\ & 1010 \\ & 1011 \end{aligned}$	$\begin{aligned} & \hline \text { PRA } \\ & \text { PRZ } \\ & \text { PRI } \end{aligned}$	$\begin{aligned} & \text { ACC } \\ & \mathrm{O} \\ & \mathrm{I} \\ & \hline \end{aligned}$	$\begin{aligned} & 0100 \\ & 0110 \end{aligned}$	PRTA PRTD	$\begin{aligned} & \mathrm{ACC} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 00000 \\ & 00001 \end{aligned}$	NRY NRA	$\begin{aligned} & \text { Y Bus } \\ & \text { ACC } \end{aligned}$

Instruction Set (Continued)

Y Bus and Status-Prioritize Instruction

Instruction	Opcode	B/W	Y-Bus	Flag3	Flag2	Flag1	LINK	OVR	N	C	Z
PRT1 PRT2		$1=\mathrm{W}$	$\begin{aligned} & \mathrm{Y}_{\mathrm{i}} \leftarrow \operatorname{CODE}\left(\mathrm{SCR}_{\mathrm{n}} * \overline{\text { mask }_{\mathrm{n}}}\right) ; \\ & \mathrm{Y}_{\mathrm{m}} \leftarrow 0 ; \mathrm{i}=0 \text { to } 4 \text { and } \mathrm{n}=0 \text { to } 15 \\ & \mathrm{~m}=5 \text { to } 15 \end{aligned}$	NC	NC	NC	NC	0	U	0	U
PRT3 PRTNR		$0=\mathrm{B}$	$\begin{aligned} & \mathrm{Y}_{\mathrm{i}} \leftarrow \operatorname{CODE}\left(\mathrm{SCR}_{\mathrm{n}} * \overline{\mathrm{mask}_{\mathrm{n}}}\right) ; \\ & \mathrm{Y}_{\mathrm{m}} \leftarrow 0 ; \mathrm{i}=0 \text { to } 3 \text { and } \mathrm{n}=0 \text { to } 7 \\ & \mathrm{~m}=4 \text { to } 15 \end{aligned}$	NC	NC	NC	NC	0	U	0	U

*QLINK is loaded with the shifted out bit from the checksum register.

SRC = Source	$0=$ Reset
$\mathrm{U}=$ Update	$1=$ Set
NC No Change	$i=0$ to 15 when not specified

CRC Instruction

The single designator for this instruction is the address of the RAM location that is used as the check sum register. Two CRC instructions, CRC Forward and CRC Reverse, are available. These instructions give the procedure for determining the check bits in a CRC calculation. Since the CRC standards do not specify which data bit is transmitted first, the MSB or the LSB, both Forward and Reverse op-
tions are available to the user. The process for generating the check bits for the CRC Forward and Reverse operations are illustrated in the figures below. The ACC is used as a polynomial mask while the RAM contains the partial sum and eventually the final check sum. The serial input comes from the QLINK bit of the Status Register. Status Register bits OVR and C are forced to zero while LINK, \mathbf{N} and Z bits are updated.

Cyclic-Redundancy-Check Definitions

CRC Forward Function

[^22]
Instruction Set (Continued)

CRC Reverse Function

*This bit must be transmitted first.
Cyclic Redundancy Check Instruction Set

Instruction	B/W	Quad			RAM Address		
CRCF	1					0110	0011
				00000	R00	RAM Reg 00	
				11111	R31	RAM Reg 31	
Instruction	B/W	Quad				RAM Address	
						00000	R00

Y Bus and Status

Instruction	Opcode	B/W	Y-Bus	Flag3	Flag2	Flag1	LINK	OVR	N	C	\mathbf{Z}
CRCF		$1=\mathrm{W}$	$\begin{aligned} & \mathrm{Y}_{\mathrm{i}} \leftarrow\left[\left(\mathrm{QLINK} \oplus \mathrm{RAM}_{15}\right) * \mathrm{ACC}_{\mathrm{i}}\right] \\ & \oplus \mathrm{RAM} \mathrm{M}_{\mathrm{i}}-1 \text { for } \mathrm{i}=15 \text { to } 1 \\ & \mathrm{Y}_{0} \leftarrow\left[\left(\mathrm{QLINK} \oplus \mathrm{RAM}_{15}\right)^{*} \mathrm{ACC}_{0}\right] \oplus 0 \\ & \hline \end{aligned}$	NC	NC	NC	$\mathrm{RAM}_{15}{ }^{*}$	0	U	0	U
CRCR		1 = W	$\begin{aligned} & \mathrm{Y}_{\mathrm{i}} \leftarrow\left[\left(\mathrm{QLINK} \oplus \mathrm{RAM}_{0}\right) * \mathrm{ACC}_{\mathrm{i}}\right] \\ & \oplus \mathrm{RAM} \mathrm{M}_{\mathrm{i}}+1 \text { for } \mathrm{i}=14 \text { to } 0 \\ & \mathrm{Y}_{15} \leftarrow\left[\left(\mathrm{QLINK} \oplus \mathrm{RAM}_{0}\right) * \mathrm{ACC}_{15}\right] \oplus 0 \end{aligned}$	NC	NC	NC	$\mathrm{RAM}_{0}{ }^{*}$	0	U	0	U

[^23]
Instruction Set (Continued)

Status Instructions

7	6	5	4	3	2	1	0
Flag3	Flag2	Flag1	Link	OVR	N	C	Z

Set Status: Specifies which bits in the Status Register are to be set.
Reset Status: Specifies which bits in the Status Register are to be cleared.
Store Status: Indicates byte or word and the destination into which the processor status is saved. The register is always stored in the low byte of the destination. The high byte is unchanged for RAM storage and is loaded with zeroes for ACC storage.
Load Status: Imbedded in the Single- and Two-Operand Instructions.
Test Status: Instructions specify which of the 12 possible test conditions are to be placed on the conditional test output. In addition to the 8 status bits, four logical functions may be selected: $N \oplus$ OVR, $(N \oplus$ OVR) $+Z, Z+\bar{C}$, and LOW. These functions are useful in testing two's complement and unsigned number arithmetic operations.

The status register may also be tested via the T bus as shown below. The instruction lines I_{1} thru I_{4} have bus priority for testing the status register on the CT output.

$\mathbf{T}_{\mathbf{4}}$	$\mathbf{T}_{\mathbf{3}}$	$\mathbf{T}_{\mathbf{2}}$	$\mathbf{T}_{\mathbf{1}}$	$\mathbf{C T}$
$\mathbf{I}_{\mathbf{4}}$	$\mathbf{I}_{\mathbf{3}}$	$\mathbf{I}_{\mathbf{2}}$	$\mathbf{I}_{\mathbf{1}}$	
0	0	0	0	$(\mathrm{~N} \oplus$ OVR) + Z
0	0	0	1	$\mathrm{~N} \oplus$ OVR
0	0	1	0	Z
0	0	1	1	OVR
0	1	0	0	LOW
0	1	0	1	C
0	1	1	0	$\mathbf{Z}+\overline{\mathbf{C}}$
0	1	1	1	N
1	0	0	0	LINK
1	0	0	1	Flag1
1	0	1	0	Flag2
1	0	1	1	Flag3

Status

1514		1312		1010	Opcode
	0	Quad	1011	1010	0
SETST	Quad	1010	1010	Opcode	
RSTST	0	Quad			
SVSTR	B/W	Quad	0111	1010	RAM Address/ Dest
	Q/W	Quad	0111	1010	Destination

Status Instruction Set

Instruction	B/W	Quad			Opcode		
SETST	0	11	1011	1010	$\begin{aligned} & \hline 00011 \\ & 00101 \\ & 00110 \\ & 01001 \\ & 01010 \\ & \hline \end{aligned}$	SONCZ SL SF1 SF2 SF3	Set OVR, N, C, Z Set LINK Set Flag1 Set Flag2 Set Flag3
Instruction	B/W	Quad			Opcode		
RSTST	0	11	1010	1010	$\begin{aligned} & \hline 00011 \\ & 00101 \\ & 00110 \\ & 01001 \\ & 01010 \\ & \hline \end{aligned}$	RONCZ RL RF1 RF2 RF3	Reset OVR, N, C, Z Reset LINK Reset Flag 1 Reset Flag2 Reset Flag 3
Instruction	B/W	Quad			RAM Address/Destination		
SVSTR	$\begin{aligned} & 0=\mathrm{B} \\ & 1=\mathrm{W} \end{aligned}$	10	0111	1010	$\begin{gathered} 00000 \\ \dot{1} 1111 \end{gathered}$	$\begin{array}{r} \mathrm{R} 00 \\ \mathrm{R} 31 \end{array}$	RAM Reg 00 RAM Reg 31
Instruction	B/W	Quad			Destination		
SVSTNR	$\begin{aligned} & 0=\mathrm{B} \\ & 1=\mathrm{W} \\ & \hline \end{aligned}$	11	0111	1010	$\begin{aligned} & 00000 \\ & 00001 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { NRY } \\ & \text { NRA } \end{aligned}$	$\begin{aligned} & \text { Y Bus } \\ & \text { ACC } \end{aligned}$
Instruction	B/W	Quad				Op	
Test	0	11	1001	1010	00000 00010 00100 00110 01000 01010 01100 01110 10000 10010 10100	TNOZ TNO TZ TOVR TLOW TC TZC TN TL TF1 TF2 TF3	Test ($\mathrm{N} \oplus \mathrm{OVR}$) +Z Test N \oplus OVR Test Z Test OVR Test LOW Test C Test $\mathrm{Z}+\overline{\mathbf{C}}$ Test N Test LINK Test Flag1 Test Flag2 Test Flag3

Note: IEN * test status instruction has priority over T_{1-4} instruction.

SEMICONDUCTOR
Instruction Set (Continued)
Y Bus and Status

Instruction	Opcode	Description	B/W	Y-Bus	Flag3	Flag2	Flag1	LINK	OVR	N	C	Z
RSTST	RONCZ	Reset OVR, N, C, Z	0 = B	$\mathrm{Y}_{\mathrm{i}} \leftarrow 0$ for $\mathrm{i}=0$ to 15	NC	NC	NC	NC	0	0	0	0
	RL	Reset LINK			NC	NC	NC	0	NC	NC	NC	NC
	RF1	Reset Flag1			NC	NC	0	NC	NC	NC	NC	NC
	RF2	Reset Flag2			NC	0	NC	NC	NC	NC	NC	NC
	RF3	Reset Flag 3			0	NC						
SETST	SONCZ	Set OVR, N, C, Z	$0=B$	$\mathrm{Y}_{\mathrm{i}} \leftarrow 1$ for $\mathrm{i}=0$ to 15	NC	NC	NC	NC	1	1	1	1
	SL	Set LINK			NC	NC	NC	1	NC	NC	NC	NC
	SF1	Set Tlag1			NC	NC	1	NC	NC	NC	NC	NC
	SF2	Set Flag2			NC	1	NC	NC	NC	NC	NC	NC
	SF3	Set Flag3			1	NC						
$\begin{aligned} & \text { SVSTR } \\ & \text { SVSTNR } \end{aligned}$		Save Status*	$\begin{array}{\|l\|} \hline 0=\mathrm{B} \\ 1=\mathrm{W} \end{array}$	$\begin{aligned} & \mathrm{Y}_{\mathrm{i}} \leftarrow \text { Status for } \mathrm{i} \leftarrow 0 \text { to } 7 ; \\ & \mathrm{Y}_{\mathrm{i}} \leftarrow 0 \text { for } \mathrm{i}=8 \text { to } 15 \end{aligned}$	NC							
Test	TNOZ	Test ($\mathrm{N} \oplus \mathrm{OVR}$) +Z	$0=B$	**	NC							
	TNO	Test ($\mathrm{N} \oplus \mathrm{OVR}$)			NC							
	TZ	Test Z			NC							
	TOVR	Test OVR			NC							
	TLOW	Test LOW			NC							
	TC	Test C			NC							
	TZC	Test $\mathrm{Z}+\overline{\mathbf{C}}$			NC							
	TN	Test N			NC							
	TL	Test LINK			NC							
	TF1	Test Flag1			NC							
	TF2	Test Flag2			NC							
	TF3	Test Flag3			NC							

$\mathbf{U}=$ Update
${ }^{\text {*I In }}$ byte mode only the lower byte from the Y bus is loaded into the RAM or ACC and in word mode all 16 -bits from the Y bus are loaded
into the RAM or ACC.
${ }^{* *}$ Y-Bus is Undefined.
$0=$ Reset
$i=0$ to 15 when not specified

No-Op Instruction

The No-Op Instruction does not affect any internal registers; the Status Register, RAM register and AC register are left unchanged. The 16 -bit opcode is fixed.

No Operation Field Definition

No-Op Instruction

Instruction	B/W	Quad			
No-Op	0	11	1000	1010	0000

Y Bus and Status

Instruction	Opcode	B/W	Y-Bus	Flag3	Flag2	Flag1	LINK	OVR	N	C	Z
No-Op		$0=$ B	$*$	NC							

*Y-Bus is undefined.	$0=$ Reset
SRC Source	$1=$ Set
U $=$ Update	$\mathrm{i}=0$ to 15 when not specified
NC $=$ No Change	

Electrical Characteristics Over Commerical and Military Operating Range $\mathrm{V}_{\mathrm{CC}} \mathrm{Min} .=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}} \mathrm{Max} .=5.5 \mathrm{~V}$

Parameters	Description		Test Conditions	Min.	Max.	Units	
V_{OH}	Output HIGH Voltage		$\begin{aligned} & \mathrm{VCC}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{I}_{\mathrm{OH}}=-3.4 \mathrm{~mA} \end{aligned}$	2.4		V	
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{aligned}$		0.4	V	
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.0	V_{CC}	V	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	V	
$\mathrm{I}_{\text {IX }}$	Input Leakage Current		$\begin{aligned} & \mathbf{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} . \end{aligned}$	-10	10	$\mu \mathrm{A}$	
I_{OZ}	Output Leakage Current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$		+40	$\mu \mathrm{A}$	
			-40		$\mu \mathrm{A}$		
ISC	Output Short Circuit Current			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max. } \\ & \mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V} \end{aligned}$		-85	mA
$\mathrm{I}_{\mathrm{CC}(\mathrm{Q} 1)^{[2]}}$	Supply Current (Quiescent)	Commercial	$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {IL }}$ or		110	mA	
		Military	$\mathrm{V}_{\mathrm{IH}} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }} ; \mathrm{OEY}=\mathbf{H I G H}$		125		
ICC(Q2)	Supply Current (Static)	Commercial	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$ or GND		30	mA	
		Military	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{I}_{\mathrm{OPER}}=0 \mu \mathrm{~A} \end{aligned}$		40	mA	
$\mathrm{I}_{\text {CC }}(\text { Max. })^{[2]}$	Supply Current	Commercial	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max.} . \mathrm{f}_{\mathrm{CLK}}=10 \mathrm{MHz} \\ & \overline{\mathrm{OE}}_{\mathrm{Y}}=\mathrm{HIGH} \end{aligned}$		150	mA	
		Military			210		

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	5	pF
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	7	

Notes:

1. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second.
2. To calculate $I_{C C}$ at any given frequency, use $I_{C C}\left(Q_{1}\right)+I_{C C}\left(A . C\right.$.) where $I_{C C}\left(Q_{1}\right)$ is shown above and $I_{C C}(A . C$. $)=4.0 \mathrm{~mA} / \mathrm{MHz} \times C l o c k$ Frequency for the Commercial temperature range. $I_{C C}(A . C$. $)=8.5 \mathrm{~mA} / \mathrm{MHz} \times$ Clock Frequency for Military temperature range.
3. Tested on a sample basis.

Output Loads Used for AC Performance Characteristics

Open Drain ($\mathbf{F}=\mathbf{0}$)

All Input Pulses

Notes:

1. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ includes scope probe, wiring and stray capacitance.
2. $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ for output disable tests.

Commercial Switching Characteristics

Guaranteed Commercial Range A.C. Performance Characteristics

($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$)

Combinational Propagation Delays (ns)

To Output From Input	Y_{0-15}				T1-4				CT			
CY7C9116 CY7C9117	45	53	65	79	45	53	65	79	45	53	65	79
I_{0-4} (ADDR)	45	53	65	79	52	60	73	84				
$\begin{aligned} & \mathrm{I}_{0-15} \\ & \text { (DATA) } \end{aligned}$	45	53	65	79	52	60	73	84				
$\begin{aligned} & \mathrm{I}_{0-15} \\ & \text { (INST) } \end{aligned}$	45	53	65	79	52	60	73	84	25	29	35	48
DLE*	32	39	55	58	32	39	55	60				
T_{1-4}									25	25	27	39
CP	32	39	60	63	32	41	66	69	25	26	37	40
Y_{0-15}	32	39	53	62	32	39	53	64				
IEN									25	25	25	43

*DLE is guaranteed by other tests.
Enable/Disable Times (ns) ($\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, Disable Only)

From Input	To Output	Enable								Disable							
		T PZH				TPZL				T ${ }_{\text {PHZ }}$				TPLZ			
		45	53	65	79	45	53	65	79	45	53	65	79	45	53	65	79
$\overline{\mathrm{OE}}_{\mathrm{Y}}$	$\mathrm{Y}_{0}-\mathrm{Y}_{15}$	20	20	20	23	20	20	20	23	20	20	20	20	20	20	20	20
OE_{T}	$\mathrm{T}_{1}-\mathrm{T}_{4}$	25	25	25	23	25	25	25	23	25	25	25	25	25	25	25	25

Clock and Pulse Requirements (ns)

Input	Minimum Low Time				Minimum High Time			
	$\mathbf{4 5}$	$\mathbf{5 3}$	$\mathbf{6 5}$	$\mathbf{7 9}$	$\mathbf{4 5}$	$\mathbf{5 3}$	$\mathbf{6 5}$	$\mathbf{7 9}$
CP	20	20	20	20	30	30	30	30
DLE					15	15	15	15
$\overline{\text { IEN }}$	20	20	20	22				

Set-up and Hold Times (ns)

Notes:

1. Timing for immediate instruction for first cycle.
2. CY7C9117 only.
3. CY7C9116 only.
4. $Y=D$ for CY7C9117.
5. t_{SX} and t_{HK} referenced on the waveforms are looked up on this table by $\mathrm{x}=$ line number on the left. Ex: $\mathrm{t}_{\mathrm{SI}}=13 \mathrm{~ns}$ for -53 ns devices.

Military Switching Characteristics

Guaranteed Military Range A.C. Performance Characteristics
$\left(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$)

Combinational Propagation Delays (ns)

To Output From Input	Y_{0-15}			T1-4			CT		
CY7C9116 CY7C9117	65	79	100	65	79	100	65	79	100
$\begin{aligned} & \mathrm{I}_{0-4} \\ & (\mathrm{ADDR}) \end{aligned}$	65	79	100	73	84	103			
$\begin{aligned} & \mathbf{I}_{0-15} \\ & \text { (DATA) } \\ & \hline \end{aligned}$	65	79	100	73	84	103			
$\begin{aligned} & \mathbf{I}_{0-15} \\ & \text { (INST) } \\ & \hline \end{aligned}$	65	79	100	73	84	103	35	48	50
DLE*	55	58	68	55	60	70			
T_{1-4}							27	39	46
CP	60	63	76	66	69	83	37	40	48
Y_{0-15}	53	62	70	53	64	72			
IEN							25	43	50

Military Switching Characteristics (Continued)
Enable/Disable Times (ns) ($\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, Disable Only)

From Input	To Output	Enable						Disable					
		TPZH			TPZL			TPHZ			TPLZ		
		65	79	100	65	79	100	65	79	100	65	79	100
$\overline{\mathrm{OE}}_{\mathrm{Y}}$	$\mathrm{Y}_{0}-\mathrm{Y}_{15}$	20	23	25	20	25	25	20	20	25	20	20	25
OE_{T}	$\mathrm{T}_{1}-\mathrm{T}_{4}$	25	23	25	25	25	25	25	25	30	25	25	30

Clock and Pulse Requirements (ns)

Input	Minimum Low Time			Minimum High Time		
	$\mathbf{6 5}$	$\mathbf{7 9}$	$\mathbf{1 0 0}$	$\mathbf{6 5}$	$\mathbf{7 9}$	$\mathbf{1 0 0}$
CP	20	20	33	30	30	50
DLE				20	20	20
$\overline{\text { IEN }}$	20	22	22			

Set-up and Hold Times (ns)

Notes:

1. Timing for immediate instruction for first cycle.
2. CY7C9117 only.
3. CY7C9116 only.
4. $Y=D$ for CY7C9117.
5. t_{SX} and t_{HX} referenced on the waveforms are looked up on this table
by $x=$ line number on the left. Ex: $\mathrm{t}_{\mathrm{SI}}=24 \mathrm{~ns}$ for -79 ns devices.

Switching Waveforms

Single Address Access Timing

If $\mathrm{t}_{\mathrm{h} 11}$ is satisfied, $\mathrm{t}_{\mathrm{h} 10}$ need not be satisfied
0085-18

Double Address Access Timing

0085-19
One-Address Immediate Instruction Cycle Timing

0085-20
Two-Address Immediate Instruction Timing (7C9117 Only)

Set-up and Hold Times (Cross Ref. Table)

[1]	High to Low Transition		Low to High Transition	
	Set-up	Hold	Set-up	Hold
1	$\mathrm{t}_{\mathbf{S} 1}$	$\mathrm{t}_{\mathrm{h} 1}$		
2	$\mathrm{t}_{\mathbf{S} 2}$			$\mathrm{t}_{\mathrm{h} 2}$
3			$\mathrm{t}_{\mathbf{S} 3}$	$\mathrm{t}_{\mathrm{h} 3}$
4	$\mathrm{t}_{\mathbf{S} 5}$	$\mathrm{t}_{\mathrm{h} 5}$		
5	$\mathrm{t}_{\mathbf{S} 4}$	$\mathrm{t}_{\mathrm{h} 4}$	$\mathrm{t}_{\mathbf{S} 13}$	$\mathrm{t}_{\mathrm{h} 13}$
6				$\mathrm{t}_{\mathrm{h} 6}$
7	$\mathrm{t}_{\mathbf{S} 7}$			$\mathrm{t}_{\mathrm{h} 7}$
8			$\mathrm{t}_{\mathbf{S} 8}$	$\mathrm{t}_{\mathrm{h} 8}$
9	$\mathrm{t}_{\mathbf{S} 14}$	$\mathrm{t}_{\mathrm{h} 14}$		
10			$\mathrm{t}_{\mathbf{S} 9}$	$\mathrm{t}_{\mathrm{h} 9}$
11			$\mathrm{t}_{\mathbf{S} 10}$	$\mathrm{t}_{\mathrm{h} 10}$
12	$\mathrm{t}_{\mathbf{S} 11}$	$\mathrm{t}_{\mathrm{h} 11}$		
13			$\mathrm{t}_{\mathbf{S} 12}$	$\mathrm{t}_{\mathrm{h} 12}$

Note:

1. Refer to Set-up and Hold times shown on pages $22 \& 23$.

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
45	CY7C9116-45LC	L69	Commercial
	CY7C9116-45JC[2]	J81	
	CY7C9116-45DC	D28	
53	CY7C9116-53LC	L69	
	CY7C9116-53JC	J81	
	CY7C9116-53DC	D28	
65	CY7C9116-65LC	L69	
	CY7C9116-65JC[2]	J81	
	CY7C9116-65DC	D28	
79	CY7C9116-79LC	L69	
	CY7C9116-79JC[2]	J81	
	CY7C9116-79DC	D28	
65	CY7C9116-65LMB	L69	Military
	CY7C9116-65DMB	D28	
79	CY7C9116-79LMB	L69	
	CY7C9116-79DMB	D28	
100	CY7C9116-99LMB	L69	
	CY7C9116-99DMB	D28	

Speed (ns)	Ordering Code	Package Type	Operating Range
45	CY7C9117-45GC	G68	Commercial
	CY7C9117-45JC	J81	
	CY7C9117-45LC	L81	
53	CY7C9117-53GC	G68	
	CY7C9117-53JC	J81	
	CY7C9117-53LC	L81	
65	CY7C9117-65GC	G68	
	CY7C9117-65JC	J81	
	CY7C9117-65LC	L81	
79	CY7C9117-79GC	G68	
	CY7C9117-79JC	J81	
	CY7C9117-79LC	L81	
65	CY7C9117-65GMB	G68	Military
	CY7C9117-65LMB	L81	
79	CY7C9117-79GMB	G68	
	CY7C9117-79LMB	L81	
100	CY7C9117-99GMB	G68	
	CY7C9117-99LMB	L81	

[^24]Military Specifications
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
\mathbf{V}_{OH}	$1,2,3$
\mathbf{V}_{OL}	$1,2,3$
\mathbf{V}_{IH}	$1,2,3$
\mathbf{V}_{IL}	$1,2,3$
I_{IX}	$1,2,3$
\mathbf{I}_{OZ}	$1,2,3$
\mathbf{I}_{SC}	$1,2,3$
$\mathbf{I}_{\mathrm{CC}}(\mathrm{Q} 1)$	$1,2,3$
$\mathbf{I}_{\mathrm{CC}}(\mathbf{M a x})$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
I_{0-4} (Addr)	$7,8,9,10,11$
I_{0-15} (Data)	$7,8,9,10,11$
$\mathrm{I}_{0} 15(\mathrm{I} 1 \mathrm{r}:)$	$7,8,9,10,11$
DI F	$7,8,9,10,11$
t_{1-4}	$7,8,9,10,11$
CP	$7,8,9,10,11$
Y_{0-15}	$7,8,9,10,11$
$\overline{\mathrm{IEN}}$	$7,8,9,10,11$
$\overline{\mathrm{OE}}_{\mathrm{Y}}$	$7,8,9,10,11$
OE	$7,8,9,10,11$
CP	$7,8,9,10,11$

PRODUCT INFORMATION
STATIC RAMS 2
PROMS 3
EPLDS 4
LOGIC 5RISC6
BRIDGEMOS 7
QUICKPRO 0
QUALITY ANDRELIABILITYAPPLICATION BRIEFS10
PACKAGES 11SEMICONDUCTOR
RISC
Introduction to RISC 6-1
Device Number Description

CY7C601
CY7C608
32-Bit RISC Integer Unit 6-5
Floating Point Controller 6-11

Introduction to RISC

Introduction

Scalable Processor Architecture

Cypress has implemented a RISC architecture with its 7C600 family, called SPARC. SPARC stands for Scalable Processor ARChitecture, emphasizing its applicability to large as well as small machines. SPARC systems have an open computer architecture. The design specification is published, and other vendors are producing microprocessors implementing the design. We expect that the intelligent and aggressive nature of the SPARC design will make it an industry standard. Because of its simplicity, the 7C600 scales well. Consequently, 7C600 systems will get faster as better chip-making techniques are perfected.

What is RISC?

RISC, an acronym for Reduced Instruction Set Computer, is a style of computer architecture emphasizing simplicity and efficiency. RISC designs begin with a necessary and sufficient instruction set. Typically, a few simple operations account for almost all computations these operations must execute rapidly. The advantage of a RISC architecture is the inherent speed of a simple design and the ease of implementing and debugging this simple design. Currently, RISC machines are about two to five times faster than machines with comparable traditional architectures, and are easier to implement, resulting in shorter design cycles.
RISC architecture can be thought of as a delayed reaction to the evolution from assembly language to high-level languages. Assembly language programs occasionally employ elaborate machine instructions, whereas high-level language compilers generally do not. For example, Sun's C compiler uses only about 30% of the available Motorola 68020 instructions. Studies show that approximately 80% of the computations for a typical program requires only about 20% of a processor's instruction set.
RISC is to hardware what the UNIX operating system is to software. The UNIX system proves that operating systems can be both simple and useful. Hardware studies suggest the same conclusion. As technology reduces the cost of processing and memory, overly complex instruction sets become a performance liability. The designers of RISC machines strive for hardware simplicity, with close cooperation between machine architecture and compiler design. At each step, computer architects must ask: to what extent
does a feature improve or degrade performance and is it worth the cost of implementation? Each additional feature, no matter how useful it is in an isolated instance, makes all others perform more slowly by its mere presence.
The goal of RISC architecture is to maximize the effective speed of a design by performing infrequent functions in software, including in hardware only features that yield a net performance gain. Performance gains are measured by conducting detailed studies of large high-level language programs. RISC improves performance by providing the building blocks from which high-level functions can be synthesized without the overhead of general but complex instructions.
Portability is the real key to the commercial success of UNIX, and the same is true for RISC architectures. RISC architectures are more portable than traditional architectures because they are easier to implement, thus permitting the rapid integration of new technologies as they become available. Users benefit because architectural portability allows more rapid improvements in the price/performance of computing.

RISC Architecture

The following characteristics are typical of RISC architectures, including the 7C600 design:
Single-cycle execution. Most instructions are executed in a single machine cycle.
Hardwired control with little or no microcode. Microcode adds a level of complexity and raises the number of cycles per instruction.
Load/Store, register-to-register design. All computational instructions involve registers. Memory accesses are made with only load and store instructions.
Simple fixed-format instructions with few addressing modes. All instructions are the same length (typically 32 bits) and have just a few ways to address memory.
Pipelining. The instruction set design allows for the processing of several instructions at the same time.
High-performance memory. RISC machines have at least 32 general-purpose registers (the 7C601 has 136) and large cache memories.

[^25]Migration of functions to software. Only those features that measurably improve performance are implemented in hardware. Software contains sequences of simple instructions for executing complex functions rather than complex instructions themselves, which improves system efficiency.
More concurrency is visible to software. For example, branches take effect after execution of the following instruction, permitting a fetch of the next instruction during execution of the current instruction.
The real keys to enhanced performance are single-cycle execution and keeping the cycle time as short as possible. Many characteristics of RISC architectures, such as load/ store and register-to-register design, facilitate single-cycle execution. Simple fixed-format instructions, on the other hand, permit shorter cycles by reducing decoding time.
Note that some of these features, particularly pipelining and high-performance memories, have been used in supercomputer designs for many years. The difference is that in RISC architectures these ideas are integrated into a processor with a simple instruction set and no microcode.
Moving functionality from run time to compile time also enhances performance functions calculated at compile time do not require further calculating each time the program runs. Furthermore, optimizing compilers can rearrange pipelined instruction sequences and arrange register-to-register operations to reuse computational results.
A new set of simplified design criteria has emerged:
Instructions should be simple unless there is a good reason for complexity. To be worthwhile, a new instruction that increases cycle time by 10% must reduce the total number of cycles executed by at least 10%.
Microcode is generally no faster than sequences of hardwired instructions. Moving software into microcode does not make it better, it just makes it harder to modify.
Fixed-format instructions and pipelined execution are more important than program size. As memory gets cheaper and faster, the space/time tradeoff resolves in favor of time. Reducing space no longer decreases time.
Compiler technology should simplify instructions, rather than generate more complex instructions. Instead of substituting a complicated microcoded instruction for several simple instructions, which compilers did in the 1970s, optimizing compilers can form sequences of simple, fast instructions out of complex high-level code. Operands can be kept in registers to increase speed even further.
The term RISC was coined as part of David Patterson's 1980 course in microprocessor design at the University of California at Berkeley. The RISC-I chip design was completed in 1982, and the RISC-II chip design was completed in 1984.

RISC's Speed Advantage

Using any given benchmark, the performance, \mathbf{P}, of a particular computer is inversely proportional to the product of the benchmark's instruction count, I, the average number of clock cycles per instruction, C, and the inverse of the clock speed, S: Let's assume that a RISC machine runs at the same clock speed as a corresponding traditional machine; S is identical. The number of clock cycles per instruction, I , is around 1.3 to 1.7 for RISC machines, but between 4 and 10 for traditional machines. This would
make the instruction execution rate of RISC machines about 3 to 6 times faster than traditional machines. But, because traditional machines have more powerful instructions, RISC machines must execute more instructions for the same program, typically about 20% to 40% more. Since RISC machines execute 20% to 40% more instructions 3 to 6 times more quickly, they are about 2 to 5 times faster than traditional machines for executing typical large programs.

$$
\mathbf{P}=\frac{1}{\mathrm{I} \times \mathrm{C} \times \frac{1}{\mathrm{~S}}}
$$

Compiled programs on RISC machines are larger than compiled programs on traditional machines, partly because several simple instructions replace one complex instruction and partly because of decreased code density. All RISC instructions are 32 bits wide, whereas some instructions on traditional machines are narrower. But the number of instructions actually executed may not be as great as the increased program size would indicate. Global registers, for example, often simplify call/return sequences so that context switches become less expensive.

7C600 Architecture

The SPARC CPU is composed of an 7C601 Integer Unit (IU) that performs basic processing and a 7C608 FloatingPoint Controller (FPC) interface to a standard floating point unit that performs floating-point calculations. Although not a formal part of the architecture, 7C600-based computers typically have a memory management unit (MMU), a large virtual-address cache for instructions and data, and are organized around a 32-bit data and instruction bus.
The integer and floating-point units operate concurrently. The FPU performs floating-point calculations with a set number of floating-point arithmetic units. The 7C600 architecture also specifies an interface for the connection of an additional coprocessor.

Instruction Categories

The 7C600 architecture has about 50 integer instructions, a few more than earlier RISC designs, but less than half the number of Motorola 68000 integer instructions. 7C600 instructions fall into five basic categories:
Load and store instructions (the only way to access memory). These instructions use two registers or a register and a constant to calculate the memory address involved. Halfword accesses must be aligned on 2-byte boundaries, word accesses on 4-byte boundaries, and double-word accesses on 8-byte boundaries. These alignment restrictions greatly speed up memory access.
Arithmetic/logical/shift instructions. These instructions compute a result that is a function of two source operands and then place the result in a register. They perform arithmetic, tagged arithmetic, logical, or shift operations. Tagged instructions are useful for implementing artificial intelligence languages such as LISP, because tags provide interpreters with the type of arithmetic operands.
Coprocessor operations. These include floating-point calculations, operations on floating-point registers, and instructions involving the optional coprocessor. Floating-
point operations execute concurrently with IU instructions and with other floating-point operations when necessary. This architectural concurrency hides floating-point operations from the applications programmer.
Control-transfer instructions. These include jumps, calls, traps, and branches. Control transfers are usually delayed until after execution of the next instruction, so that the pipeline is not emptied every time a control transfer occurs. Thus, compilers can be optimized for delayed branching.
Read/write control register instructions. These include instructions to read and write the contents of various control registers. Generally the source or destination is implied by the instruction.

Register Windows

A unique feature contributing to the high performance of the 7 C 600 design is its overlapping register windows. Results left in registers become operands for the next operation, obviating the need for extra load and store instructions.
According to the architectural specification, there may be anywhere between 6 and 32 register windows, each window having 24 working registers, plus 8 global registers. The first implementation has 8 register windows with 24 registers each (but count only 16 since 8 overlap), plus 8 global registers, for a total of 136 registers. Recent research suggests that register windows and tagged arithmetic, found in 7C600 systems but not in other commercial RISC machines, are sufficient to provide excellent performance for expert system development requiring AI languages such as Lisp and Smalltalk.

Traps and Exceptions

The 7C600 design supports a full set of traps and interrupts. They are handled by a table that supports 128 hardware and 128 software traps. Even though floating-point instructions can execute concurrently with integer instructions, floating-point traps are precise because the FPU supplies (from a table) the address of the instruction that failed.

Memory Protection

Some 7C600 instructions are privileged and can only be executed while the processor is in supervisor mode. This instruction execution protection ensures that user programs cannot accidentally alter the state of the machine with respect to its peripherals and vice versa.
The 7C600 design also provides memory protection, which is essential for smooth multitasking operation. Memory protection makes it impossible for user programs that have run amok to trash the system, other user programs, or themselves.

An Open Architecture

Advantages of Open Architecture

The 7C600 design is the first open RISC architecture, and one of the few open CPU architectures. Standard products are more beneficial than proprietary ones, because standards allow users to acquire the most cost-effective hardware and software in a competitive multi-vendor marketplace. Integrated circuits would come from Semiconductor
vendors, while software would be supplied by systems vendors. This advantage is lost when users are limited by a processor with proprietary hardware and software.
RISC architectures, and the 7C600 design in particular, are easy to implement because they are relatively simple. Since they have short design cycles, RISC machines can absorb new technologies almost immediately, unlike more complicated computer architectures.
7C600 systems were designed to support:
the C programming language and the UNIX operating system,
numerical applications (using FORTRAN), and
artificial intelligence and expert system applications using Lisp and Prolog.
Supporting C is relatively easy; most modern hardware architectures are able to do so. The one essential feature is byte addressability. However, numerical applications require fast floating point and artificial intelligence applications require large address spaces and interchangeability of data types.
The floating-point processor, with pipelined floating-point operation capabilities, achieves the high performance needed for numerical applications. Floating-point coprocessors are generally not part of RISC machines, but they are available for microprocessors such as the Motorola 68020 and the Intel 80386, and for 7C600 systems as well.
For artificial intelligence and expert system applications, 7C600 systems offer tagged instructions and word alignment. Because languages such as Lisp and Prolog are often interpreted, word alignment makes it easier for interpreters to manipulate and interchange integers and different types of pointers. In the tagged instructions, the two low-order bits of an operand specify the type of operand. If an operand is an integer, most of the time it is added to (or subtracted from) a register. If an operand is a pointer, most of the time a memory reference is involved. Language interpreters can leave operands in the appropriate registers, greatly improving the performance of exploratory programming environments.
The 7C600 architecture does not specify a memory management unit (MMU) because we expect the same processor to be used in different types of machines. For example, a single-user machine with embedded applications does not need an MMU. By contrast, a multitasking machine used for timesharing, such as a traditional UNIX box, needs a paging MMU and such a device, the 7C603, is provided as a part of the 7C600 family. Furthermore, a multiprocessor such as a vector machine or hypercube requires specialized memory management facilities. The 7C600 architecture can be implemented with a different MMU configuration for each of these purposes, without affecting user programs.

Speed Advantage of 7C600 Systems

The performance of a processor is inversely proportional to the product of a benchmark's instruction count, I, the average clock cycle per instruction, C , and the inverse of the clock speed, S: Working this equation for 7C600 systems and for two popular microprocessors, we come up with these numbers (P indicates millions of instructions per second, MIPS).

Processor Performance				
CPU	I	C	S	P
Motorola 68030	1.0	5.2	16.67	3.21
Intel 80386	1.1	4.4	16.67	3.44
$7 \mathrm{C600}$	1.2	1.3	16.67	10.69

Thus, 7C600 systems have a considerable theoretical performance advantage over other microprocessors on the market. The table compares three processors running at the same clock speed; higher clock speeds are possible with all three processors.

7C600 Machines and Other RISC Machines

The 7C600 design has more similarities to Berkeley's RISC-II architecture than to any other RISC architecture. Like the RISC-II architecture, it uses register windows in order to reduce the number of load/store instructions. The 7C600 architecture allows 32 register windows, but the initial implementation has 8 windows. The tagged instructions are derived from SOAR, the "Smalltalk On A RISC"
processor developed at Berkeley after implementing RISC-II.

7C600 systems are designed for optimal floating-point performance, and support single-, double-, and extended-precision operands and operations, as specified by the ANSI/IEEE 754 floating-point standard. High floatingpoint performance results from concurrency of the IU and FPU. The integer unit loads and stores floating-point operands, while the floating-point unit performs calculations. If an error (such as a floating-point exception) occurs, the floating-point unit specifies precisely where the trap took place; execution is expediently resumed at the discretion of the integer unit. Furthermore, the floating-point unit has an internal instruction queue; it can operate while the integer unit is processing unrelated functions.
7C600 systems deliver very high levels of performance. The flexibility of the architecture makes future systems capable of delivering performance many times greater than the performance of the initial implementation. Moreover, the openness of the architecture makes it possible to absorb technological advances almost as soon as they occur.

Features

- Reduced instruction set computer (RISC) architecture
- Simple format instructions
- Most instructions execute in single cycle
- Very high performance
- 30 ns instruction cycle with 4 stage pipeline
- 25 million instructions per second (MIPS)
- 20 equivalent VAX MIPS
- Large windowed register file
- 136 general purpose 32-bit registers
- 8 overlapping windows of 24 registers each
- All pipeline interlocks implemented in hardware
- Large virtual address space
- 32-bit virtual address bus
- 8-bit address space identifier
- Multitasking support
- User/supervisor modes
- Privileged instructions
- Parallel processing support
- Artificial intelligence support
- High performance coprocessor interface
- Concurrent execution of floating point instructions
- 0.8 micron 2-layer metal CMOS technology
- 207 pin grid array package
- Power less than two watts

Overview

The CY7C601 Integer Unit is a high speed CMOS implementation of the new SPARC 32-bit RISC architecture microprocessor. This architecture makes possible the implementation of a microprocessor which can execute instructions for high level language programs at rates approaching one instruction per processor clock. The CY7C601 supports a tightly-coupled floating point coprocessor and a second imple-mentation-definable coprocessor. The CY7C601 SPARC processor provides the following features:
Simple Instructions-Most instructions require only a single arithmetic operation.

Block Diagrams

Selection Guide

		7C601-25	7C601-33
Clock Frequency (MHz)	25	33	
Maximum Operating Current (mA)	Commercial	TBD	600
	Military	TBD	

SPARCTM and SunOSTM are trademarks of Sun Microsystems, Inc.
VAX ${ }^{\oplus}$ is a registered trademark of Digital Equipment Corporation.
Unix ${ }^{\circledR}$ is a registered trademark of AT\&T.

Overview (Continued)

Simple Instruction Format-All instructions are 32 bits wide and are aligned on 32 -bit boundaries in memory. There are only three basic instruction formats which feature uniform placement of opcode and address fields.
Register-Intensive Architecture-Most instructions operate on either two registers or one register and a constant, and place the result in a third register. Only load and store instructions access off chip memory.
A Large "Windowed" Register File-The processor has on chip a large number of 32 -bit registers configured as 8 overlapping sets of 24 registers each. This scheme allows compilers to cache local values across subroutine calls, and provides a register-based parameter passing mechanism.
Delayed Control Transfer-The processor always fetches the next instruction after a control transfer, and either executes it or annuls it depending on the state of a bit in the control transfer instruction. This feature allows compilers to rearrange code to place a useful instruction after a delayed control transfer and thereby take better advantage of the processor's pipeline.
One Cycle Execution-The processor is capable of fetching instructions at a rate of one per processor cycle. This allows most instructions other than load/store and floating point instructions, to execute in one cycle.
Concurrent Floating Point-Floating point instructions can execute concurrently with each other and with nonfloating point instructions.
Fast Interrupt Response-Interrupt inputs are sampled every cycle and can be acknowledged in one to three cycles. The first instruction of an interrupt service routine can be executed within 6 to 8 cycles of receiving the interrupt request.

The 7C600 Family

The SPARC processor family consists of a CY7C601 Integer Unit (IU) to perform all non-floating point operations and a CY7C608 Floating Point Controller (FPC) which interfaces to a standard floating point unit to perform floating point arithmetic concurrent with the IU. Support is also provided for a second generic coprocessor interface. The IU communicates with external memory via a 32-bit address bus and a 32-bit data/instruction bus. In typical data processing applications, the IU and FPC are combined with a high performance CY7C603 Memory Management Unit and a cache memory implemented with CY7C152 Cache RAMs and the CY7C181 Cache Tag RAM. In many dedicated controller applications the IU can function by itself with high speed local memory.

Coprocessor Interface

The IU is the basic processing engine which executes all of the instruction set except for floating point operations. The FPC and IU operate concurrently. The FPC recognizes floating point instructions and places them in a queue while the IU continues to execute non-floating point instructions. If the FPC encounters an instruction which will not fit in its queue, the FPC holds the IU until the instruction can be stored. The FPC contains its own set of registers on which it operates. The contents of these registers are transferred to and from external memory under control
of the IU via floating point load/store instructions. Processor interlock hardware hides floating point concurrency from the compiler or assembly language programmer. A program containing floating point computations generates the same results as if instructions were executed sequentially.

Registers

The CY7C601 Integer Unit contains a large 136 X 32 register file which is divided into 8 windows, each with twen-ty-four 32 -bit working registers, and each having access to the same eight 32 -bit global registers. A current window pointer (CWP) field in the processor state register (PSR) keeps track of which window is currently active.
The current window pointer is decremented when the processor executes a call to a subroutine and is incremented when the processor returns.

Previous Window	Active Window	
$\begin{array}{cc} r(31) \\ \vdots \\ r(24) & \\ & \\ \hline N S \end{array}$		
$\begin{aligned} & r(23) \\ & : \text { LOCALS } \\ & r(16) \end{aligned}$		
$\left[\begin{array}{cc} \mathrm{r}(15) & \\ \vdots \\ \mathrm{r}(8) & \\ \hline \end{array}\right.$	$\begin{array}{ll} \hline r(31) & \\ \vdots & \text { INS } \\ r(24) & \\ \hline \end{array}$	
	$\begin{aligned} & r(23) \\ & : \\ & r(16) \end{aligned}$	Next Window
	$\begin{array}{cc} r(15) & \\ \vdots & \text { OUTS } \\ r(8) & \\ \hline \end{array}$	$\begin{array}{cc} r(31) & \\ \vdots \\ r(24) & \text { INS } \\ \hline \end{array}$
		$\begin{aligned} & r(23) \\ & \vdots(16) \\ & r(O C A L S \end{aligned}$
		$\begin{array}{ll} r(15) \\ \vdots \\ r(8) \end{array} \text { OUTS }$
	```r(7)```	

0129-3
The registers in each window are divided into ins, outs, and locals. The eight global registers are shared by all windows and appear as registers $0-7$ in each window. Registers 8-15 serve as outs, registers 16-23 as locals, and 24-36 as ins. Each window shares its ins and outs with adjacent windows. The outs of a previous window are the ins of the current window, and the outs of the current window are the ins of the next window. The globals are equally available to all windows and the locals are unique to each window. The windows are joined together in a circular stack where the outs of window 7 are the ins of register 0 .

## Multitasking Support

The CY7C601 supports a multitasking operating system by providing user and supervisor modes. Some instructions are privileged and can only be executed while the processor is in supervisor mode. Changing from user to supervisor mode requires taking a hardware interrupt or executing a trap instruction.

## Interrupts and Traps

The CY7C601 supports both asynchronous traps (interrupts) and synchronous traps (error conditions and trap instructions). Traps transfer control to an offset within a table (vectored traps). The base address is specified by a Trap Base Register and the offset is a function of the type of trap. Traps are taken before an instruction causes any changes visible to ihe programmer and therefore can be considered to occur "between" instructions.

## Pin Summary

Memory Interface Signals
A(0-31) Address Bus
ASI(0-7) Address Space Identifier
D(0-31) Data Bus
MEXC Memory Exception Input
MHOLDA/B Hold from Memory
BHOLD Hold from I/O System
AOE Address Bus Output Enable
DOE Data Bus Output Enable
MDS Memory Data Input Strobe during Hold
MAO Previous Memory Address Output Select
IFT Instruction Cache Flush Trap
SIZE Data Bus Transfer Size
RD Read Cycle
WE Write Cycle
WRT Advanced Write Signal
LDST Load/Store Cycle
I NULL Null Cycle
LOCK Bus Lock Request
DXFER Data Fetch Cycle
VSSO Output Driver GND
VCCO Output Driver Power
VSSI Main GND
VCCI Main Power
VSST Input Circuit GND
VCCT Input Circuit Power
Miscellaneous I/O Signals
IRL(0-3) Interrupt Request Level
INTAK Interrupt Acknowledge
ERROR Processor in Error State
RESET Processor Reset Input
CLK Input Clock
Floating Point/Coprocessor Interface Signals
FP/CP Unit is Present
FCC/CCC(0-1) Condition Codes Input
FCCV/CCCV Condition Codes Valid
FHOLD/CHOLD Hold Input
FEXC/CEXC Exception Input
FXACK/CXACK Exception Acknowledge
FINS/CINS(1-2) Floating Point/Coprocessor Instruction
INST Instruction Fetch Cycle
FLUSH Flush Floating Point/Coprocessor Instruction

## Instruction Set Summary

Instructions fall into five basic categories:

1. Load and Store Instructions-Load and store instructions are the only instructions which access external memory. They use two IU registers or an IU register and a signed immediate value to generate the memory address. The instructions destination field specifies either an Integer Unit register, a Floating Point Unit register or a coprocessor register as the destination for a load or the source for a store. Integer load and store instructions support $8,16,32$, and 64 bit accesses while floating point and coprocessor instructions support 32- and 64-bit accesses.

Load/Store Signed Byte
Load/Store Signed Halfword
Load/Store Unsigned Byte
Load/Store Unsigned Halfwood
Load/Store Word
Load/Store Double Word
Load/Store Floating Point/Coprocessor Registers
Load/Store Double Floating Point/Coprocessor
Load/Store Floating Point/Coprocessor State Register
Store Double Floating Point/Coprocessor Queue
2. Arithmetic/Logical/Shift-These instructions all compute a result that is a function of two source operands and write the result into a destination register or discard it. They perform arithmetic, tagged arithmetic, logical and shift operations. One instruction, useful in creating a 32-bit constant in two instructions, writes a 22-bit constant into the high order bits of a register and zeroes the remaining bits. The contents of any register can be shifted left or right a distance specified either by the instruction itself or by another register. The tagged arithmetic instructions are useful in artificial intelligence applications.

Add (w/wo modifying condition codes)
Add with Carry (w/wo modifying condition codes)
Tagged Add (w/wo trap on overflow)
Subtract ( $w /$ wo modifying condition codes)
Subtract with Carry (w/wo modifying condition codes)
Tagged Subtract (w/wo trap on overflow)
Multiply Step and modify condition codes
And (w/wo modifying condition codes)
And Not (w/wo modifying condition codes)
Or (w/wo modifying condition codes)
Or Not (w/wo modifying condition codes)
Exclusive-Or (w/wo modifying condition codes)
Exclusive-Nor (w/wo modifying condition codes)
Shift Left Logical
Shift Right Logical
Shift Right Arithmetic
Set High 22 Bits of Register
3. Control Transfer-Control transfer instructions include jumps, calls, traps and branches. Control transfer is usually delayed so that the instruction immediately following the control transfer (called the delay instruction) is executed before control is transferred to the target location. The delay instruction is always fetched, however a bit in the control transfer instruction can cause the delay instruction to
be nullified if the branch is not taken. This flexibility increases the likelihood that a useful instruction can be placed after a control transfer instruction thereby filling an otherwise unused hole in the processor's pipeline. Branch and call instructions use program counter relative displacements. A jump and link instruction uses a register indirect displacement: it computes its target address as either the sum of two registers, or the sum of a register and a 13-bit signed immediate value. The branch instruction provides a displacement of plus or minus 8 megabytes, and the call instructions 30-bit displacement allows transfer to any address.

```
Decrement Current Window Pointer
Increment Current Window Pointer
Branch or Integer Condition Codes
Branch on Floating Point/Coprocessor Condition
Codes
Call
Jump and Link
Return from Trap
Trap on Integer Condition Codes
```

4. Read/Write Control Registers-The processor provides instructions to read and write the contents of the various control registers including:

Read/Write Multiply Step Register
Read/Write Processor State Register
Read/Write Window Invalid Mask Register
Read/Write Trap Base Register
Flush Instruction Cache
5. Floating Point/Coprocessor Instructions-These instructions include all floating point calculations and future
coprocessor instructions and involve register to register operations between registers on board the Floating Point Controller or coprocessor.

Convert Integer to Single/Double/Extended Precision Convert Single/Double/Extended Precision to Integer ( $\mathrm{w} / \mathrm{wo}$ rounding)
Convert Single Precision to Double/Extended Precision
Convert Double Precision to Single/Extended
Precision
Move/Negate/Absolute Value
Square Root Single/Double/Extended
Add Single/Double/Extended
Subtract Single/Double/Extended
Multiply Single/Double/Extended
Divide Single/Double/Extended
Compare Single/Double/Extended
(w/wo exception if unordered)

## Development Support

Compilers for the C, Pascal, and Fortran 77 languages run on both the 68020-based Sun-3 and SPARC-based Sun-4 workstations from Sun Microsystems, Inc. Both workstation families include the SunOSTM operating system with its full complement of Unix ${ }^{\circledR}$ software development utilities. These utilities include well-known programs for text editing, source code checking, source code debugging, performance analysis, document formatting, software project management, and compiler generation. In addition, the SPARC-based Sun-4 systems can serve as a machine-codecompatible execution vehicle to verify the correctness and performance of CY7C601 code.

Pin Name	Pin Number	Pin Name	Pin Number	Pin Name	$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$		
A0	K2	D23	J17	CINS2	C17		
A1	K1	D24	H17	CXACK	C13		
A2	L3	D25	H15	IRLO	A10		
A3	L1	D26	G17	IRL1	C11		
A4	L2	D27	H16	IRL2	D10		
A5	M2	D28	G16	IRL3	B12		
A6	N2	D29	F16	INTACK	A13		
A7	M1	D30	F15	RESET	A9		
A8	M3	D31	G15	ERROR	B15		
${ }_{\text {A }}{ }^{\text {a }} 10$	P1	ASI0	F3	TOE	C15		
A10	P2	ASI1	F2	FP SYN	C12		
A11	N1 N3	ASI2	G3	CLK	K3		
A12	N3 R3	ASI3 ASI4	G2	VSSO	B16	F17	R5
A14	R2	ASI4 ASI5	G1 H 2		B17	H4	R14
A15	R4	ASI6	H2 H 1		C3	J2	T16
A16	T4	ASI7	${ }^{\text {J1 }}$		C4	K14	T17
A17	T5	SIZE0	E2		D6	N14	U16
A18	R6	SIZE1	D2		D14	P4	U17
A19	U5	$\overline{\text { MEXC }}$	D8		F4	P11	
A21	U6	MHOLDA	C8		F14	P14	
A22	U7	MHOLDB	B8	VCCO	A15	L4	
A23	T7	BHOLD	A7 P3		A16	M14	
A24	U8	AOE	P3 N17		A17	N4	
A25	T8	DOE	${ }_{\text {N }} \mathrm{C} 27$		D1	P8	
A26	U9	COE	C2		D12	P12	
A27 A28 A	R88 T9	MDS MAO	B7 E3		D17	P16	
A288 A29	T9 R9	$\frac{\text { MAO }}{\text { IFT }}$	$\begin{aligned} & \text { E3 } \\ & \text { C14 } \end{aligned}$		E1	P17	
$\begin{aligned} & \text { A30 } \\ & \text { A } \end{aligned}$	T10 U11	$\frac{\mathrm{RD}}{\mathrm{WE}}$	A4		K4	R17	
D0	R10	LDSTO	C5	VSSI	A3	J3	U2
D1	T11	INULL	B5		A14	L14	U10
D2	U12	LOCK	D4		B2	M4	
D3	T12	DXFER WRT	E4		B3	P5	
D4	U13				B9	P7	
D5	T13	$\overline{\mathrm{FP}}$	C7		C1	R1	
D6	T14	FCC0	A11		C16	R11	
D7	R13	FCC1	B11		D13	T1	
D8	U14	FCCV	C10		E15	T15	
D9	U15	FHOLD	A8		H14	U1	
D10	R15 P15	$\overline{\mathrm{FEXC}}$	A5	VCCI	A2	R7	
D12	N15	CCC0	A12		B1	R12	
D13	M15	CCC1	B13		D7	T2	
D14	M16	CCCV	B10		E14	T3	
D15	N16	CHOLD	C9		E16	U3	
D16	L15	CEXC	A6		G14	U4	
D17	M17	INST	C6		${ }_{\text {H15 }}$		
D18 D19	L16	FLUSH	B14		P10		
D20	K16	FINS1	E17 D16	Vsst	D9	J14	
D21	K17	FXACK	D11		J4	P9	
D22	J16	CINS1	D15	VCCT	D5	P13	



## Ordering Information

Clock   Frequency   $(\mathbf{M H z})$	Ordering Code	Package   Type	Operating   Range
25	CY7C601-25GC	G208	Commercial
33	CY7C601-33GC	G208	
25	CY7C601-25GMB	G208	Military

## Features

- Interfaces TI74ACT8847 to CY7C601
- Provides concurrent coprocessor interface
- Very high performance
- 30 ns instruction cycle with 4 stage pipeline
- Supports 4 megaflops double precision performance (Linpack)
- 32 32-bit registers
- Organized 16 by 64 bits
- Dual port access
- All pipeline interlocks implemented in hardware
- Artificial intelligence support
- 0.8 micron 2-layer metal CMOS technology
- 280 pin grid array package - Plastic and ceramic
- Power less than two watts


## Product Characteristics

The CY7C608 Floating-Point Controller (FPC) is a controller designed to interface the Texas Instruments (TI) 74ACT8847 Floating-Point Processor to the CY7C601 Integer Unit (IU). The two chips together will provide high performance single and double precision floating-point execution. The TI floating-point chip performs the following floating-point operations: add, subtract, multiply, divide, square root, compare, and convert. In addition to these operations, the FPC will take care of register to register move instructions, Floating-Point loads and stores, and Floating-Point State Register and Floating-Point Queue store instructions. All instructions which are unimplemented by the FPC will cause an Unimplemented FPop trap in which case the instruction should be emulated in software. The FPC design is broken down into two distinct areas: the Inte-
ger Unit (IU) and memory system interface, and the FPU chip interface.

## FPC Internal Structure

The CY7C608 FPC consists of an instruction processing control unit, an FPU instruction control unit, a register file, the Floating-Point Queue, the Floating-Point Status Register, and miscellaneous data registers. The instruction processing control unit takes commands from the IU and dispatches instructions to the FPU instruction control unit. The FPU control unit handles all instructions which require the use of the FPU datapath chip. The register file on the FPC is a dual-ported (one read port, one write port) 16 word deep by 64 -bit wide register file. A single or double precision operand can be fetched in one cycle. Thus, two cycles are required for instructions that use two operands. The Floating-Point


## Selection Guide

Generic Part   Number	ICC		fC	
	Com	Mil	Com	Mil
CY7C608-33	TBD		33	
CY7C608-25	TBD	TBD	25	25

SEMICONDUCTOR

## FPC Internal Structure (Continued)

Queue is 3 instructions deep, with each instruction having a corresponding address entry. As instructions complete their execution, they are removed from the queue, with subsequent queue entries moving toward the front of the queue. The same actions occur as instructions are read out of the queue in store queue instructions during floatingpoint exception handling. The LD__H and LD__L registers hold the data coming into the FPC from memory while the register file is being written to. The RSLT__H and RSLT_L registers hold data coming in from the TI chip until the results can be written to the register file. The $\mathrm{OP}_{\ldots} \mathrm{A}$ and $\mathrm{OP}_{\ldots} \mathrm{B}$ registers hold operands to be sent to the 8847. The ST__H and ST__L registers hold the data which is going out to memory. Please refer to the attached block diagram for an overview of the FPC datapath.

## Processing of Instructions

CY7C608 FPop instructions are single cycle instructions. Each time the IU does an instruction fetch, the FPC takes that same instruction from the data bus and stores it in its Decode buffers (D-buffers). The FPC also captures the address of the instruction off of the address bus and stores the address with the instruction in the Floating-Point Queue. When the IU has determined that the current instruction is an FP instruction (D-stage), it signals the FPC to start
execution of the instruction in the FPC's D-buffers. The IU sends the proper signal (FINS1/FINS2) so that the FPC knows which instruction to execute (D1/D2). There are two classes of instructions that the FPC must process, Floating-Point operation (FPop) and Floating-Point Load/ Store (FPLdSt) instructions. The FPLdSt instructions must be executed in the FPC at the same time the IU executes them. They never enter the Floating-Point Queue. The FPops are dispatched to the FPC by the IU and from then on, it is up to the FPC to see that they are executed. Once they have gone through the IU's pipeline, they enter the FP queue and cannot be flushed by the FLUSH signal from the IU.

## Decoding Instructions

Since the FP instruction is available in the FPC in the Dstage, it can be decoded to determine the type of FP operation, and dependency checking that can be done. Most information can be decoded when the instruction is in D1 and latched when the instruction enters D2. However, dependency checking depends on dynamic information so D1 and D2 have parallel dependency checking with the proper information selected by FINS1 or FINS2. There are two basic types of instructions that the FPC executes: FPops, which include add, subtract, multiply, divide, square root, convert, compare, register-to-register move, negate, and


PRODUCT DESCRIPTION
CY7C608
absolute value instructions; and FP load/store instructions, which include loads, stores and FSR and queue instructions.

## Register File Access

When FP instructions reach the E-stage, the addresses of the FP registers that the instruction needs to read from goes into the read address unit. For FPops, the read address specified by the rs2 or rd field of the instruction word is latched into a separate register. Floating-Point load and store instructions have priority in accessing the register file for both reads and writes, unless a dependency exists. When an FPop is finished and is ready to write its result into the register file, the register file write address is taken from the front instruction word (rd field) in the FP Queue. For FPLdSt instruction writes, the destination register address is taken from the instruction word (rd field) and latched into a register.


0131-3

## Fhold Conditions

In some situations it is necessary to stop the Integer Unit's pipeline, either because a FPLdSt instruction must be sus-pended-meaning that there is an operand dependency, or because the FPC cannot accept any more instructionsmeaning that there is a resource dependency. Fhold is used to stop the IU from going on in these cases. The following situations describe the conditions for Fhold in the operand dependency case:
LDF, LDDF-load data from memory into f-register (rd). rd must not be the same as any rs1, rs2, or rd register in previous FPops that are still executing. This is because source registers of FPops (rs1, rs2) may not be altered in case of an FP exception.
STF, STDF—store data in f-register (rd) to memory.
rd must not be the same as any rd register in previous
FPops that are still executing. (operand dependency)
LDFSR, STFSR-load/store data from/to memory into Floating-Point Status Register.
If any instructions are currently executing in the FPC when a LDFSR/STFSR instruction is issued by the IU, the FPC will hold until all instructions have completed execution and are no longer in the queue.
STDFQ-store front entry of Floating-Point Queue.
If any instructions are currently executing in the FPC (in FP execution mode) when a STDFQ instruction is issued
by the IU, the FPC will hold until all instructions have completed execution and the instruction/address pair is undefined. This does not happen if the FPC is in FP exception mode.
In the resource dependency case, if it appears that the FPC will not have any more queue entries available to accommodate any more FPops, then the FPC will assert FHOLD. This condition could occur if the queue is full, or if an FPop is waiting for register file access, waiting to chain, or a divide or square root instruction is executing.
If the FPC goes into exception mode, FHOLD is deasserted. If there is a Floating-Point sequence error, FHOLD is asserted for one cycle. This is the only case where FHOLD is asserted in exception mode.

## Performance

The Linpack inner loop has been used as a preliminary estimate of the performance of the Sunray FPC. The IU/ FPC system can execute the 10 instructions of the inner loop without any FHOLDs; thus, it takes 26 cycles to execute the inner loop. Therefore, running with a 30 ns cycle time, we spend 780 ns executing four FPOPs, giving a Linpack inner-loop performance of 5.13 MFLOPS, not counting loop overhead operations. If 5 cycles are allowed for loop overhead, then the performance is 4.30 MFLOPS .

Floating-Point Instruction Cycle Count	
Instruction	Cycles
FAAD FSUB FCMP FCMPE FMULs	8
FMOV FNEG FABS	8
FiTOy FyTOi FyTOy	8
FMULd	9
FDIVs	13
FDIVd	18
FSQRTs	15
FSQRTd	22

The table above gives the instruction cycle count for each of the types off floating-point operations. The cycle count is the number of cycles it takes the operation to execute, starting from the first operand read from the register file to the result write to the register file.
Because of pipelining and chaining, the observed cycle count for floating-point operations from a performance standpoint will be much less.

## IEEE 754 Floating-Point Compatibility and Implementation

This section describes how the CY7C608 Floating-Point Controller implements the IEEE 75 + floating-point arithmetic specification. The issue of which exceptions to implement is dependent on how the Texas Instruments
SN74ACT8847 Floating-Point Processor handles IEEE exceptions.
An exception is implemented if the TI 8847 returns the proper, non-trapping result. Thus, if the exception is enabled, the FPC traps and prevents the writing of the result into the register file. If the exception is not enabled, then the FPC should write back the correct, non-trapping result as described by the IEEE specification.
PRODUCT INFORMATION
STATIC RAMS ..... 2
PROMS ..... 3
EPLDS ..... 4
LOGIC ..... 5
RISC ..... 6BRIDGEMOS7
QUICKPRO ..... 8
QUALITY AND ..... 9
RELIABILITY
APPLICATION BRIEFS ..... 10
PACKAGES ..... 11

## Section Contents

SEMICONDUCTOR

## Page Number

BridgeMOS
BridgeMOS Overview .................................................................................................... $7-1$

Device Number	Description	
CY8C150	BridgeMOS $1024 \times 4$ Static RAM Separate I/O .	7-1
CY8C245	BridgeMOS $2048 \times 8$ Reprogrammable Registered PROM	7-1
CY8C291	BridgeMOS Reprogrammable $2048 \times 8$ PROM	7-
CY8C901	BridgeMOS 4-Bit Slice.	7
CY8C909	BridgeMOS Microprogram Sequencer	7-1
CY8C911	BridgeMOS Microprogram Sequencer .	

## BridgeMOS

## Features

- May be driven by CMOS or TTL
- Drives fully loaded TTL - Inputs switch at 1.5 V
- Can drive CMOS to full input levels
$-\mathrm{V}_{\mathrm{OL}}=\mathbf{0 . 2 V} @ \mathrm{I}_{\mathrm{OL}}=20$ $\mu \mathrm{A}$
$-\underset{-20}{\mathrm{~V}_{\mathrm{OH}}}=0.9 \mathrm{~V}_{\mathrm{CC}} @ \mathrm{I}_{\mathrm{OH}}=$
- SRAM, PROM, LOGIC
- 2.0V (VCC) Data Retention on all devices


## Overview

The BridgeMOSTM product line from Cypress Semiconductor provides an electrical bridge between CMOS and TTL or TTL and CMOS devices. BridgeMOS devices may be driven by either TTL or CMOS devices and in turn can drive either fully loaded TTL or CMOS to full input levels. As a result, any combination of TTL and/or CMOS may be interfaced to Cypress BridgeMOS products.
All devices in the BridgeMOS product line are specified at a $2.0 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{CC}}\right)$ standby mode of operation. This allows the device to be powered at 2.0 volts and maintain the integrity of the data in any volatile storage element.
The output drivers in the 7CXXX Cypress products are designed for TTL signals and pull up to 2.4 volts. For

BridgeMOS, Cypress has designed an output driver which boosts the output voltage sufficiently to drive the inputs of a device to greater than 3.85 volts, thus guaranteeing that the input converter will draw minimum power. The output drivers source 20 microamps at their rated BridgeMOS levels. They will also source and drive normal TTL loads. Therefore, they are capable of driving other non-BridgeMOS loads and normal TTL loads at the same time.
Although the TTL to CMOS input converters power down as described above, they switch at TTL levels and all timing is referenced to 1.5 volts. The device will operate at normal TTL levels with no AC performance degradation.

## CY8C150 Selection Guide

		8C150-15	8C150-25	8C150-35
Maximum Access   Time (ns)	Commercial	15	25	35
	Military		25	35
	Commercial	100	100	100

## ZY8C245 Selection Guide

Maximum Access Time (ns)		$\mathbf{8 C 2 4 5 - 3 5}$	8C245-45
Maximum Operating	35	50	
Current (mA)	Commercial	45	45
	Military	80	80

## こY8C291 Selection Guide

		8C291-35	8C291-50
Maximum Access Time (ns)		35	50
Maximum Operating   Current (mA)	Commercial	45	45
	Military	80	80

```
\[
O R \xlongequal{\square}
\]
```

CY8C901 Selection Guide

Read Modify-Write Cycle (min.) in ns	Operating ICC (max.) in mA	Operating Range	Part Number
31	26.5	Commercial	8 C901-31
32	31.0	Military	8 C901-32

CY8C909/8C911 Selection Guide

	8C909-30   8C911-30	8C909-40   8C911-40
Minimum Clock to Output Cycle Time (ns)	30	40
Maximum Operating Current (mA)	15	15

PRODUCT INFORMATION
STATIC RAMS ..... 2
PROMS ..... 3
EPLDS ..... 4
LOGIC ..... 5
RISC ..... 6
BRIDGEMOS ..... 7
QUICKPRO8
QUALITY AND ..... 9
RELIABILITY
APPLICATION BRIEFS10
PACKAGES11


## QuickPro

Device Number	Description	Page Number
CY3000	Combined PROM, PLD, and EPROM Programmer	1

## CY3000

## Features

- Combined PROM, PLD, and EPROM programmer
- Programs all Cypress CMOS PLDs and PROMs. (All future devices will also be supported)
- Reads bipolar PLDs and PROMs
- Easy to use, menu-driven software
- New device updates via floppy disk
- IBM-PC ${ }^{(8)}$ plug-in card format, external ZIF-DIP socket
- Compatible with the IBM PC family of computers and plug compatibles
- Programs 24- and 28-pin NMOS and CMOS EPROMs
- One long slot and 256 K bytes of memory required
- Designed for present and future NMOS and CMOS devices
- Optional LCC, PLCC, SOIC socket adapters


## QuickPro ${ }^{\text {TM }}$

## Description

QuickPro is a development tool for present and future CMOS PROM and PLD devices, and is used within the IBM PC and compatible environment. Older generation bipolar PLDs and PROMs required special programming voltages and current difficult to generate within the IBM PC.
QuickPro is designed for new generation of CMOS PLDs and PROMs which obsolete the older technology, and use a programming technique


## Description (Continued)

which is more compatible with low cost programming methods.
QuickPro can also program standard NMOS and CMOS EPROMs in packages up to 28 pins. And QuickPro is fast; intelligent programming is used to reduce programming time to a minimum.
QuickPro is future oriented. Each I/O pin is fully programmable, allowing the parameters and timing of each device to be handled via software. As new devices become available, they will be supported by QuickPro. Updates are managed by a simple exchange of floppy disks.
QuickPro includes a comprehensive set of commands to make programming PLDs and PROMs as easy as possible.
For PLDs, QuickPro uses the JEDEC standard data format, so present and future logic design tools such as ABELTM, CUPLTM, and PALASM ${ }^{\text {TM }}$ can be used. QuickPro avoids serial download problems from a PC to a stand-alone programmer. For PROMs, QuickPro reads PCDOS binary files for use with assemblers and compilers. And QuickPro is low cost, each workstation can have one, eliminating the inconvenience of sharing one expensive programmer. All actions are menu-driven, with complete explanations provided on-screen, in clear text. There is no need to look up manufacturer's codes in a table.

## QuickPro Commands

Program device	Write disk file
Select device type	Verify device
Edit memory	Blank check device
Display memory	Program security fuse
Read device	Fill memory
Test PLD device	Convert PLD type
Read disk file	

## Technical Information

## Size

IBM PC standard full length card. Uses port addresses 300-31F hex.
Power

$$
\begin{array}{ll}
+5 \mathrm{~V} & 1.0 \mathrm{amp} \\
+12 \mathrm{~V} & 1.0 \mathrm{amp}(\text { peak }) 0.4 \mathrm{amp} \text { average } \\
-12 \mathrm{~V} & 0.05 \mathrm{amp}
\end{array}
$$

## Socket Pod

This is the external socket for connection to the device to be programmed or read. It provides a 28 -pin $300 / 600$ mil socket for compatibility with a wide range of devices. Other adapters for leadless packages are also available. Five filter switches are located on the pod for bypass capacitors according to manufacturers' published programming specifications.

## Memory

256 K bytes of total memory is sufficient to operate QuickPro.

## Devices Supported

Cypress CMOS PROMs:
CY7C225, CY7C235, CY7C245, CY7C245A, CY7C251, CY7C254, CY7C261, CY7C263, CY7C264, CY7C268, CY7C269, CY7C271, CY7C281, CY7C282, CY7C291, CY7C291A, CY7C292, CY7C292A, CY7C293A
Cypress CMOS PLDs:
PAL16L8, PAL16R4, PAL16R6, PAL16R8, PAL22V10, PLD20G10
QuickPro can read 20 and 24 pin Bipolar PLDs, for conversion to Cypress PLDs.
EPROMs: (NMOS and CMOS)
2716, 2732, 2732A, 2764, 2764A, 27128, 27256

## Ordering Information

CY3000 QuickPro System (\$995.00) contains:
CY3001 QuickPro Board
CY3002 QuickPro Pod
CY3003 QuickPro System Disc Quick Pro Manual
Optional QuickPro Package Adaptors Include:
CY3004 (CY3006) 28 Lead Square (P)LCC:*
7C225, 7C235, 7C245, 7C261, 7C263, 7C264, 7C281, 7C282, 7C291, 7C292, PALC22V10
CY3005 (CY3007) 20 Lead Square (P)LCC:
16L8, 16R4, 16R6, 16R8
CY3008 (CY3009) 28 Lead Square (P)LCC:
7C269, 7C271, 7C330, 7C331, 7C332
CY3010 (CY3011) 28 Lead Square (P)LCC:
PLDC20G10
CY3012 (CY3013) 32 Lead Rectangular (P)LCC: 7C268
CY3014 28 Pin SOIC:
7C225, 7C235, 7C245, 7C251, 7C254, 7C261, 7C263, 7C264, 7C269, 7C271, 7C281, 7C282, 7C291, 7C292
CY3015 32 Pin SOIC:
7 C 268
CY3016 32 Pin DIP:
7C268
CY3017 (CY3018) 28 Lead Square (P)LCC:
7C251, 7C254
*Switch Settings
A = PALC22V10, B = PROMs
PRODUCT INFORMATION
STATIC RAMS ..... 2
PROMS ..... 3
EPLDS ..... 4
LOGIC ..... 5
RISC ..... 6
BRIDGEMOS ..... 7
QUICKPRO ..... 8
QUALITY AND

 RELIABILITY
APPLICATION BRIEFS ..... 10
PACKAGES ..... 11
Quality, Reliability and Process Flows ..... 9-1

## Quality, Reliability and Process Flows

## Corporate Views on Quality and Reliability

Cypress believes in product excellence. Excellence can only be defined by how the users perceive both our product quality and reliability. If you, the user, are not satisfied with every device that is shipped, then product excellence has not been achieved.
Product excellence does not occur by following the industry norms. It begins by being better than one's competitors, with better designs, processes, controls and materials. Therefore, product quality and reliability are built into every Cypress product from the start.
Some of the techniques used to insure product excellence are the following:

- Product Reliability starts at the initial design inception. It is built into every product design from the very start.
- Product Quality is built into every step of the manufacturing process through stringent inspections of incoming materials and conformance checks after critical process steps.
- Stringent inspections and reliability conformance checks are done on finished product to insure the finished product quality requirements are met.
- Field data test results are encouraged and tracked so that accelerated testing can be correlated to actual use experiences.


## Product Assurance Documents

Cypress Semiconductor uses MIL-STD-883C and MIL-M38510 F as baseline documents to determine our Test Methods, Procedures and General Specifications for semiconductors.
Customers using our Commercial grade product receive the benefit of a military patterned process flow at no additional charge.

## Product Testing Categories

Four different testing categories are offered by Cypress:

1) Commercial operating range product: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
2) Military Grade product processed to MIL-STD-883C; Military operating range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
3) SMD (Standard Military Drawing) certified product; Military operating range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, electrically tested per the applicable Military Drawing.
4) JAN qualified product; Military operating range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, electrically tested per MIL-M38510 slash sheet requirements.
Category 1 and 2 are available on all products offered by Cypress Semiconductor. Category 3 and 4 are offered on a more limited basis, dependent upon the specific part type in question.

## Commercial Product Assurance Categories

Commercial grade devices are offered with two different classes of product assurance. Every device shipped, as a minimum, meets the processing and screening requirements of level 1.
Level 1: For commercial or industrial systems where the demand for quality and reliability is high, but where field service and device replacement can be reasonably accomplished.
Level 2: For enhanced reliability applications and commercial or industrial systems where maintenance is difficult and/or expensive and reliability is paramount.
Devices are upgraded from Level 1 to Level 2 by additional testing and a burn-in to MIL-STD-883, Method 1015.
Table 1 lists the $100 \%$ screening and quality conformance testing performed by Cypress Semiconductor in order to meet the requirements of these programs.

## Military Product Assurance Categories

Only one standard product assurance category exists for JAN, SMD and Military grade products. Cypress' military grade devices are processed per MIL-STD-883C using methods 5004 and 5005 to define our screening and quality conformance procedures. The processing performed by Cypress results in a product that meets the class $\mathbf{B}$ screening requirements as called out by these methods. Every device shipped, as a minimum, meets these requirements.
JAN, SMD and Military grade devices supplied by Cypress are processed for applications where maintainance is difficult or expensive and reliability is paramount. Tables 2 through 6 list the screening and quality conformance testing that is performed in order to meet the processing requirements required by MIL-STD-883C and MIL-M38510.

Table 1. Cypress Commercial Product Screening Flows

Screen	MIL-STD-883 Method	Product Temperature Ranges			
		Commercial $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$			
		Level 1		Level 2	
		Plastic	Hermetic	Plastic	Hermetic
Visual/Mechanical   - Internal Visual   - High Temperature Storage   - Temperature Cycle   - Constant Acceleration   - Hermeticity Check: Fine/Gross Leak	2010   1008, Cond C   1010, Cond C   2001, Cond E,Y1   Orientation   1014, Cond A \& B; Fine Leak   Cond C; Gross Leak	$0.4 \% \mathrm{AQL}$   Not Performed Not Performed Does Not Apply   Does Not Apply	$\begin{gathered} 100 \% \\ 100 \% \\ \text { Not Performed } \\ \text { Not Performed } \\ \text { LTPD }=5 ; \\ 77(1,2) \\ \hline \end{gathered}$	0.4\% AQL   Not Performed Not Performed Does Not Apply Does Not Apply	$100 \%$   $100 \%$   Not Performed   Not Performed   LTPD $=5 ;$   $77(1,2)$
Burn-in   - Pre-Burn-in Electrical   - Burn-in   - Post-Burn-In Electrical   - Percent Defective Allowable (PDA)	Per Device Specification 1015   Per Device Specification	Does Not Apply Does Not Apply Does Not Apply   Does Not Apply	Does Not Apply Does Not Apply Does Not Apply Does Not Apply	$\begin{gathered} 100 \% \\ 100 \%[2] \\ 100 \% \\ 5 \%(\max )^{[1]} \end{gathered}$	$\begin{gathered} 100 \% \\ 100 \%[2] \\ 100 \% \\ 5 \%(\max )^{[1]} \end{gathered}$
Final Electrical   - Functional, Switching, Dynamic (AC) and Static (DC) Tests	Per Device Specification   1) At $25^{\circ} \mathrm{C}$ and Power Supply Extremes   2) At Hot Temperature and Power Supply Extremes	Not Performed $100 \%$	Not Performed $100 \%$	$100 \%{ }^{[1]}$   $100 \%$	$\begin{gathered} 100 \%[1] \\ 100 \% \end{gathered}$
Cypress Quality   Lot Acceptance   - External Visual   - Final Electrical Conformance   - Fine \& Gross Leak Conformance	2009   Cypress Method 17-00064   1014, Cond A \& B; Fine Leak Cond C; Gross Leak	[3] [3]   Does Not Apply	$\begin{gathered} {[3]} \\ {[3]} \\ \text { LTPD }=5 ; \\ 77(1,2) \end{gathered}$	[3]   [3]   Does Not Apply	$\begin{gathered} {[3]} \\ {[3]} \\ \text { LTPD }=5 ; \\ 77(1,2) \end{gathered}$

[^26]3) Lot acceptance testing is performed on every lot to guarantee 200 PPM average outgoing quality.

Table 2. Cypress JAN/SMD/Military Product Screening Flows

Screen	Screening Per Method 5004 of MIL-STD-883C	Product Temperature Range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
		JAN	SMD/Military Product
Visual/Mechanical   - Internal Visual   - Stabilization Bake   (No End Pt. Electricals)   - Temperature Cycling   - Constant Acceleration   - Hermeticity   -Fine Leak   -Gross Leak	Method 2010, Cond B   Method 1008, 24 Hrs   Cond C, Minimum   Method 1010, Cond C   Method 2001, Cond E (Min),   Y1 Orientation Only   Method 1014, Cond A \& B   Method 1014, Cond C	$\begin{aligned} & 100 \% \\ & 100 \% \\ & 100 \% \\ & 100 \% \\ & 100 \% \\ & 100 \% \end{aligned}$	$\begin{aligned} & 100 \% \\ & 100 \% \\ & 100 \% \\ & 100 \% \\ & 100 \% \\ & 100 \% \end{aligned}$
Burn-in   - Initial (Pre-Burn-in)   Electrical Parameters   - Burn-in Test   - Interim (Post-Burn-in) Electrical Parameters, Percent Defective Allowable (PDA)	Per Applicable Device Specification   Method 1015, 160 Hrs at $125^{\circ} \mathrm{C}$ Min or 80 hours at $150^{\circ} \mathrm{C}$   Per Applicable Device Specification Maximum PDA, for All Lots, 5\%	$\begin{aligned} & 100 \% \\ & 100 \% \\ & 100 \% \end{aligned}$	$\begin{aligned} & 100 \% \\ & 100 \% \\ & 100 \% \end{aligned}$
Final Electrical Tests   - Static Tests   - Dynamic and Switching Tests   - Functional Tests	Method 5005, Table 1, Subgroups 1, 2 and 3   Method 5005, Table 1,   Subgroups 4, 5, 6, 9 , 10 and 11   Method 5005, Table 1,   Subgroups 7 and 8	$100 \%$ Test to Slash Sheet   $100 \%$ Test to Slash Sheet   100\% Test to Slash Sheet	$100 \%$ Test to   Applicable Device Specification $100 \%$ Test to Applicable Device Specification $100 \%$ Test to Applicable Device Specification
Quality Conformance Tests   - Group A   - Group B   - Group C   - Group D	Method 5005, See Table 3-6 for Details	Sample   Sample   Sample   Sample	Sample   Sample   Sample   Sample

## Table 3. Group A Test Descriptions

Cypress uses an LTPD sampling plan that was developed by the Military to assure product quality. Testing is performed to the subgroups found to be appropriate for the particular device type. All Military products have a Group A sample test performed as outlined by the particular screen flow.

Subgroup	Description	LTPD	Sample Size/   Accept No.
1	Static Tests at $25^{\circ} \mathrm{C}$	2	$195 / 1$
2	Static Tests at Maximum   Rated Operating Temperature	3	$129 / 1$
3	Static Tests at Minimum   Rated Operating Temperature	5	$77 / 1$
4	Dynamic Tests at 25 ${ }^{\circ}$ C	2	$195 / 1$
5	Dynamic Tests at Maximum   Rated Operating Temperature	3	$129 / 1$
6	Dynamic Tests at Minimum   Rated Operating Temperature	5	$77 / 1$
7	Functional Tests at 25 ${ }^{\circ} \mathrm{C}$	2	$195 / 1$
8	Functional Tests at Minimum   and Maximum Temperatures	5	$77 / 1$
9	Switching Tests at 25 ${ }^{\circ} \mathrm{C}$	2	$195 / 1$
10	Switching Tests at   Maximum Temperature	3	$129 / 1$
11	Switching Tests at   Minimum Temperature	5	$77 / 1$

Table 4. Group B Quality Tests

Subgroup	Description	Quantity/Accept \#   or LTPD
1	Physical Dimensions,   Method 2016	$2 / 0$
2	Resistance to Solvents,   Method 2015	$4 / 0$
3	Solderability, Method 2003	10
4	Internal Visual/Mechanical,   Method 2014	$1 / 0$
5	Bond Strength, Method 2011	15
6	Internal Water Vapor, [2]   Method 1018	$3 / 0$ or 5/1
7	Seal: Fine \& Gross Leak, [1]   Method 1014	5
8	ESD Characteristics, [3]   Method 3015	$15 / 0$

## Notes:

1) Fine and Gross Leak is not performed because a $100 \%$ screen is employed.
2) Test is only performed if a package contains a dessicant.
3) Test is performed only at qualification and upon redesign.

Group B testing is performed for each inspection lot. An inspection lot is defined as a group of material of the same device type, package type and lead finish built within a six week seal period and submitted to Group B testing at the same time.

Table 5. Group C Quality Tests

Subgroup	Description	LTPD
1	Steady State Life Test, End   Point Electricals, Method 1005	5
2	Temp Cycle, Constant   Acceleration Seal: Fine \& Gross   Leaks, Visual Examination, End   Point Electricals Methods 1010,   2001, 1014	15

Group C tests for JAN product are performed on one device type from one inspection lot representing each technology. Sample tests are performed per MIL-M-38510 from each three months production of devices, which is based upon the lot inspection identification (or date) codes.
Group C tests for SMD and Military products are performed on one device type from one inspection lot representing each technology. Sample tests are performed per MIL-STD-883 from each twelve months production of devices, which is based upon the lot inspection identification (or date) codes.
End-point electrical tests and parameters are performed per detailed device specification.

Table 6. Group D Quality Tests (Package Related)

Subgroup	Description	Quantity/Accept \#   or LTPD
1	Physical Dimensions, Method   2016	15
2	     1014	15
3	Thermal Shock, Temp   Cycling, Moisture Resistance,   Seal: Fine \& Gross Leak,   Visual Examination, End-   Point Electricals, Methods   1011, 1010, 1004 \& 1014	15
4	Mechanical Shock, Vibration -   Variable Frequency, Constant      Gross Leak, Visual   Examination, End-Point   Electricals, Methods 2002,   2007,2001 \& 1014	15
5	  Gross Leak, Visual Exam-   ination, Methods 1009 \& 1014	15
6	Internal Water-Vapor   Content; 500 ppm maximum   $@ ~ 100^{\circ}$ C. Method 1018	$3 / 0$ or 5/1
7	Adhesion of Lead Finish, [4]   Method 2025	(15
8	Lid Torque, Method 2024[5]	$5 / 0$

Notes:
4) Does not apply to leadless chip carriers.
5) Applies only to packages with glass seals.

## Military Product

- Product processed per MIL-STD-883C, method 5004 product test flows
- Military grade devices electrically tested to Cypress datasheet specifications
- SMD (Standard Military Drawing) devices electrically tested to military drawing specifications


## OR

- JAN devices electrically tested to slash sheet specifications
- All devices supplied in Hermetic packages
- Quality conformance assured: Method 5005, Groups A, $B, C$ and $D$ performed as part of the standard process flow
- Burn-in performed on all devices
- Cypress detailed circuit specification for non-JAN devices

OR

- Slash sheet requirements for JAN products
- AC, DC, Functionally and Dynamically tested at $25^{\circ} \mathrm{C}$ as well as temperature and power supply extremes on $100 \%$ of the product in every lot
- JAN product manufactured in a DESC certified facility

Ordering Information
JAN Product:

- Order per Military document
- Marked per Military document
Ex: JM38510/28901BVA


## SMD Product:

- Order per Military document
- Marked per Military document

$$
\text { Ex: } 5962-8684601 \mathrm{EA}
$$

Military Grade Product:

- Order per Cypress standard Military part number
- Marked the same as ordered part number

Ex: CY7C122-25DMB

Product Quality Assurance Flow		
AREA	PROCESS	PROCESS DETAILS
QC	INCOMING MATERIALS INSPECTION	ALL INCOMING MATERIALS ARE INSPECTED TO DOCUMENTED PROCEDURES COVERING THE HANDLING, INSPECTION, STORAGE, AND RELEASE OF RAW MATERIALS USED IN THE MANUFACTURE OF CYPRESS PRODUCTS. MATERIALS INSPECTED ARE: WAFERS, MASKS, LEADFRAMES, CERAMIC PACKAGES AND/OR PIECE PARTS, MOLDING COMPOUNDS, GASES, CHEMICALS, ETC.
FAB	DIFFUSION / ION IMPLANTATION	SHEET RESISTANCE, IMPLANT DOSE, SPECIES AND CV CHARACTERISTICS ARE MEASURED FOR ALL CRITICAL IMPLANTS AND ON EVERY PRODUCT RUN. TEST WAFERS MAY BE USED TO COLLECT THIS DATA INSTEAD OF ACTUAL PRODUCTION Wafers. If THIS IS DONE, THEY ARE PROCESSED WITH THE STANDARD PRODUCT PRIOR TO COLLECTING SPECIFIC DATA. THIS ASSURES ACCURATE CORRELATION BETWEEN THE ACTUAL PRODUCT AND THE WAFERS USED TO MONITOR IMPLANTATION.
FAB	OXIDATION	SAMPLE WAFERS AND SAMPLE SITES ARE INSPECTED ON EACH RUN FROM VARIOUS POSITIONS OF THE FURNACE LOAD TO INSPECT FOR OXIDE THICKNESS. AUTOMATED EQUIPMENT IS USED TO MONITOR PIN HOLE COUNTS FOR VARIOUS OXIDATIONS IN THE PROCESS. IN ADDITION, AN APPEARANCE INSPECTION IS PERFORMED BY THE OPERATOR TO FURTHER MONITOR THE OXIDATION PROCESS.
FAB	PHOTOLITHOGRAPHY / ETCHING	APPEARANCE OF RESIST IS CHECKED BY THE OPERATOR AFTER THE SPIN OPERATION. ALSO, AFTER THE FILM IS DEVELOPED, BOTH DIMENSIONS AND APPEARANCE ARE CHECKED BY THE OPERATOR ON A SAMPLE OF WAFERS AND LOCATIONS UPON EACH WAFER. FINAL CD'S AND ALIGNMENT ARE ALSO SAMPLE INSPECTED ON SEVERAL WAFERS AND SITES ON EACH WAFER ON EVERY PRODUCT RUN.
FAB	METALIZATION	FILM THICKNESS IS MONITORED ON EVERY RUN. STEP COVERAGE CROSS-SECTIONS are performed on a periodic basis to insure coverage.
FAB	PASSIVATION	AN OUTGOING VISUAL INSPECTION IS PERFORMED ON 100\% OF THE WAFERS IN A LOT TO INSPECT FOR SCRATCHES, PARTICLES, BUBBLES, ETC. FILM THICKNESS IS VERIFIED ON A SAMPLE OF WAFERS AND LOCATIONS WITHIN EACH GIVEN WAFER ON EACH RUN. PINHOLES ARE MONITORED ON A SAMPLE BASIS WEEKLY.
FAB	QC VISUAL OF WAFERS	
FAB	E-TEST	SAMPLE ELECTRICAL TEST IS PERFORMED FOR FINAL PROCESS ELECTRICAL CHARACTERISITICS ON EVERY RUN.
FAB	QC MONITOR OF E-TEST DATA	WEEKLY REVIEW OF ALL DATA TRENDS; RUNNING AVERAGES, MINIMUMS, MAXIMUMS, ETC. ARE REVIEWED WITH PROCESS CONTROL MANAGER
TEST	WAFER PROBE / SORT	VERIFY FUNCTIONALITY, ELECTRICAL CHARACTERISTICS, STRESS TEST DEVICES
TEST	QC CHECK PROBING AND ELECTRICAL TEST RESULTS	PASS / FAIL LOT BASED ON YIELD, CORRECT PROBE PLACEMENT
		(Continued)

Product Quality Assurance Flow (Continued)


Product Quality Assurance Flow (Continued)


0032-3
(Continued)

Product Quality Assurance Flow (Continued)


## Key

PRODUCTION PROCESS

TEST/INSPECTION
0
PRODUCTION PROCESS AND TEST INSPECTIONoc sample gate and inspection

Notes:

1. Temp Cycle and Centrifuge performed per Applicable Product Screening Flow.
2. JAN/SMD/Military grade products are $100 \%$ Fine and Gross Leak tested and sample tested after wafer lot I.D. Commercial grade devices received sample test only. Sample size is per Commercial Product Screening Flow.

## Reliability Monitor Program

The Reliability Monitor Program is a documented Cypress procedure that is described in Cypress specification \# 25-00008 which is available to Cypress customers upon request. This specification describes a procedure that provides for periodic reliability monitors to insure that all Cypress products comply with established goals for reliability improvement and to minimize reliability risks for

Cypress customers. The Reliability Monitor Program is designed to monitor key products within each generic process family. This procedure requires that detailed failure analysis be performed on all test rejects and the corrective actions be taken as indicated by the analysis. A summary of the Reliability Monitor Program test and sampling plan is shown below.

## Reliability Monitor Program Sampling Plan

Test Description	Duration	$\begin{gathered} \text { Sample } \\ \text { Size } \end{gathered}$	Frequency ${ }^{[1]}$
Early Failure Rate (EFR) $150^{\circ} \mathrm{C}$ HTOL	12 Hours	125	Weekly
High Temp Steady State Life (HTSSL) $150^{\circ} \mathrm{C}$ HTOL with Deltas	1000 Hours	10	Monthly
Latent Failure Rate (LFR) $150^{\circ} \mathrm{C}$ HTOL	1000 Hours	125	Quarterly
High Temp Storage (HTS) $200^{\circ} \mathrm{C}$ HTS	1000 Hours	10	Monthly
Epoxy Packaged Data Retention $165^{\circ} \mathrm{C}$ Bake	168 Hours	55	Weekly
Hermetic Packaged Data Retention $250^{\circ} \mathrm{C}$ Bake	500 Hours	55	Monthly
Pressure Cooker (PCT) $121^{\circ} \mathrm{C} / 100 \%$ R.H.	288 Hours	55	Weekly
Preconditioned Temperature Humidity Life (PCTH) $96 \text { Hrs. PCT + Biased 85/85 }$	1000 Hours	55	Every 6 Weeks
Extended Temperature Cycle (T/C) $-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}$	1000 Cycles	55	Quarterly

## Note:

1) Maximum period between samples is listed. More frequent sampling may occur.
PRODUCT INFORMATION
STATIC RAMS ..... 2
PROMS ..... 3
EPLDS ..... 4
LOGIC ..... 5
RISC ..... 6
BRIDGEMOS ..... 7
QUICKPRO ..... 8
QUALITY AND ..... 9RELIABILITYAPPLICATION BRIEFS10
PACKAGES ..... 11
If
Application BriefsPage Number
RAM Input and Output Characteristics ..... 10-1
74F189 Application Brief ..... 10-8
Programmable Logic Device Application Brief ..... 10-10
PAL C 16R6 GCR Encoder/Decoder ..... 10-22
Understanding FIFOs ..... 10-39
Interfacing to the FIFOs ..... 10-51
Power Characteristics of Cypress Products ..... 10-53
System Design Considerations when Using Cypress CMOS Circuits ..... 10-60
Microcoded Systems Application Brief ..... 10-78
Introduction to Diagnostic PROMs ..... 10-81
CY7C330 Asynchronous SCSI Controller ..... 10-87

# Application Briefs RAM Input Output Characteristics 

## Introduction to Cypress RAMs

Cypress Semiconductor Corporation uses a speed optimized CMOS technology to manufacture high speed static RAMs which meet and exceed the performance of competitive bipolar devices while consuming significantly less power and providing superior reliability characteristics. While providing identical functionality, these devices exhibit slightly differing input and output characteristics which provide the designer opportunities to improve overall system performance. The balance of this application note describes the devices, their functionality and specifically their I/O characteristics.

## PRODUCT DESCRIPTION

The five parts in Figure 1 constitute three basic devices of 64, 1024 and 4096 bits respectively. The 7C189 and 7C190 feature inverting and non-inverting outputs respectively in a $16 \times 4$ bit organization. Four address lines address the 16 words, which are written to and read from over separate input and output lines. Both of these 64 bit devices have separate active LOW select and write enable signals. The $256 \times 47 \mathrm{C} 122$ is packaged in a 22 pin DIP, and features separate input and output lines, both active LOW and active HIGH select lines, eight address lines, an active LOW output enable, and an active LOW write enable. Both the


0027-1


Figure 1. RAM Block Diagrams


0027-3


0027-4

Figure 1. RAM Block Diagrams (Continued)

7C148 and 7C149 are organized $1024 \times 4$ bits and feature common pins for the input and output of data. Both parts have 10 address lines, a single active LOW chip select and an active LOW write enable. The 7C148 features automatic power down whenever the device is not selected, while the 7 C 149 has a high speed, 15 ns , chip select for applications which do not require power control. This family of high speed static RAMs is available with access times of 15 to 45 ns with power in the 300 to 500 mW range. They are designed from a common core approach, and share the same memory cell, input structures and many other characteristics. The outputs are similar, with the exception of output drive, and the common I/O optimization for the 7C148 and 7C149. For more detailed information on these products, refer to the available data sheets.

## GENERIC I/O CHARACTERISTICS

Input and output characteristics fall generally into two categories, when the area of operation falls within the normal limits of $V_{C C}$ and $V_{S S}$ plus or minus approximately 600 mV , and abnormal circumstances, when these limits are exceeded. Inputs under normal operating conditions are voltages that switch between logic " 0 " and logic " 1 ". We will consider operation in a positive true environment and therefore a logic " 1 " is more positive than a logic " 0 ". The I/O characteristics of the devices we are concerned with are what is considered to be TTL compatible. Therefore a logic " 1 " is 2.0 V , while a logic " 0 " is 0.8 V . The input of a device must be driven greater than 2.0 V , not to exceed $\mathrm{V}_{\mathrm{CC}}+0.6 \mathrm{~V}$ to be considered a logic " 1 " and, to less than 0.8 V , but not less than $\mathrm{V}_{\mathrm{SS}}-0.6 \mathrm{~V}$, to be considered a logic " 0 ".
Output characteristics represent a signal that will drive the input of the next device in the system. Since the levels we are dealing with are TTL, we may assume that the $\mathrm{V}_{\mathrm{IL}}$ and
$\mathrm{V}_{\mathrm{IH}}$ values of 0.8 and 2.0 V referenced above are valid. In consideration of noise margin however, driving the input of the next stage to the required $\mathrm{V}_{\mathrm{IL}}$ or $\mathrm{V}_{\mathrm{IH}}$ is not sufficient. Noise margins of 200 to 400 mV are considered more than adequate, and therefore the $\mathrm{V}_{\mathrm{OH}}$ we deal with is 2.4 V while the $\mathrm{V}_{\mathrm{OL}}$ is 0.4 V , providing a noise margin of 400 mV . Since the driven node consists of both a resistive and a capacitive component, output characteristics are specified such that the output driver is capable of sinking IOL at the specified $\mathrm{V}_{\mathrm{OL}}$, and capable of sourcing $\mathrm{I}_{\mathrm{OH}}$ at $\mathrm{V}_{\mathrm{OH}}$. Since the values of $\mathrm{I}_{\mathrm{OL}}$ and $\mathrm{I}_{\mathrm{OH}}$ differ depending on the device, these values are shown in Table 1. Outputs have one other characteristic that we need to be concerned with, Output Short Circuit Current or Ios. This is the maximum current that the output will source when driving a logic " 1 " into VSS. We need to be concerned for two reasons. First, the output should be capable of supplying this current for some reasonable period of time without damage, and second, this is the current that charges the capacitive load when switching the output from a " 0 " to a " 1 " and will control the output rise time.
Since memories such as these are often tied together, we are also concerned about the output characteristics of the devices when they are deselected. All of the devices in this family feature three state outputs such that in addition to their active conditions when selected, when deselected, the outputs are in a high impedance condition which does not source or sink any current. In this condition, as long as the input is driven in its normal operating mode, it appears as an open, with less than $10 \mu \mathrm{~A}$ of leakage. Thus to any other device driving this node, it is non-existent.

## TECHNOLOGY DEPENDENCIES AND BENEFITS

Some of the products in this application note were originally produced in a BIPOLAR technology, some have since been re-engineered in NMOS technology and Cypress has now produced them in a speed optimized CMOS technology. There are both technology dependencies and benefits relative to the design of input and output structures that are associated with each technology. The designer who uses these products should be knowledgeable of these characteristics and how they can benefit or impede a design effort. One of the most obvious is that both NMOS and CMOS device inputs are high impedance, with less than 10 $\mu \mathrm{A}$ of input leakage. Bipolar devices, however, require that the driver of an input sink current when driving to $V_{I L}$, but appear as high impedance at $\mathrm{V}_{\text {IH }}$ levels. This is due to the fact that the input of a bipolar device is the emitter of a bipolar NPN type device with its base biased positive. The bias is what establishes the point at which the input changes from requiring current to be sourced to high impedance and is 1.5 V . This switching level is the reason that AC measurements are done at the 1.5 V level. Although NMOS and CMOS device inputs do not change from low to high impedance, great care is taken to balance their switching threshold at 1.5 V . To a system designer this allows fanout to consider only capacitive loading with MOS devices while bipolar has both a capacitive and DC component. The other input characteristic which differs from bipolar to MOS is the clamp diode structure. This structure exists in both MOS and bipolar, however in MOS that uses BIAS GENERATOR techniques, all high speed MOS devices, the diode does not become forward biased until the input goes more negative than the substrate bias generator plus one diode drop. Since the bias generator is usually about -3 V this has the effect of removing the clamping effect.

## I/O Parameters

## CMOS/NMOS/BIPOLAR INPUT CHARACTERISTICS

Although NMOS, CMOS and BIPOLAR technologies differ widely, the I/O characteristics tend to fall into two areas. The traditional characteristics are the TTL derivatives that have been covered above, and are documented in Table 1. With the exception of the differences in input impedance between MOS and BIPOLAR devices all three technologies are used to produce TTL compatible products. The second camp is the true CMOS interface where signals swing from $\mathrm{V}_{\mathrm{SS}}$ to $\mathrm{V}_{\mathrm{CC}}$. These interface specifications define a " 1 " as greater than $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$ and a " 0 " as less than $\mathrm{V}_{\mathrm{SS}}+1.5 \mathrm{~V}$. In addition, loads are primarily capacitive. Only devices produced in a CMOS technology are capable of behaving in this manner. CMOS devices can, however, handle both TTL and CMOS inputs. Devices such as the ones described in this application note have input characteristics depicted in Figure 2.


0027-5
Figure 2. Input Voltage vs. Current
Table 1. DC Parameters

Parameters	Description	Test Conditions	$7 \mathrm{C122}$		7C148/9		7C189/90		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{V}_{\mathrm{OH}}$	Output High Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-5.2 \mathrm{~mA}$	2.4		2.4		2.4		V
$\mathrm{V}_{\mathrm{OL}}$	Output Low Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4		0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input High Voltage		2.1	$\mathrm{V}_{\mathrm{CC}}$	2.0	$\mathrm{V}_{\mathrm{CC}}$	2.0	$\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		$-3.0$	0.8	-3.0	0.8	$-3.0$	0.8	V
$\mathrm{I}_{\text {IL }}$	Input Low Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max} ., \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$		10		10		10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IH }}$	Input High Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$		10		10		10	$\mu \mathrm{A}$
$\underline{\text { IoFF }}$	Output Current (High Z)	$\mathrm{V}_{\mathrm{OL}}<\mathrm{V}_{\mathrm{OUT}}<\mathrm{V}_{\mathrm{OH}}, \mathrm{T}_{\mathrm{A}}=$ Max.	-10	+ 10	-10	+ 10	$-10$	+10	$\mu \mathrm{A}$
Ios	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$		-70		-90		-275	mA
		$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }},-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<125^{\circ} \mathrm{C}$		-80		-90		$-350$	mA

When operated in the TTL range, they perform normally. Operated in full CMOS mode, an additional benefit of power savings is realized as the current consumed in the input converter decreases as the input voltage rises above 3.0 V , or falls below 1.5 V . Since the input signal is in the 1.5 to 3.0 V range only when transitioning between logic states, the power savings in a large array with true CMOS inputs can be significant. With input signals on over half of the pins of a device, significant savings in a large system can be realized by using CMOS input voltage swings even in TTL systems.

## Switching Characteristics

Although this application note does not directly deal with the AC characteristics of high speed RAMs, the input and output characteristics of these devices have a great deal to do with the actual AC specifications. Conventionally, all AC measurements associated with high speed devices are done at 1.5 V and assume a maximum rise and fall time. This eliminates the variations associated with the various configurations that the device will be used in (as a figure of merit when testing the device) but, does not mean that the designer can ignore these influences when designing a system. Maximum rise and fall time is usually found in the notes included on every data sheet. For the products referred to in this application note, a 10 ns maximum rise and fall time is specified for all devices with access times equal to or greater than 25 ns and a 5 ns maximum rise and fall time for all devices with access times less than 25 ns . The AC load and its Thévenin equivalent in Figure 3 represent the resistive and capacitive components of load which the devices are specified to drive. With either of these loads, the device will be required to source or sink its rated output current at its specified output voltage. The capacitance stresses the ability of the device output to source or sink sufficient current to slew the outputs at a high enough rate to meet the AC specifications. The high impedance load is a convenience to testing when trying to determine how rapidly the output enters a high impedance condition. Once the output enters a high impedance mode, the resistive divider will charge the capacitance until equilibrium is reached. Allowing for noise margin, testing for a 500 mV change is normal. By using a smaller capacitance
than normal, the change will occur more quickly, allowing a more accurate determination of entry into the high impedance state.

## SWITCHING THRESHOLD VARIATIONS

Switching threshold variations along with input rise and fall times can have an effect on the performance of any device. Input rise and fall times are under the control of the designer, and are primarily affected by capacitive loading, the driver and bus termination techniques. Switching threshold is affected by process variations, changes in $\mathrm{V}_{\mathrm{CC}}$ and temperature. Compensation of these variables is the territory of the manufacturer, both at the design stage and the manufacturing of the device. Combined threshold shifts over full military temperature ranges and process variations average less than 100 mV . This translates directly to $\mathrm{V}_{\text {IL }}$ and $\mathrm{V}_{\text {IH }}$ variations which track well within the noise margins of normal system design particularly since the $V_{\mathrm{OL}}$ and $\mathrm{V}_{\mathrm{OH}}$ changes track to the same 100 mV .

## Input Protection Mechanisms <br> THE ELECTROSTATIC DISCHARGE PHENOMENON

Because of their extremely high input impedance and relatively low (approximately 30V) breakdown voltage, MOS devices have always suffered from destruction caused by ESD (Electro Static Discharge). This has caused two actions. First, major efforts to design input protection circuits without impeding performance has resulted in MOS devices that are now superior to bipolar devices. Second, care in handling semiconductors is now common practice. Interestingly enough, bipolar products that once did not suffer from ESD have now suddenly become sensitive to the phenomenon, primarily because new processing technology involving shallow junctions is in itself sensitive. MOS devices are in many cases now superior to bipolar products. A sampling of competitive BIPOLAR and NMOS 64 bit, 1 K bit and 4 K bit products reveals breakdown voltages as low as $\pm 150 \mathrm{~V}$ to greater than $\pm 2001 \mathrm{~V}$ magnitudes. The circuit in Figure 4 is used to protect Cypress products against ESD. It consists of two thick oxide field transistors wrapped around an input resistor and a thin oxide device



Figure 4. Input Protection Circuit
with a relatively low breakdown voltage of approximately 12 V . Large input voltages cause the field transistors to turn on discharging the ESD current harmlessly to ground. The :hin oxide transistor breaks down when the voltage across t exceeds the 12 V level and it is protected from destruction गy the current limiting of Rp. The combination of these :wo structures provides ESD protection greater than 2250 V , the limit of the testing equipment available. In adlition, repeated applications of this stress do not cause a legradation that could lead to eventual device failure as sbserved in functionally equivalent devices.

## CMOS Latchup

The parasitic bipolar transistors shown in Figure 5 result in a built-in silicon controlled rectifier illustrated in Figure 6. Jnder normal circumstances the substrate resistor RSUB is sonnected to ground. Therefore, whenever the signal on he pin goes below ground by one diode drop, current flows
from ground through RSUB forward biasing the lower transistor in the effective SCR. If this current is sufficient to turn on the transistor, the upper PNP transistor is forward biased, the SCR turns on and normally destroys the device. Several solutions are obvious, decreasing the substrate resistance, or adding a substrate bias generator are two. The bias generator technique has several additional benefits, however, such as threshold voltage control which increases device performance and is employed in all Cypress products, along with guard rings which effectively isolate input and output structures from the core of the device and thus effectively decrease the substrate resistance by short circuiting the current paths. Latchup can potentially be induced at either the inputs or outputs. In true CMOS output structures as discussed above, the output driver has a PMOS pullup which creates additional vertical bipolar PNP transistors compounding the latchup problem. Additonal isolation using the guard ring technique can be used to solve this problem, at the expense of additional silicon

Output Driver


0027-10

Figure 5. CMOS Cross Section and Parasitic Circuits

## RAM Input/Output Characteristics

## Substrate Bias Generator



0027-11

Figure 6. Parasitic SCR and Bias Generator
area. Since all of the devices of concern here require TTL outputs, the problem is totally eliminated through the use of an NMOS pullup.

## LATCHUP CHARACTERISTICS

## Inducing Latchup for Testing Purposes

Care needs to be exercised in testing for latchup since it is normally a destructive phenomena. The normal method is to power the device under test with a supply that can be current limited, such that when latchup is induced, insufficient current exists to destroy the device. Once this setup exists, driving the inputs or outputs with a current, and measuring the point at which the power supply collapses will allow non-destructive measurement of the latchup characteristics of the devices under question. In actual testing, with the device under power, individual inputs and outputs are driven positive and negative with a voltage and the current measured at which the device latches up. This provides the DC latchup data for each pin on the device as a function of trigger current.

## Measurement of Latchup Susceptibility

Actually measuring the latchup characteristics of devices should encompass ranges of reasonable positive and negative currents for trigger sources. Depending on the device, latchup can occur as low as a few mA to as high as several hundred mA of sink or source current. Devices which latch at trigger currents of less than 20 to 30 mA are in danger of encountering system conditions that will cause latchup failure.

## Competitive Devices

Although there are few devices directly competitive with the Cypress devices covered in this application note, the latchup characteristics of the closest functionally similar devices were measured. The results show devices that latchup at as low as 10 mA all the way to devices that can sustain greater than 100 mA of trigger current without
latchup. The Cypress devices covered in this document can sustain greater than 200 mA without incurring latchup, far more than is possible to encounter in any reasonable system environment.

## Elimination of Latchup in Cypress RAMs

Since the latchup characteristic is one that inherently exists in any CMOS device, rather than change the laws of physics, we design to minimize its effects over the operating environment that the device must endure. These include temperature, power supply and signal levels as well as process variations. There are several techniques employed to eliminate the latchup phenomenon. Two of them involve moving the trigger threshold outside the operating range as to make it impossible to ever encounter it. These are either using low impedance, epitaxial, substrates and/or a substrate bias generator. The use of a low impedance substrate has the effect of increasing the undershoot voltage required to generate the required trigger current that causes latchup. A substrate bias generator has two effects which help to eliminate latchup. First, by biasing the substrate at a negative, -3.0 V , voltage, the parasitic diodes can not be forward biased unless the undershoot exceeds the -3 V by at least one diode drop. Second, if undershoot is this severe, the impedance of the bias generator itself is sufficient to deter sufficent trigger from being generated. The bias generator has one additional noticeable characteristic, it effectively removes the input clamp diode. This is due to the anode of the diode connecting to the substrate which is at -3.0 V . Therefore, even though the diode exists as shown in Figure 4, DC signals of -3.0 V do not forward bias the diode and exhibit the clamp condition. The benefits of this are apparent in higher noise tolerance as substrate currents due to input undershoot do not occur.


0027-12

Figure 7. Bias Generator Characteristics


Figure 8. Input V/I Characteristics
Figures 8 and 9 represent the voltage and current characteristics of the devices discussed in this application brief. Figure 8 is characteristic of an input pin, and Figure 9 an output pin in a high impedance state. In Figure 8, the input covers +12 V to -6 V , well outside the +7 V to -3 V specification. Referring to Figure 4 to understand these characteristics, when the input voltage goes negative, the thin oxide transistor acts as a forward biased diode and the


Figure 9. Output V/I Characteristics
slope of the curve is set by the value of $R_{p}$. As the input voltage goes positive, only leakage current flows. The output characteristics in Figure 9 show the same phenomenon, with the exception that, since this is not an input, no protection circuit exists, and therefore no Rp exists. An equivalent thin film device acts as a clamp diode which limits the output voltage to approximately -1 V at -5 mA .

## 74F189 Application Brief

## Introduction

There are available in the market a number of high speed 64 bit static RAMs organized 16 by 4 bits. Because of the various different manufacturers specifications, there is no apparent true second source for these products as each operates with some unique characteristics. The composite specifications contained in this applications brief will allow the interchangeable use of the Cypress CY7C189 with the 74F189 and the Cypress CY7C190 with the 74F219 with optimization for either power or performance.

## Specifications

Depending on system requirements, the SPEED OPTIMIZED specification will allow the designer to select performance at the expense of power, and use either Cypress's CY7C189-15 or the 74F189 interchangeably. If, however, the major criteria is power the designer can achieve a 55 mA max power specification using the Cypress CY7C18925 interchangeably with the 74F189 by designing with the POWER OPTIMIZED specification.

## Electrical Characteristics Over the Operating Range

Parameters	Description	Test						Units
				Min.	Max.	Min.	Max.	
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., I	$-3.0 \mathrm{~mA}$	2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min.,	6.0 mA		0.5		0.5	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.0	$\mathrm{V}_{\mathrm{CC}}$	2.0	$\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			$-3.0$	0.8	$-3.0$	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	$\underline{\text { GND }} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		$-600$	+20	$-600$	+20	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{OZ}}$	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{0} \leq \mathrm{V}_{\mathrm{CC}}$		-50	$+50$	-50	$+50$	$\mu \mathrm{A}$
Ios	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			$-150$		-150	mA
$\mathrm{I}_{\mathrm{CC}}$	Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA} \end{aligned}$	Commercial		90		55	mA
			Military				70	mA

Switching Characteristics Over the Operating Range

Parameters	Description	Speed Optimized		Power Optimized		Units
		Min.	Max.	Min.	Max.	
READ CYCLE						
$\mathrm{t}_{\mathrm{RC}}$	Read Cycle Time	27		27		ns
$\mathrm{t}_{\text {ACS }}$	Chip Select to Output Valid		14		15	ns
$\mathrm{t}_{\mathrm{HzCS}}$	Chip Select Inactive to High Z		12		15	ns
$\mathrm{t}_{\text {LZCS }}$	Chip Select Active to Low Z		12		15	ns
toha	Output Hold from Address Change	5		5		ns
$\mathrm{t}_{\text {AA }}$	Address Access Time		27		27	ns
WRITE CYCLE						
twc	Write Cycle Time	15		20		ns
$\mathrm{t}_{\text {HZWE }}$	Write Enable Active to High Z		14		20	ns
tLZWE	Write Enable Inactive to Low Z		12		20	
$t_{\text {AWE }}$	Write Enable to Output Valid		29		29	ns
tPWE	Write Enable Pulse Width	15		20		ns
$t_{\text {SD }}$	Data Setup to Write End	15		20		ns
$\mathrm{t}_{\mathrm{HD}}$	Data Hold from Write End	0		0		ns
$t_{\text {SA }}$	Address Setup to Write Start	0		0		ns
$\mathrm{t}_{\mathrm{HA}}$	Address Hold from Write End	0		0		ns
$\mathrm{t}_{\mathrm{HCS}}$	Chip Select Hold from Write End	6		6		ns

## Read Cycle



## Write Cycle



# Programmable Logic Device Application Brief 

## Scope and Purpose

The purpose of this application brief is to provide the reader with a basic understanding of Cypress CMOS Programmable Logic Devices. This includes a description of their architecture and design, the technology used in their fabrication, how they are programmed and a discussion of their reliability.
This document will tell the reader how state-of-the-art CMOS technology and a unique architecture have been incorporated in a family of PLD integrated circuits that are functionally equivalent, pin compatible, and superior in performance to their bipolar counterparts.
The appendix discusses and illustrates the design techniques that Cypress uses on all products to eliminate latchup and improve ESD (Electro-Static-Discharge) protection.

## Introduction

The PLD is a Programmable Logic Device. The basic (functional) logic structure of a PLD is programmable AND array whose outputs feed into a fixed OR array. The pertinent parameters are the number of inputs, the number of outputs, the width (number of factors) in the AND array and the width (number of terms) in the OR array. The Boolean equation implemented is the sum-of-products or minterm form.
The first PLDs were strictly combinatorial logic. They were followed by devices that added latches (D flip-flops) a clock input, and internal feedback. For the first time a programmable, sequential, state machine could be implemented in a single package. Three-state outputs, the "security fuse", flip-flop initialization, and in general terms "testability" are features that have been added for increased flexibility.

## Applications

PLDs are used to replace SSI/MSI logic and "glue chips" primarily to increase packaging density. A single PLD is the functional equivalent of many SSI ICs (in the 200-500 equivalent gate range). When PLDs are used to replace standard logic gates, the resulting reduction in PC card area, although application dependent, has been found to vary between 4 to 1 and 10 to 1. i.e., One PLD will replace
between four and ten 14 pin ICs. Secondary benefits to the user are reduced parts inventory, reduced power, higher reliability, faster design and turnaround time, product secrecy and equal (matched) propagation delays through the AND OR array.

## Reliability

Reliability studies have shown that system reliability is inversely proportional to the number of interconnections between system elements. However, the failure rate for mature ICs is about $0.1 \%$ per thousand hours and has remained constant during the last twenty years in spite of the fact that circuit complexity (density) has increased by more than two orders of magnitude.
The conclusion is that higher levels of IC integration provide increased system reliability. Thus the user is increasing system reliability when Cypress CMOS PLDs replace glue chips.

## Programming

PLDs must be programmed. This can be accomplished by either designing and building a programmer or purchasing one for $\$ 1,000$ to $\$ 10,000$.

## Programming Bipolar PLDs

Bipolar PLDs use a fuse as the programmable element. In an unprogrammed device all of the connections are "made" during the manufacturing process and the unwanted connections are later "unmade" by blowing fuses during the programming process.
Bipolar products are programmed using 20 Volt pulses of durations from 50 microseconds to 10 milliseconds during which 100 to 300 milliamperes ( mA ) of current exist. In order to limit the heat generated during programming, the duty cycle for the programming pulses is limited to 20 to 30 percent. One fuse is blown at a time so that the heat generated will neither permanently damage the IC nor stress it to the point that it could fail later. Some programming algorithms take into account the physical locations of the fuses and avoid sequentially blowing fuses that are physically close to each other in order to prevent excessive localized heating of the chip. Because of the high currents required, bipolar products are not "gang" programmed, as are EPROMs.

## Programming Cypress CMOS PLDs

Cypress PLDs are programmed by storing charge on the floating gate of an EPROM transistor. Charge storage is accomplished by hot carrier injection; a process that does not physically destroy material or heat the device. During programming, EPROM cells are stressed significantly less than fuses. In addition, every cell is programmed, tested and erased as part of the manufacturing process. This $100 \%$ testing guarantees a very high programming yield to the customer, which is impossible to guarantee with any fuse programmable device.
The storage mechanism is well understood. Products using it have been in volume production for more than ten years. Reliability studies have been performed by many independent organizations and all have concluded that the technology is reliable.
Cypress PLDs are programmed using high voltage pulses of durations from 100 microseconds to 10 ms , during which 50 milliamperes of programming current exist. Eight bits are programmed at the same time and, because of the lower currents required, gang programmers that can handle 10 to 20 devices in parallel are possible.
Before programming, AND gates or PRODUCT TERMS are connected via EPROM cells to both true and complement inputs. Programming an EPROM cell disconnects an input from a PRODUCT TERM. Selective programming of these cells enables a specific logic function to be implemented. PLDs are supplied in a number of functional configurations. These functional variations offer the user the choice of combinatorial as well as registered paths to implement logic functions.

## CMOS Technology

Cypress PLDs are fabricated using an advanced "N-well" CMOS technology. The use of proven EPROM technology to achieve memory non-volatility, combined with novel circuit design and a unique architecture, provides the user with a superior product in terms of performance, reliability, testability and programmability.

PAL® is a registered trademark of Monolithic Memories, Inc.

## Functional Description

## General

The variations of PLD functions available are listed in Table 1. The 16L8, which is used as an example (see Figure 2), is purely combinatorial and consists of eight groups of 7 -input AND gates, each of which can have up to 32 inputs. One of the AND gates of each group (of 8 ) is used to enable the (inverting) output driver, so that 7 AND gates (each of which may have 32 inputs) each feed one OR gate, whose output is inverted.
The 16 R 8 is similar to the 16 L 8 , except that the outputs are latched using D flip-flops (with a common clock), the inputs to the 8 OR gates are the outputs of 8 AND gates; the three-state output drivers are enabled by a common enable input.
The reader should refer to the PLD data sheets for a more detailed description of the other members of the family. The 16R4, 16R6 and 16R8 have 4, 6, or 8 registered outputs with feedback.
The 22 V 10 offers a unique macro-cell flexibility to allow any combination of up to 10 combinatorial or registered outputs. In a similar manner the 20 G 10 uses macro-cells to allow the user to program the functionality of the 10 most popular PAL ${ }^{\text {® }} 24$ devices.

## Register Preload

The preload function is used to load data into the internal register (of registered devices) for testing purposes. This significantly simplifies and shortens the testing procedure. Loading is accomplished by applying a supervoltage pulse of at least 100 microseconds duration to pin 5 as a write pulse while pin 11 is held at VIH and data is applied to pins 12 through 19.

## Security Function

The security function prevents the contents of the regular array from being electrically verified. This enables the user to safeguard proprietary logic. The EPROM technology prevents the state of the cell from being visually ascertained. The security function is implemented by programming an EPROM cell that disconnects the lines that are used to verify the array. This cell has been designed to retain its charge longer than any of the other cells in the array.

Programmable Logic Device Application Brief
SEMICONDUCTOR
Commercial Selection Guide

$\begin{aligned} & \text { Generic } \\ & \text { Part } \\ & \text { Number } \end{aligned}$	Logic	Output Enable	Outputs	$\mathrm{I}_{\mathbf{C C}} \mathbf{m A}$		tpd ns		ts ns		tcons	
				L	STD	-25	-35	-25	-35	-25	-35
16L8	(8) 7 -wide AND-OR-Invert	Programmable	(6) Bidirectional   (2) Dedicated	45	70	25	35	-	-	-	-
16R8	(8) 8-wide AND-OR	Dedicated	Registered Inverting	45	70	-	-	20	30	15	25
16R6	(6) 8-wide AND-OR	Dedicated	Registered Inverting	45	70	25	35	20	30	15	25
	(2) 7 -wide   AND-OR-Invert	Programmable	Bidirectional								
	(4) 8-wide AND-OR	Dedicated	Registered Inverting	45	70	25	35	20	30	15	25
16R4	(4) 7 -wide AND-OR-Invert	Programmable	Bidirectional								
20G10	(10) 8-wide AND-ORInvert with MACRO	Programmable or Dedicated	Programmable Bidirectional or Registered	-	55	25	35	15	30	15	25
22V10	(10) variable AND-ORInvert with MACRO	Programmable	Programmable Bidirectional or Registered	55	90	25	35	15	30	15	25

## Military Selection Guide

Generic Part   Number	Logic	Output Enable	Outputs	$\begin{aligned} & \mathbf{V}_{\mathbf{C C}} \\ & \mathbf{m A} \end{aligned}$	tpd $n \mathbf{n}$				ts ns				tcons			
					-20	-25	-30	-40	-20	-25	-30	-40	-20	. 25	-30	-40
16L8	(8) 7 -wide   AND-OR-Invert	Programmable	(6) Bidirectional   (2) Dedicated	70	20	NA	30	40	-	NA	-	-	-	NA	-	-
16R8	(8) 8 -wide   AND-OR	Dedicated	Registered Inverting	70	-	NA	-	-	20	NA	25	35	15	NA	20	25
16R6	(6) 8 -wide   AND-OR	Dedicated	Registered Inverting	70	20	NA	30	40	20	NA	25	35	15	NA	20	25
	(2) 7 -wide   AND-OR-Invert	Programmable	Bidirectional													
16R4	(4) 8 -wide AND-OR	Dedicated	Registered Inverting	70	20	NA	30	40	20	NA	25	35	15	NA	20	25
	(4) 7-wide AND-OR-Invert	Programmable	Bidirectional													
20G10	(10) 8-wide AND-OR-Invert with MACRO	Programmable	Programmable Bidirectional or Registered	80	NA	-	30	40	NA	-	25	35	NA	-	20	25
22 V 10	(10) variable AND-OR-Invert with MACRO	Programmable	Programmable Bidirectional or Registered	100	NA	25	30	40	NA	20	25	35	NA	20	20	25

Table 1. PLD Selection Guide


Figure 2. Functional Logic Diagram PAL C 16L8A

There are 2048 EPROM cells in the PAL C 20 array that are used to specify up to 32 inputs for 8 groups of 7 -input AND OR gates and 832 -input AND output enable gates. In normal usage, a maximum of 16 inputs would be connected to any AND gate, because connecting both a true and a complement input of the same signal to the input of an AND gate will result in a constant LOW output.

## Phantom Array

There are an additional 256 bits in a phantom array that are used to test the PAL C 20 device functionally and to verify dynamic (AC) operation without using the regular array after the device is packaged. The phantom array is programmed and verified as part of the final electrical test procedure during the manufacturing process. It may be used by the customer as part of an incoming inspection and could be used to verify programmability as well as functionality. Three input pins are used to verify operation of the phantom array. One (pin 2) has a worst case (longest physical length) propagation delay path through the regular array.

## Programming the Arrays

The phantom array is programmed in the same manner as the regular array. Both are addressed as byte arrays for programming. The normal array has 256 bytes to program and the phantom array has 32 bytes. The customer may test the programmed phantom array functionally and dynamically as part of an incoming inspection.

## Programming the EPROM Cell

A schematic of the two-transistor EPROM cell used in all PLDs is illustrated in Figure 1. Conventional EPROMS use one transistor per cell and its design is a compromise between being able to program (write) rapidly and read. Cypress uses a two-transistor cell that enables the PLDs to achieve superior performance by optimizing the read transistor, R, and program transistor, P, for their respective functions. The cell size is 20.4 microns by 6.7 microns. Note that the selection gates, the floating gates and the sources of both transistors are (respectively) connected together.

## Operation

In the unprogrammed state, the threshold voltage of the $\mathbf{R}$ transistor is less than that of the $\mathbf{P}$ transistor.


Figure 1. PLD EPROM Cell Schematic
To program the cell, the input line (A) is raised to 15 volts, which causes charge to be stored on the floating gate of the $\mathbf{P}$ transistor, which causes its threshold to increase by approximately 7 volts. Because the floating gates of both transistors are connected together, the threshold of the $\mathbf{R}$ transistor increases by the same amount.
To read from the cell, the input line (A) is raised to 5 volts. If the cell had been programmed, this voltage would not be sufficient to turn-on the read transistor. However, if the cell had not been programmed, the read transistor would turn-on. Under this condition the current through the read transistor is 150 microamperes; approximately an order of magnitude greater than that used in a conventional EPROM cell. The larger current is required in order to achieve the specified performance.

## Operational Overview

The device operates in two basic modes; normal and PROGRAM. In the normal mode either the Regular array or the Phamtom array may be used, together with the data inputs, to determine the state of the outputs. In the PROGRAM mode either the Regular array or the Phantom array may be programmed using the 8 outputs (pins 12-19) as data inputs and pins 2 through 9 as address inputs.
Table 2 illustrates the various modes of operation for the PAL C 20 device. They are decoded by high-voltagesensitive on-chip circuits. It is permitted to go from any mode to any other mode. Note that the normal data output pins (12-19) are used as data input pins for programming.

## Programming

Tables 3 and 4 indicate how the regular and the phantom arrays in the PAL C 20 device are addressed. The 20G10 and 22 V 10 are similar. The regular array is addressed as a

## Programmable Logic Device Application Brief

product term 8, etc. One method of programming the array would be to program and verify the bits corresponding to the first product term address and then increment a counter that generates the "OR" gate addresses (pins 2, 3, 4) and then program and verify the second row of Table 3, and continue this process 8 times until all 64 product terms associated with input line 0 have been programmed and verified. To select the second (1) input term, address pins 6, 7, 8 and 9 are held LOW (as before) and pin $5=$ HIGH. The preceding sequence is then repeated 31 more times, incrementing pins 5 through 9 in a binary sequence, to program and verify the entire array. The other members of the family are programmed in an identical manner.

Table 2. PAL C 20 Series Operating Modes

Pin Name	$\mathbf{V}_{\mathbf{P P}}$	PGM/ $\overline{\mathbf{O E}}$	A1	A2	A3	A4	A5	D7-D0	Notes
Pin Number	(1)	(11)	(3)	(4)	(5)	(6)	(7)	(12-19)	
Operating Modes									
PAL	X	X	X	X	X	X	X	Programmed Function	3,4
Program PAL	$\mathrm{V}_{\text {PP }}$	$\mathrm{V}_{\text {PP }}$	X	X	X	X	X	Data In	3, 5
Program Inhibit	$V_{P P}$	$\mathrm{V}_{\text {IHP }}$	X	X	X	X	X	High Z	3,5
Program Verify	$\mathbf{V}_{\mathbf{P P}}$	$V_{\text {ILP }}$	X	X	X	X	X	Data Out	3,5
Phantom PAL	X	X	X	X	X	$\mathbf{V}_{\mathbf{P P}}$	X	Programmed Function	3,6
Program Phantom PAL	$\mathrm{V}_{\mathrm{PP}}$	$\mathrm{V}_{\text {PP }}$	X	X	X	X	$\mathrm{V}_{\text {PP }}$	Data In	3,7
Phantom Program Inhibit	$\mathrm{V}_{\mathrm{PP}}$	$V_{\text {IHP }}$	X	X	X	X	$\mathbf{V}_{\mathbf{P P}}$	High Z	3,7
Phantom Program Verify	$\mathrm{V}_{\mathrm{PP}}$	$V_{\text {ILP }}$	X	X	X	X	$\mathbf{V P P}_{\text {PP }}$	Data Out	3, 7
Program Security Bit	$\mathrm{V}_{\mathrm{PP}}$	$\mathrm{V}_{\mathrm{PP}}$	$\mathrm{V}_{\text {PP }}$	X	X	X	X	High Z	3
Verify Security Bit	X	X	(Note 8)	$\mathrm{V}_{\mathbf{P P}}$	X	X	X	High Z	3
Register Preload	X	X	X	X	$\mathbf{V}_{\text {PP }}$	X	X	Data In	3,9

Notes:

1. $\mathrm{V}_{\mathrm{PP}}=13.5 \pm 0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{PP}}=50 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CCP}}=5 \pm 0.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{IHP}}=3 \mathrm{~V}$; $V_{\text {ILP }}=0.4 \mathrm{~V}$.
2. Measured at $10 \%$ and $90 \%$ points.
3. $\mathrm{V}_{\mathrm{SS}}<\mathrm{X}<\mathrm{V}_{\mathrm{CCP}}$.
4. All " $X$ " inputs operational per normal PAL function.
5. Address inputs occupy Pins 2 thru 9 inclusive, for both programming and verification see programming address Tables 3 and 4.
6. All " $X$ " inputs operational per normal PAL function except that they operate on the function that occupies the phantom array.
7. Address inputs occupy Pins 2 thru 9 inclusive, for both programming and verification see programming address Tables 3 and 4. Pin 7 is used to select the phantom mode of operation and must be taken to $V_{P P}$ before selecting phantom program operation with $V_{P P}$ on Pin 1.
8. The state of Pin 3 indicates if the security function has been invoked or not. If Pin $3=V_{\text {OL }}$ security is in effect, if $\operatorname{Pin} 3=V_{O H}$, the data is unsecured and may be directly accessed.
9. For testing purposes, the output latch on the 16R8, 16R6 and 16R4 may be preloaded with data from the appropriate associated output line.

Table 3. PAL C 20 Series Product Term Addresses

Product Term Addresses										
Binary Address			Line Number							
Pin Numbers										
(4)	(3)	(2)								
$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	0	8	16	24	32	40	48	56
$V_{\text {ILP }}$	$V_{\text {ILP }}$	$V_{\text {IHP }}$	1	9	17	25	33	41	49	57
$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	2	10	18	26	34	42	50	58
$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {IHP }}$	3	11	19	27	35	43	51	59
$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$	4	12	20	28	36	44	52	60
$V_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {IHP }}$	5	13	21	29	37	45	53	61
$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	6	14	22	30	38	46	54	62
$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	7	15	23	31	39	47	55	63
			D0	D1	D2	D3	D4	D5	D6	D7
			Programmed Data Input							

Table 4. PAL C 20 Series Input Term Addresses

Input Term Addresses					
Input   Terms   Numbers	Binary Addresses				
	Pin Numbers				
	(9)	(8)	(7)	(6)	(5)
0	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$V_{\text {ILP }}$
1	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$
2	$\mathrm{V}_{\text {ILP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$
3	$V_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$
4	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\mathrm{ILP}}$	$V_{\text {ILP }}$
5	$V_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$
6	$\mathrm{V}_{\mathrm{ILP}}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$
7	$V_{\text {ILP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {IHP }}$	$V_{\text {IHP }}$
8	$V_{\text {ILP }}$	$V_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$
9	$V_{\text {ILP }}$	$V_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$
10	$V_{\text {ILP }}$	$V_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {IHP }}$	$V_{\text {ILP }}$
11	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$
12	$V_{\text {ILP }}$	$V_{\text {IHP }}$	$V_{\text {IHP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$
13	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$
14	$V_{\text {ILP }}$	$V_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$
15	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {IHP }}$	$V_{\text {IHP }}$	$V_{\text {IHP }}$
16	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	VILP	VILP	$V_{\text {ILP }}$
17	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$	$V_{\text {IHP }}$
18	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$	V IHP	$V_{\text {ILP }}$
19	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {IHP }}$
20	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$
21	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$
22	$\mathrm{V}_{\mathrm{IHP}}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$
23	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {IHP }}$
24	$\mathrm{V}_{\text {IHP }}$	$V_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$
25	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {ILP }}$	$V_{\text {IHP }}$
26	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$
27	$V_{\text {IHP }}$	$V_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$
28	$\mathrm{V}_{\text {IHP }}$	$V_{\text {IHP }}$	$V_{\text {IHP }}$	$V_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$
29	$\mathrm{V}_{\text {IHP }}$	$V_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	VIHP
30	$V_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$
31	$\mathrm{V}_{\mathrm{IHP}}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$
P0	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {PP }}$	X	X
P1	$V_{\text {ILP }}$	$V_{\text {IHP }}$	$V_{\text {PP }}$	X	X
P2	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	$V_{\text {PP }}$	X	X
P3	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {PP }}$	X	X

## Implementation

A simplified block diagram of a 16 L 8 is presented in Figure 3. The method of programming and sensing is illustrated in Figure 4.

## Programming Operation

Pins 5-9 are decoded (according to Table 4) in a one of 32 decoder, whose outputs correspond to the inputs labeled 0-31 of Figure 2. For programming, 15 volts is applied to the bottom of the input term line through a weak depletion mode device (Figure 4). The EN (enable) signal to all of the three-state drivers is LOW, which prevents the normal input signals from driving the input term lines during programming. The D0-D7 inputs (pins 19 through 12) drive the program transistors ( $0,8,16,24$ etc.) as selected by pins 2, 3, 4 and as listed in Table 3. To disconnect an input term line from a product term line, the $P$ transistor is forward biased, which increases the threshold of the $\mathbf{R}$ transistor.

## Verify Operation

To verify the programmed cells, the device must go from the PROGRAM mode to the PROGRAM INHIBIT mode to the PROGRAM VERIFY mode. This is accomplished by reducing the voltage on pin 11 to VIHP (3V) and then to VILP ( 0.4 V ). Internal to the device (see Figure 4) the 1 of 32 decoder is disabled, the EN signal is LOW, and 31 of the 32 input term lines are at zero volts. The line being verified is at 5 volts. The input address lines (pins 2 through 9 ) do not need to change when going from program to verify.
The "ones" that were programmed cause the thresholds of the $\mathbf{R}$ transistors to increase, so they do not turn on during verify. Conversely, the unprogrammed transistors do turn on, so the complement (inverse) of the data programmed is read during verify.

## Normal Operation

The PAL device will implement the programmed function when there are no supervoltages applied to any of the pins. During regular PAL operation the 1 of 32 decoder and the D0-D7 decoder are disabled, the EN signal is HIGH and all 32 input term lines are at 5 volts. Under these conditions, the data at the input pins is applied to all 64 of the product term lines. If any of the $\mathbf{P}$ transistors ( 16 per product term line) had not been programmed, they will turn on and pull the lower input to the corresponding sense amplifier (SA) to 2 volts or less. This voltage will be less than the reference (Vref) so that the output of the sense amplifier will be LOW.
The reference is an unprogrammed EPROM cell that tracks the same process, voltage and temperature variations that affect all of the cells in the array. It is approximately three volts at room temperature and nominal ( 5 volts) $\mathrm{V}_{\mathrm{CC}}$.

## R <br> Pronerner



Figure 3. 16L8 Device Simplified Block Diagram


5V FOR NORMAL AND VERIFY OPERATIONS
15V FOR PROGRAMMING
0049-4
Figure 4. Programming Method

Table 6 lists both categories of failures, their relevant activation energies, Ea in eV (electron volts), and the detection method used by Cypress. In both cases, the mechanisms are aggravated by HTOL (High Temperature Operating Life) tests and HTS (High Temperature Storage) tests.
Specific EPROM failure mechanisms include charge loss, charge gain and electron trapping. Charge loss is accelerated by thermal energy and field emission effects.
Thermal charge loss failures usually occur on random bits and are often related to latent manufacturing defects.
Field emission effects are generally detected as weakly programmed cells. The high voltages used to program a "selected bit" may disturb (as a result of a defect) an "unselected bit".
Charge gain is due to electrons accumulating on a floating gate as a result of bias or voltage on the gate. This results in a reduced read margin. This mechanism is generally negligible.
Charge gain and charge loss are monitored on every Cypress die in wafer form by programming, performing a HTS test and verifying that the programmed data is retained in the device.

## Reliability

Reliability is designed into all Cypress products from the beginning by using design techniques to eliminate latchup, improve ESD and by paying careful attention to layout. In addition, all products are tested for all known types of CMOS failure mechanisms.
Failure mechanisms can be either classified as those generic to CMOS technology or those specific to EPROM devices.

Table 6. Generic CMOS Failure Mechanisms

Mechanism	Activation   Energy (eV)	Detection Method
Surface Charge	0.5 to 1.0	HTOL, Fabrication Monitors
Contamination	1.0 to 1.4	HTOL, Fabrication Monitors
Electromigration	1.0	HTOL
Micro-cracks	-	Temperature Cycling
Silicon Defects	0.3	HTOL
Oxide Breakdown	0.3	High Voltage Stress, HTOL
Hot Electron Injection	-	LTOL (Low Temp. Operating Life)
Fabrication Defects	-	Burn In
Latchup	-	High Voltage Stress, Burn In,
ESD	0.8 to 1.4	Characterization
Charge Loss	0.3 to 0.6	HTS (High Temperature Storage)
Charge Gain   (Oxide Hopping)	-	HTOL
Electron Trapping   in Gate Oxide	Program/Erase Cycle	

## Notes:

Table 6 has been adapted from, "An Evaluation of 2708, 2716, 2532, and 2732 Types of U-V EPROMS, Including Reliability and Long Term

Stability." Danish Research Center for Applied Electronics, Nov. 1980.

## HTOL Testing

High Temperature Operating Life test (or burn-in) is used to detect most generic CMOS failure mechanisms. Units are placed in sockets under bias conditions with power applied and at elevated temperatures for a specific number of hours. This test is used to weed out the "weak sisters" that would fail during the first 100 to 500 hours of operation under normal operating temperatures. HTOL tests are also used to measure parameter shifts in order to predict (and screen for) failures that would occur much later.

## HTS Testing

High Temperature Storage tests are used to thermally accelerate charge loss. These tests are performed at the wafer level and under unbiased conditions. Both pass/fail data as well as shifts in thresholds may be measured. For a more detailed discussion of charge loss screening the reader is referred to the article on EPROM reliability beginning on page 132 of the August 14, 1980, issue of Electronics magazine.
The generally accepted screening method for identifying charge loss is a 168 hour bake at $250^{\circ} \mathrm{C}$. This correlates with more than 220,000 years of normal operation at $70^{\circ} \mathrm{C}$ using a failure activation energy of 1.4 eV .

## Initial Qualification

The process in general and the EPROM cell design in particular was qualified using HTS (bake) at $250^{\circ} \mathrm{C}$ for 256 hours, in conjunction with an HTOL test at $125^{\circ} \mathrm{C}$ for 1000 hours.

## Procedure

Four wafers were erased using ultraviolet light and the linear thresholds of the cell read transistors measured at twenty-five "sites" on each wafer.
The wafers were then programmed and the linear thresholds then measured and recorded.

The wafers were alternately baked at $250^{\circ} \mathrm{C}$ and the linear thresholds measured and recorded at $0.25,0.5,1,2,4,8$, $16,32,64,128$, and 256 hours. The number of device hours is then $100 \times 256=25,600$.

## Results

The average threshold reduction due to charge loss was 0.66 volts. The range was eight to ten percent of the average initial threshold of 7.7 volts. This reduced threshold is greater than four volts above the sense amplifier voltage reference. There were no failures.
If the charge loss failure activation energy is assumed to be 1.4 eV , the HTS time of 256 hours at $250^{\circ} \mathrm{C}$ translates to 438,356 years of operation at $70^{\circ} \mathrm{C}$.

The time translations were computed using the industry standard Arrhenius equation, which converts the time to failure (operating lifetime) at one temperature and time to another temperature and time.

## Summary

Sample size: 100
Device hours: 25,600 hours
HTS conditions: 256 hours at $250^{\circ} \mathrm{C}$
Average initial threshold: 7.7 volts
Average threshold decrease: 0.66 volts
Standard deviation: 0.12
Lifetime ( 1.4 ev ): 438,356 years at $70^{\circ} \mathrm{C}$

## Conclusion

An HTS experiment, performed according to industry standard conditions, and using representative Cypress product confirms that the data retention characteristics of the EPROM cell used in all Cypress PLDs and PROMs guarantees a minimum operating lifetime of 438,356 years for activation energies of 1.4 eV .

## Production Screen

Units from the same population were assembled without being subjected to HTS and were subjected to an HTOL of 150 degrees C for 1000 hours. The units were tested at 12, $24,48,96,168,336$, and 1008 hours and the measurements recorded. Variations in the thresholds of the EPROM cells were measured and correlated to the units tested in the HTS test in order to determine a maximum acceptable rate of charge loss in order to guarantee data retention over their normal operating lifetime.

## Advantages Over Bipolar

Lower power results in several benefits to the user. They are:

- Lower capacity and, therefore, lower cost power supplies.
- Reduced cooling requirements.
- Increased long term reliability due to lower die junction temperatures.
Power dissipation may be further reduced by driving the inputs between 0.5 volts (or less) and 4 volts (or more). This reduces the power dissipation in the input TTL to CMOS buffers, which dissipate power when their inputs are between 0.8 volt and 3 volts. Each buffer draws approximately 0.8 mA of $\mathrm{I}_{\mathrm{CC}}$ current at $\mathrm{V}_{\mathrm{IN}}=2$ volts.

Programmable Logic Device Application Brief


0049-5
Figure 5. Input Protection Circuit

## Appendix

The Cypress double-layer polysilicon, single-layer metal, N-well, CMOS technology has been optimized for performance. Careful attention to design details and layout techniques has resulted in superior performance products with improved ESD input protection and improved latchup protection.

## Input ESD Protection

The circuit shown in Figure 5 is used at every input pin in all Cypress products to provide protection against ESD. This circuitry has been designed to withstand repeated applications of high voltages without failure or performance degradation. This is accomplished by preventing the high (ESD) voltage from reaching the thin gate oxides of the internal transistors.
The circuit consists of two thick oxide (field) transistors wrapped around an input resistor ( $\mathrm{R}_{\mathrm{P}}$ ) and a thin oxide (gate) transistor with a relatively low breakdown of 12 volts. Large input voltages cause the thick oxide transistors to turn on, discharging the ESD current to ground. The thin oxide transistor breaks down when the voltage across it (drain to source) exceeds 12 volts. It is protected from destruction by the current limiting action of $\mathbf{R}_{\mathbf{P}}$.
Experiments have confirmed that this input protection circuitry results in ESD protection in excess of 2001 volts.

## Definition of Latchup

Latchup is a regenerative phenomenon that occurs when the voltage at an input pin or an output pin is either raised above the power supply voltage potential or lowered below the substrate voltage potential (which is usually ground).
Current rapidly increases until, in effect, a short circuit from $\mathrm{V}_{\mathrm{CC}}$ to ground exists. If the $\left(\mathrm{V}_{\mathrm{CC}}\right)$ current is not limited it will destroy the device; usually by melting a metal trace.

## Causes of Latchup

The CMOS processing, which provides both N-channel and P-channel MOS transistors, also inherently provides parasitic bipolar transistors; both NPNs and PNPs. Latchup is caused when these parasitic transistors are inadvertently turned on.

As long as the voltages that are applied to the package pins of the CMOS IC remain within the limits of the power supply voltages (usually 0 volts to 5 volts), these parasitic bipolar transistors will remain dormant (i.e., off). However, when either negative voltages or positive voltages greater than the $\mathrm{V}_{\mathrm{CC}}$ supply voltage are applied to input or output pins, these parasitic bipolar transistors may turn on and cause latchup.

## Conditions For Latchup

A cross section of a typical CMOS inverter using a P-channel pullup transistor and an N-channel pulldown transistor is shown in Figure 6. Also shown is an N -channel output driver that is isolated from the CMOS inverter by a guard ring (channel stopper) that is necessary to prevent parasitic MOS transistors between devices. P + guard rings surround N -channel devices and $\mathrm{N}+$ guard rings surround P-channel devices. The parasitic SCR (PNPN) and bias generator are illustrated in Figure 7. The output driver schematic is not shown.
In order for latchup to occur two conditions must be satisfied; (1) the product of the betas of the NPN and PNP transistors must be greater than one, and (2) a trigger current must exist that turns on the SCR.
Since the SCR structure in bulk CMOS cannot be eliminated, preventing latchup is reduced to keeping the SCR from turning on. If either Rwell $=0$ or RSUB $=0$ the SCR cannot turn on because the base emitter junction of the PNP cannot be forward biased because they are tied together and the base emitter junction of the NPN cannot be forward biased because the base is connected to ground. Note, however, that the NPN could be turned on by a negative voltage on the output pin (if the right end of RSUB is grounded).

## Prevention of Latchup; Traditional Approaches

The traditional cures include increased horizontal spacing, diffused guard rings and metal straps to critical areas. These solutions are obviously opposite to the goal of greater density.
A brute-force approach that has been successful in reducing latchup has been to increase the conductivity of the N-well and the substrate. Changing the well

Output Driver


0049-6

Figure 6. CMOS Cross Section and Parasitic Circuits
conductivity is unacceptable because it affects the characteristics of the P-channel MOS transistors. Using an epitaxial layer to reduce the substrate resistivity ( $\mathrm{R}_{\mathbf{S U B}}$ ) is another possible solution.


0049-7

## Substrate Bias Generator $\rightarrow$ <br> Figure 7. Parasitic SCR and Bias Generator

## The Cypress Solution to Latchup

Cypress uses several design techniques in addition to careful circuit layout and conservative design rules to eliminate latchup.

## NMOS Output Pullup Transistors

Conventional CMOS technology uses a P-channel MOS as a pullup transistor on the output drivers. This has the advantage of being able to pull the output voltage HIGH level to within 100 millivolts of the positive voltage supply.

However, this is of marginal value when TTL compatibility is required. In addition, the $\mathbf{P}$-channel pullup is sensitive to overshoot and introduces another vertical PNP transistor that further compounds the latchup problem. Cypress uses N -channel pullup transistors that eliminate all of these problems and still maintain TTL compatibility.

## Substrate Bias Generator

Cypress is the first company to use a substrate bias generator with CMOS technology. The bias generator keeps the substrate at approximately -3 volts DC, which serves several purposes.

## Input Pins

The parasitic diodes shown in Figure 5 cannot be forward biased unless the voltage at an input pin is at least one diode drop more negative than -3 volts. This translates into increased device tolerance to (negative voltage) undershoot at the input pins, caused by inductance in the leads. If the undershoot is this large, the output impedance of the bias generator itself is sufficient to prevent trigger current from being generated.

## Output Pins

The same reasoning applies to negative voltages at the output pins as shown in Figure 7. In order to turn on the NPN transistor the voltage at the output pin must be at least one VBE more negative than -3 volts.

## Guard Ring

To protect the "core" of the die from free floating holes and stray currents, a diffused collection guard ring that is strapped with metal and connected to the bias generator is used. This provides an effective wall against transient currents that could cause mis-reading of the EPROM cells.

## PAL ${ }^{\circledR}$ C 16R6 Design Example: GCR Encoder/Decoder

## Introduction

Digital encoding and decoding of data is often used to increase the reliability of data transmission and storage. One area where digital techniques are employed is the transformation between data stored on one-quarter inch magnetic tape and serial digital data.
This document describes the procedure used to encode/decode serial digital data for recording/reading from one-quarter inch magnetic tape using a Cypress CMOS PAL C 16R6 to implement the logic.

## History

The recording format and the Group Code Recording (GCR) code have been adopted and incorporated in a series of standards by a committee called the QIC (Quarter Inch Cartridge) Committee, composed of manufacturers
and users of quarter inch tapes and cartridges. The purpose of the committee is to insure compatibility between manufacturers and reliability to end users.
Quarter inch tape cartridges are used extensively to backup or archive data from hard disks. Most drives are operated in a continuous or streaming mode (for reasons that will be discussed later) and data is recorded at 10,000 FRPS (Flux Reversals Per Inch) in a serpentine manner on seven to fourteen channels. The tape moves at 30 to 90 ips (inches per second) and the error rates achieved are one in $10^{9}$ or 1010. A cartridge holds 2000 to 3000 feet of tape 0.001 inch thick and stores 20 to 80 million bytes (mega-bytes) of data.

## Typical System

A block diagram of a typical system is shown in Figure 1. The interface between the Host (or Host Adapter) is bi-


Figure 1. A Typical Tape Drive System

PAL® is a registered trademark of Monolithic Memories Inc. ABELTM is a trademark of Data I/O Corporation PALASMTM is a trademark of Monolithic Memories Inc. VAXTM is a trademark of Digital Equipment Corp. WORDSTARTM is a trademark of MicroPro International

## Typical System (Continued)

directional, with a byte-wide data path and 10 to 20 control signals, depending upon the interface standard. Data rates are 300 KBs (thousand Bytes per second) to 1 MBs (Million Bytes per second).
The Formatter or Tape Controller performs serial/parallel conversion and encoding/decoding of the data as well as error checking and, in some cases, error correcting. Control is usually provided by a state machine that handles the handshaking between the host as well as control of the tape. Data is written in blocks of various lengths (depending upon the standard) and a "read after write" check is usually performed. Buffer storage of at least two blocks of data is usually provided using static RAMs (SRAMs), FIFOs, or some combination of the two.
The Drive electronics consist of digital signals that control and sense the tape motion and analog signals in the read and write paths. The interface between the Drive and the Formatter is digital and, once again, there are various standards.

## Reading and Writing on Tape

To write on the tape a current of 100 mA or less is used to change the direction of magnetization. To read from the tape a coil of wire (the read head) is held against the tape and a voltage ( 10 mV or less) is induced by the change in direction of the magnetic flux on the tape.

## Recording Codes

All codes used for recording on magnetic mediums are classified as Franaszek Run Length Limited (RLL) codes of the form:
(D, K)
where $\mathbf{D}=$ the minimum number of zeros between consecutive ones, and
$K=$ the maximum number of zeros between consecutive ones.
D controls the highest frequency that can be recorded and $K$ controls the lowest frequency.

Using the Franaszek notation, the GCR code is (1, 2). As illustrated in Figure 2, a flux reversal signifies a one and the absence of a flux reversal signifies a zero. This is true for all codes.

## Peak Detection and Data Separation

Peaks are detected (versus zero crossings) because the circuits used are less sensitive to noise. The output of the peak detector goes to the most critical analog circuit in the drive; the data separator.
The function of the data separator is to provide ones and zeros that occur at a precise frequency. It does this by first synchronizing itself to a crystal controlled reference clock and then attempting to "lock" itself to the maximum data frequency on the tape by finding the phase difference between itself and the data output of the peak detector and driving a voltage controlled oscillator (VCO) such that they are equal. This is called a Phase Locked Loop (PLL). The frequency of the reference clock must be at least twice (2f) that of the highest frequency that is to be read (f).
The PLL is synchronized to the $2 f$ reference frequency when it is not in use. A string of ones is recorded, which is called the preamble, before the block of data is recorded. When the command to read is given, the 2 f reference frequency is removed from the data separator and the signal from the peak detector is applied to the data separator. The PLL then attempts to "lock" to the preamble. Just after the preamble, a code violation is recorded so that the Formatter can recognize where valid data begins. The procedure of locking onto the preamble is called "getting bit sync." The detection of the code violation is called "obtaining byte sync".
PLLs typically exhibit frequency and phase offsets during acquisition of the preamble. Phase errors also occur after lock, during the reading of the data field. Differences in tape speed during record and playback (as well as from unit to unit) result in frequency differences between the data read from the tape and the 2 f reference.
Random phase errors caused by noise, intersymbol interference (bit crowding), timing errors and other transients may also get the PLL out of lock.
The data separator's PLL is susceptible to these errors because it must satisfy two conflicting conditions: (1) it must


Figure 2

## Reading and Writing on Tape (Continued)

lock quickly enough to detect the preamble, but (2) it must not overcorrect phase for a single misaligned bit.
Strings of zeros cause the phase of the PLL to shift and if the shift is larger than the "bit window", an error will occur. The QIC-24 standard calls for up to $37 \%$ bit shift tolerance, which means that the data separator must be able to recognize a "one" (flux transversal) that deviates $\pm 18.5 \%$ from its expected time position without causing a data error. In order to achieve this performance a four-bit binary nibble is encoded into a five-bit "GCR code word" that is written onto the tape.

## Reasons for the GCR Code

The 5-bit GCR code format is required to encode the data such that no more than two consecutive zeros occur in the serial data. This encoding relaxes the performance requirements of the PLL and the loop filter so that the desired system performance can be achieved.

## Static Tolerances

Another reason for GCR encoding is to compensate for the speed variation of the tape due to:

## Mechanical Tolerances

Cartridge
Tape thickness ( $\pm 3 \%$ )
Tape Elasticity and Wear
Motor Speed Variation
Temperature and Humidity
The preceding static tolerances can result in a $\pm 10 \%$ speed variation of the tape.

## Dynamic Tolerances

In addition to the static tolerances, there are Instantaneous Speed Variations (ISV) due to discontinuous tape release at the unwind spool ( $10-20 \%$ ), guide/back stick slip ( $5 \%$ ) and shuffle ISV (vibration) due to start/stop ( $5-30 \%$ ). The shuffle ISV can be avoided by operating the tape in a continuous (streaming) mode. If these dynamic tolerances are added together they can result in a $\pm 15 \%$ speed variation.

## Electronics Compensate

The electronics in the tape controller and the drive are designed to compensate for the tape speed variations due to the mechanical tolerances.
The compensation is performed by:
Data Encoding and Error Detection and Correction
Phase Locked Loop Design
Bit Window Tolerance

## Sequence of Operations

During a write operation the following sequence occurs:

1. Idle (Hold)
2. Convert 4-bit parallel input to 5 -bit GCR code and load into 5 -bit register.
3. Shift out 5 -bits to write amplifier.

During a read operation the following sequence occurs:

1. Idle (same as during write)
2. Shift in 5 -bits.
3. Detect sync mark

## Set/Clear invalid flag

Convert 5 -bit serial input to 4 -bit binary value and load into register.
Note: that the read clock and the write clock are not the same.
Also, the logic must keep up with the tape data rate.
And finally, the read and write operations are mutually exclusive so that the storage elements ( D flip-flops) can be time-shared and that read and write operations require 5 clocks.
A total of 5 states are required because the idle state is common to both read and write operations. Therefore, 3 control lines will be required. It is convenient to designate one control line as an enable line (active LOW) and the other two lines as Mode Control signals.
The control of these lines is not described here, nor is the required clock synchronization. The reason for not doing this is that at the next level of control, system considerations such as what action to take when errors occur must be implemented in hardware and these tend to be not only application dependent but also very subjective.
The diagrams of Figure 3 show the flow of data under the control of the ENABLE signal and the M0 and M1 mode control signals.

## The GCR Code

The GCR code is part of the QIC-24 Standard and is also the ANSI X3.54 standard (1976). The MSB (leftmost bit) is recorded first. Note that there are a maximum of two consecutive zeros in the five-bit code that is recorded on the tape.

Line Number (For Ref.)	4-Bit Code				5-Bit Code				
	D	D	D	D	Y	Y	Y	Y	S
	3	2	1	0	3	2	1	0	
0	0	0	0	0	1	1	0	0	1
1	0	0	0	1	1	1	0	1	1
2	0	0	1	0	1	0	0	1	0
3	0	0	1	1	1	0	0	1	1
4	0	1	0	0	1	1	1	0	1
5	0	1	0	1	1	0	1	0	1
6	0	1	1	0	1	0	1	1	0
7	0	1	1	1	1	0	1	1	1
8	1	0	0	0	1	1	0	1	0
9	1	0	0	1	0	1	0	0	1
10	1	0	1	0	0	1	0	1	0
11	1	0	1	1	0	1	0	1	1
12	1	1	0	0	1	1	1	1	0
13	1	1	0	1	0	1	1	0	1
14	1	1	1	0	0	1	1	1	0
15	1	1	1	1	0	1	1	1	1
	A	A	A	A	B	B	B	B	B
	3	2	1	0	0	1	2	3	4

Figure 4. GCR Code


0
$\begin{array}{lll}0 & 0 & \text { SERIAL } \\ \text { SHIFT IN }\end{array}$

$\begin{array}{llll}0 & 1 & 0 & \begin{array}{l}\text { CONVERT } \\ 5-\text { BIT TO }\end{array}\end{array}$

$0 \quad 01$ SERIAL
SHIFT OUT


10

0060-3
Figure 3. Data Flow Diagrams

## Design Procedure

The design procedure will be to map the code conversions using Venn diagrams and write the logic equations as the "sum of products" or in minterm form. Six flip-flops are required, so the logic will be implemented using a PAL C 16R6. Because the PAL device has inverting output buffers, the zeros will be mapped. The $\mathbf{D}$ flip-flops require an "extra term" for them to hold their states when the ENABLE is HIGH.
For example, for a conventional D flip-flop the form of the logic equations would be:

$$
\begin{array}{rlrl}
\text { D }= & \text { ENABLE 1 ( Q ) } & \begin{array}{l}
\text {; RECIRCULATE } \\
\text { PRESENT }
\end{array} \\
& +\quad \text { ENABLE 2 (F2) } & \text { STATE } \\
& +\operatorname{FUNCION} 2 \\
& \text { ENABLE 3( F3 }) & ; \text { FUNCTION 3 }
\end{array}
$$

Where the ENABLE controls are mutually exclusive.

## 4-Bit to 5-Bit Conversion for Y3 Output

In Figure 4 (at the bottom) the 5 -bit code columns are labeled B0 through B4 to help the reader understand how the 4 -bit code is mapped. In addition, the line numbers are labeled 0 through 15, which correspond to the values of the 4-bit binary code.
Figure $5 a$ shows how the 4 -bit binary code is mapped on the Venn diagram. For example, reference line number zero, which corresponds to binary value zero, is located in the lower right hand corner of Figure $5 a$.
The Venn diagram of Figure $5 b$ shows the conversion for the $\bar{Y} 3$ output. It is labeled the $\mathbf{B 0} 0$ input to the $\mathbf{D}$ flip-flop. Note that the parallel nibble (see Figure 3) is reversed (end for end) so that the MSB is written first when it is shifted out.


0060-4
Figure 5a. Binary Values


0060-5 Figure 5b. $\overline{\mathbf{Y}} \mathbf{~ M a p}$
In Figure 5b, the ones and zeros in column B0 are mapped. For example, reference line zero has the value 1 in column BO of Figure 4. Therefore, a one is placed in the square corresponding to binary value zero in Figure $5 b$. In a similar manner, ref. line 15 has a value of zero in column BO, so a zero is placed in the square corresponding to binary value fifteen.

## Writing the Equation

If the output of the PAL C 16R6 were positive true logic, we would write the equation to include all of the ones on the Venn diagram. However, because the PAL device output is negative logic (active LOW) we will write the equation to include all of the zeros. Then, when the PAL device inverts the signals, the zeros will be changed to ones, so that the final outputs will be positive true logic.
By inspection:

$$
\begin{aligned}
& \overline{\mathrm{B} 0}=\mathrm{D} 3 \mathrm{D} 0+\mathrm{D} 3 \mathrm{D} 1 \text { or }, \\
& \overline{\mathrm{Y} 3}=\mathrm{D} 3 \mathrm{D} 0+\mathrm{D} 3 \mathrm{D} 1
\end{aligned}
$$

SEMICONDUCTOR

## Design Procedure (Continued)

## 4-Bit to 5-Bit Conversions for $\overline{\mathbf{Y 2}}, \overline{\mathbf{Y 1}}, \overline{\mathbf{Y}}, \overline{\mathbf{S o}}$

These are presented for the sake of completeness.


$$
\overline{\mathrm{Y} 2}=\overline{\mathrm{B} 1}=\overline{\mathrm{D} 3} \mathrm{D} 1+\overline{\mathrm{D} 3} \mathrm{D} 2 \mathrm{D} 0
$$

Figure 5c. $\overline{\mathbf{Y 2}}$ Map


0060-8

$$
\overline{\mathrm{Y} 0}=\overline{\mathrm{B} 3}=\overline{\mathrm{D} 3} \overline{\mathrm{D} 1} \overline{\mathrm{D} 0}+\mathrm{D} 3 \overline{\mathrm{D} 1} \mathrm{D} 0+\mathrm{D} 2 \overline{\mathrm{D} 1} \mathrm{D} 0
$$

Figure 5e. $\overline{\mathbf{Y 0}}$ Map

## 5-Bit to 4-Bit Conversion for $\overline{\mathbf{Y}}$ Outputs

This conversion requires two 16 square Venn diagrams because there are $2^{5}=32$ possible binary values. However, note that in Figure 4 not all 32 possible combinations are used in the 5-bit code columns. These unused combinations are "don't cares", which are represented by Xs in the


0060-7

$$
\overline{\mathrm{Y} 1}=\overline{\mathrm{B} 2}=\overline{\mathrm{D} 2}
$$

Figure 5d. $\overline{\text { Y1 Map }}$


$$
\begin{gathered}
\overline{\text { So }}=\overline{\mathrm{B} 4}=\mathrm{D} 1 \overline{\overline{\mathrm{D}}}+\mathrm{D} 3 \overline{\mathrm{D} 0} \\
\text { Figure 5f. } \overline{\text { So }} \text { Map }
\end{gathered}
$$

Venn diagrams, which can be either ones or zeros, which further reduces or simplifies the logic equations.
The procedure is: plot the 1 s and 0 s put Xs in the blank squares write the equations for the zeros.


Figure 6b

$\overline{\mathrm{Y} 1}=\overline{\mathrm{A} 1}=\overline{\mathrm{Y} 0}+\mathrm{Y} 3 \mathrm{Y} 2$
0060-12
Figure 6c


$S 0=1$

$$
\overline{\mathrm{YO}}=\overline{\mathrm{A} 0}=\mathrm{Y} 3 \mathrm{Y} 2 \overline{\mathrm{YO}}+\overline{\mathrm{So}}
$$

Figure 6d

## Design Procedure (Continued)

## Serial Shift In

During serial shift in (both mode control signals LOW) the data output of the data separator is applied to the input of the formatter. The signal is called SIN and is applied to the D input of the SOUT flip-flop. The output of the SOUT flip-flop is applied to the $\mathbf{D}$ input of the Y0 flip-flop and its output is applied to the input of the Y1 flip-flop, etc. After five read clocks the MSB of the 5-bit GCR coded data is in Y3 and the LSB is in SOUT.

## Serial Shift Out

During a write operation, after the 4-bit data is converted to 5-bit data and reversed, it is shifted out using the write clock and written on tape. The shift direction is opposite to that in Serial Shift In. Note that it is right shifted "end around" (see Figure 3) so that after 5 write clocks the same data appears in the register.

## Invalid Flag (INV Flip-Flop)

The Invalid flip-flop is set to a one when an invalid 5-bit code is read from the tape. This is used to tell the tape Formatter that the next data read is the beginning of the data block. This procedure is called getting "byte sync." INV is a negative true signal, so the logic equations are written for ones on the Venn diagram.
The 16 binary values that are NOT listed in Figure 4 are plotted as ones in Figure 7. The procedure was to plot zeros in the squares where there were valid 5 -bit codes, then fill the rest with ones and then write the equation for the ones.
The Invalid flip-flop is enabled by a signal called CIF (Control Invalid Flag) and reset when CIF is LOW.

## Synchronization Mark Detection

Bit synchronization is achieved when the illegal 5-bit code of all ones is read from the tape. It is the logical AND of all five bits, or $\mathrm{BS}=\mathrm{Y} 3 \bullet \mathrm{Y} 2 \bullet \mathrm{Y} 1 \bullet \mathrm{Y} 0 \bullet \mathrm{SOUT}$.

## Implementation Procedure

Once the conceptual design has been completed, it must be reduced to practice. There are two main steps in the process;

1. describe the logic using a high-level language, and
2. program the PAL device.

Several programs that run on the IBM PC (or equivalent) or the VAXTM computer are available from either semiconductor manufacturers or from third party software vendors. The first such program, called PALASMTM (PAL device Assembler) was developed by Monolithic Memories. It enables the designer to describe the logic in terms of Boolean equations, truth tables, or state diagrams using a language whose syntax is comparable to a microcomputer assembly language.

## PALASM Equations

The equations were written in the PALASM syntax. The (ASCII) file created using WORDSTAR in the non-document (N) mode is shown in Figure 8.

## Conversion to ABELTM

The PALASM file (GCREX.PAL) was then translated to ABEL syntax using the TOABEL program. The format of the command is:

TOABEL -IB:GCREX -OB:GCREXT
The TOABEL program converted the GCREX.PAL file to a file named GCREXT.ABL, whose listing is shown in Figure 9.


Figure 7

## ABEL Program Procedure

The ABEL program consists of an executive and several overlay programs that are executed by simply typing in;

## ABEL B:GCREXT

followed by an enter (CR) from the keyboard of an IBM (or look-alike) PC. The ABEL program was developed by a programmer manufacturer, Data I/O Corporation. The source file may be simplified (logic reduction), a logic simulation may be performed, and test vectors may be generated.

## ABEL Programs

The ABEL programs are:

Program Name	Function
PARSE	Read source file, check syntax, expand   macros, act upon assembler directives.
TRANSFOR	Convert the description to an intermediate   form.
REDUCE	Perform logic reduction.
FUSEMAP	Create the programmer load (JEDEC) file.
SIMULATE	Simulate the operation of a programmed   device.
DOCUMENT	Create a design documentation file.

## ABEL Outputs

The output files are:
GCREXT.LST
GCREXT.OUT
GCREXT.DOC
GCREXT.SIM
P16R6.JED
see Figure 10
(This design was not simulated.) see Figure 11

The last file is in JEDEC (JC-42.1-81-62) format; suitable for loading into a PLD programmer. The listing is shown in Figure 11. The DOCUMENT program output is shown in Figure 10.

## Programming the 16R6

The 16R6 was programmed using the Data I/O model 29B programmer operated in the remote mode to the PC. The design was then verified by checking out the device on the bench.

## Summary

## Space Saving Advantage

This design example illustrates the space saving advantage of Cypress CMOS PAL devices. The FUSEMAP program printed out that 40 of the 64 available product terms were used.
If the PALASM input equations of Figure 8 are implemented in two-input gates, approximately thirty gates are required for each one of the six $D$ flip-flop inputs, or a total of $6 \times 30=180$ two-input gates. The logic equations alone would then require 180 divided by $4=4514$ pin DIPs. The six flip-flops would require three 14 pin DIPs for a total of 48 DIPs. This example demonstrates the power of the Cypress PAL devices.

## Power Saving Advantage

The maximum $I_{C C}$ current, under worst case conditions, for the PAL C 16R6L-25PC is 45 mA .
If the typical $I_{C C}$ per package is assumed to be 10 mA , the total ICC for 50 TTL packages would be 500 mA .
The worst case ICC for the TTL system could be as high as 20 mA per DIP, which would mean a total of one Ampere for the system.
The Cypress CMOS PAL device results in a system power reduction of between a factor of 10 or 15 , depending upon whether typical or worst case numbers are compared.

FILENAME; GCREX.PAL
BRUCE WENNIGER 9/17/85

## PAL16R6

4B-5B ENCODER/DECODER
CYPRESS SEMICONDUCTOR

| CK M1 MO D3 D2 D1 DO | /EN | /CIF GND |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| /E | SIN /INV YO Y1 Y2 Y3 SOUT /BS VCC |  |


/SOUT: = EN*/SOUT	
	/EN*/M1*/MO*/SIN
	/EN* / M ${ }^{*}$ MO*/YO
	/EN*/M1*/MO*/SIN
	/EN*/M1* MO* DI*/DO


+	$;$ HOLD/RECIRCULATE
+	; SERIAL SHIFT IN
+	; SERIAL SHIFT OUT
+	; CONV. SIN \& LOAD
+	CONV. PAR. \& LOAD
	DITTO

Figure 8

## PALASM Equations (Continued)

/YO	$:=E N^{*} / \mathrm{YO}$	+	; HOLD
	/EN*/M1*/M0*/SOUT	+	; SERIAL SHIFT IN
	/EN*/M1* MO*/Y1	+	; SERIAL SHIFT OUT
	/EN* M1*/MO*/SOUT	+	; CONV. SIN \& LOAD
	/EN* M1*/MO* Y3* Y2*/YO	+	; DITTO
	/EN* M1* MO* D2*/D1*D0	+	; CONV. PAR. \& LOAD
	/EN* M1* MO* D3*/D1* DO	+	; DITTO
	/EN* M1* MO*/D3*/D1*/D0		; DITTO
/Y1	$:=E N^{*} / \mathrm{Yl}$	+	; HOLD
	/EN*/M1*/MO*/YO	+	; SERIAL SHIFT IN
	/EN*/M1* MO*/Y2	+	; SERIAL SHIFT OUT
	/EN* M1*/MO*/YO	+	; CONV. SIN \& LOAD
	/EN* M1*/M0* Y3* Y2	+	; DITTO
	/EN* M1* MO*/D2		; CONV. PAR. \& LOAD
/Y2	:= EN*/Y2	+	; HOLD
	/EN*/M1*/MO*/Y1	+	; SERIAL SHIFT IN
	/EN*/M1* MO*/Y3	+	; SERIAL SHIFT OUT
	/EN* M1*/MO*/Y1	+	; CONV. SIN \& LOAD
	/EN* M1* MO*/D3* Dl	+	; CONV. PAR. \& LOAD
	/EN* M1* M0*/D3* D2* DO		; DITTO
/Y3	$:=\mathrm{EN}^{*} / \mathrm{Y} 3$	+	; HOLD
	/EN*/M1*/MO*/Y2	+	; SERIAL SHIFT IN
	/EN*/M1* MO*/SOUT	+	; SERIAL SHIFT OUT
	/EN* M1*/MO* Y3* SOUT	+	; CONV. SIN \& LOAD
	/EN* M1*/MO*/Y2	+	; DITTO
	/EN* M1* MO* D3* DO	+	; CONV. PAR. \& LOAD
	/EN* M1* MO* D3* Dl		; DITTO
INV	$:=/$ CIF** * INV	+	; HOLD INV FLAG   ; (ACTIVE LOW)
	CIF* M1*/MO*/Y3*/Y2	+	; SET IF INVALID
	CIF* M1*/ $\mathrm{MO}^{*} / \mathrm{Y} 3 / \mathrm{Yl}$ / $/ \mathrm{YO}$	+	; DITT0
	CIF* M1*/MO*/YO*/SOUT	+	; DITTO
	CIF* M1*/MO* Y3* Y2* Y1* YO* SOUT	+	; DITT0
BS	$=\mathrm{Y} 3^{*} \mathrm{Y} 2^{*} \mathrm{Y} 1^{*} \mathrm{Y} \mathrm{O}^{*}$ SOUT		$\begin{aligned} & \text {; BIT SYNC. } \\ & \text {; (ACTIVE LOW) } \end{aligned}$

Figure 8 (Continued)

## ABEL Listing

```
module --gcrext;
 flag '-r0;
```

title
'PALl6R6

DESIGN EXAMPLE
FILENAME: GCREX.PAL
BRUCE WENNIGER 9/17/85
4B-5B ENCODER/DECODER CYPRESS SEMICONDUCTOR
-Translated by TOABEL-'; Pl6R6 device 'Pl6R6';

```
 "declarations
```

$$
\begin{aligned}
& \text { TRUE, FALSE }=1,0 \text {; } \\
& \mathrm{H}, \mathrm{I}=1,0 \text {; } \\
& \mathrm{X}, \mathrm{Z}, \mathrm{C}=. \mathrm{X} ., \mathrm{Z} ., . \mathrm{C} . ; \\
& \text { GND, VCC } \\
& \text { pin 10,20; } \\
& \text { CK, M1, MO, D3, D2, D1 , DO ,EN, CIF, E } \\
& \text { pin } 1,2,3,4,5,6,7,8,9,11 \text {; } \\
& \text { INV, YO, Y1, Y2, Y3, SOUT } \\
& \text { pin } 13,14,15,16,17,18 ; \\
& \text { SIN, BS } \\
& \text { pin 12,19; }
\end{aligned}
$$

equations
!SOUT $:=$ !EN \& !SOUT
\# EN \& !MI \& !MO \& !SIN
\# EN \& !M1 \& MO \& !YO
\# EN \& MI \& !MO \& !SIN
\# EN \& MI \& MO \& DI \& !DO
\# EN \& M1 \& MO \& D3 \& !DO ;
" HOLD/RECIRCULATE
" SERIAL SHIFT IN
" SERIAL SHIFT OUT
" CONV. SIN \& LOAD
" CONV. PAR. \& LOAD
" DITTO
!YO := !EN \& !YO
\# EN \& !M1 \& !MO \& !SOUT
\# EN \& !M1 \& MO \& !Y1
\# EN \& MI \& !MO \& !SOUT
\# EN \& M1 \& !MO \& Y3 \& Y2 \& !YO
\# EN \& M1 \& MO \& D2 \& !D1 \& DO
\# EN \& M1 \& MO \& D3 \& !D1 \& DO
\# EN \& M1 \& MO \& !D3 \& !D1 \& !DO;
Figure 9

ABEL Listing (Continued)

```
" HOLD
" SERIAL SHIFT IN
" SERIAL SHIFT OUT
" CONV. SIN & LOAD
"DITTO
"CONV. PAR. & LOAD
"DITTO
"DITTO
!Y1 := !EN & !Y1
 # EN & !M1 & !MO & !YO
 # EN & !M1 & MO & !Y2
 # EN & ML & !MO & !YO
 # EN & M1 & !MO & Y3 & Y2
 # EN & MI & MO & !D2 ;
"HOLD
"SERIAL SHIFT IN
"SERIAL SHIFT OUT
"CONV. SIN & LOAD
"DITTO
"CONV. PAR. & LOAD
!Y2 := !EN & !Y2
 # EN & !MI & !MO & !YI
 # EN & !M1 & MO & !Y3
 # EN & Ml & !MO & !Yl
 # EN & M1 & MO & !D3 & Dl
 # EN & M1 & MO & !D3 & D2 & DO
"HOLD
"SERIAL SHIFT IN
"SERIAL SHIFT OUT
"CONV. SIN & LOAD
"CONV. PAR. & LOAD
"DITTO
!Y3 := !EN & !Y3
 # EN & !M1 & !MO & !Y2
 # EN & !Ml & MO & !SOUT
 # EN & MI & !MO & Y3 & SOUT
 # EN & M1 & !MO & !Y2
 # EN & M1 & MO & D3 & DO
 # EN & M1 & MO & D3 & D1 ;
```

Figure 9 (Continued)

ABEL Listing (Continued)
"HOLD
"SERIAL SHIFT IN
"SERIAL SHIFT OUT
"CONV. SIN \& LOAD
"DITTO
"CONV. PAR. \& LOAD
"DITTO
!INV := CIF \& !INV
\# !CIF \& M1 \& ! MO \& ! $\mathrm{Y} 3 \&$ ! Y 2
\# !CIF \& M1 \& ! MO \& ! Y 3 \& ! Yl \& ! YO
\# !CIF \& Ml \& !MO \& !YO \& !SOUT
\# ! CIF \& M1 \& ! MO \& Y3 \& Y2 \& Y1 \& YO \& SOUT ;
" HOLD INV FLAG
" SET IF INVALID
" DItTo
" DITTO
" Ditto
!BS = Y3 \& Y2 \& Y1 \& YO \& SOUT;
" BIT SYNC.
end --gcrext;
Figure 9 (Continued)

## Document File

```
ABELTM Version 1.10 - Document Generator
PALI6R6 DESIGN EXAMPLE
```

Page 1
17-Sept-85 8:30 AM
FILENAME; GCREX.PAL

```
PAT001
BRUCE WENNIGER 9/17/85
```

4B-5B ENCODER/DECODER
CYPRESS SEMICONDUCTOR
-Translated by TOABEL-
Equations for Module --gcrext
Device Pl6R6

```
Reduced Equations:
SOUT := !(!EN & !SOUT
 # EN & !MO & !MI & !SIN
 # EN & MO & !MI & !YO
 # EN & !MO & M1 & !SIN
 # !DO & Dl & EN & MO & M1
 # !DO & D3 & EN & MO & MI);
YO := !(!EN & !YO
 # EN & !MO & !M1 & !SOUT
 # EN & MO & !M1 & !Yl
 # EN & !MO & M1 & !SOUT
 # EN & !MO & M1 & !YO & Y2 & Y3
 # DO & !Dl & D2 & EN & MO & ML
 # DO & !D1 & D3 & EN & MO & M1
 # !DO & !DI & !D3 & EN & MO & MI);
Y1 := !(!EN & !Y1
 # EN & !MO & !M1 & !YO
 # EN & MO & !M1 & !Y2
 # EN & !MO & MI & !YO
 # EN & !MO & M1 & Y2 & Y3
 # !D2 & EN & MO & M1);
Y2 := !(!EN & !Y2
 # EN & !MO & !M1 & !Yl
 # EN & MO & !M1 & !Y3
 # EN & !MO & M1 & !Yl
 # Dl & !D3 & EN & MO & M1
 # DO & D2 & !D3 & EN & MO & M1);
Y3 := !(!EN & !Y3
 # EN & !MO & !M1 & !Y2
 # EN & MO & !M1 & !SOUT
 # EN & !MO & M1 & SOUT & Y3
 # EN & !MO & M1 & !Y2
 # DO & D3 & EN & MO & M1
 # D1 & D3 & EN & MO & M1);
 INV = !(CIF & !INV
```

Document File (Continued)
ABELTM VERSION 1.10 - Document Generator
PAL16R6
DESIGN EXAMPLE
PATOO1
4B-5B ENCODER/DECODER
CYPRESS SEMICONDUCTOR
-Translated by TOABEL-
Equations for Module --gerext
Device Pl6R6

```
 # !CIF & !MO & M1 & !Y2 & !Y3
 # !CIF & !MO & M1 & !YO & !Yl & !Y3
 # !CIF & !MO & Ml & !SOUT & !YO
 # !CIF & !MO & M1 & SOUT & YO & Y1 & Y2 & Y3);
 BS = !(SOUT & YO & Y1 & Y2 & Y3);
```

Chip diagram for Module --gcrext
Device Pl6R6

Figure 10 (Continued)
PAL C 16R6


0060-15
end of module --gcrext

## JEDEC File

ABELTM Version 1.10 JEDEC file for: Pl6R6

Created on: 17-Sept-85 8:30 AM
PALI6R6 DESIGN EXAMPLE FILENAME: GCREX.PAL PAT001

4B-5B ENCODER/DECODER
CYPRESS SEMICONDUCTOR
-Translated by TOABEL-*
QP20* QF2048*
L0000
11111111111111111111111111111 11111101110111011101110111111111 00000000000000000000000000000000 00000000000000000000000000000000 00000000000000000000000000000000 00000000000000000000000000000000 00000000000000000000000000000000 00000000000000000000000000000000 11111110111111111111111110111111 10111011111111111111111101111110 1011011111111111111111001111111 011110111111111111111110111110 0111011111111110111101101111111 01110111011111111111101101111111 00000000000000000000000000000000 00000000000000000000000000000000 11111111111011111111111110111111 10111011111111101111111101111111 101101101111111111111110111111 01111001110111111111111101111111 01111011111111101111111101111111 0111011101111111111101110111111 01110111011111110111111101111111 00000000000000000000000000000000 00000000000000000000000000000000 11111111111011111111111110111111 10111011111111101111111101111111 10110110111111111111111101111111 01111001110111111111111101111111 01111011111111011111110111111 01111111111111111111011101111111 01110111011111110111111101111111 00000000000000000000000000000000 11111111111111101111111110111111

BRUCE WENNIGER 9/17/85

Figure 11

[^27]Figure 11 (Continued)

## Understanding FIFOs

## Introduction

FIFO is an acronym for First-In-First-Out.
In digital electronics, a FIFO is a buffer memory that is organized such that the first data entered into the memory is also the first data removed from the memory.

## History of FIFOs

## Software FIFOs

Software FIFOs have been (and are being) used extensively in computer programs where tasks are placed in queues waiting for execution. In the programmers' language the program (process) that puts data into the memory is a "producer" and the program that takes data out is a "consumer". Obviously the producer and the consumer cannot access the memory simultaneously. It is the responsibility of the programmer to insure that contention does not occur. Data transfer via a shared memory is a standard programming technique but it is not feasible to have the processor in the data path for data rates greater than 5 Megabytes per second (MB/s). For higher data rates DMA, FIFO, or some combination of the two techniques are used to transfer information.

## Hardware FIFOs

In the design of systems, once procedures are standardized and verified in software, the software can be replaced with hardware. The benefits of doing this are improved performance, reduced software, ease of design and usually reduced costs.

## Register Array

The first hardware FIFOs were of the "register array" architecture and included the serializer/deserializer (SERDES) within the IC. As they evolved, and due to the ubiquitous microprocessor, the parallel input and parallel output configuration became the standard. For applications that required SERDES users added external shift registers.

The method of transferring data from one register to another is called a "bucket brigade". The transfer is controlled by a "valid data" bit (one per word) that designates which words have been written into but not yet read from and combinatorial control logic. The time for this logic to propagate a word of data from the input to the output of an initially empty FIFO is called "fallthrough time".

## Dual Port Ram

The "second generation" of FIFOs are of the "dual port RAM" architecture. In order to achieve truly independent, asynchronous operation of inputs and outputs, the capability to read and write simultaneously must be designed into the basic memory cell.

The fallthrough time present in the register array organization is eliminated by the RAM architecture. However, the RAM must be (internally) addressed, which requires two pointers. One points to the location to be written into and the other points to the location to be read from. In addition, a bit is required for every FIFO word to designate which words have been written to but not yet read.

## Applications

FIFOs are used as building blocks in applications where equipment that are operating at different data rates must communicate with each other, i.e., where data must be stored temporarily or buffered.

## These include:

- Word processing systems
- Terminals
- Communications systems; including Local Area Networks
- EDP, CPU, and peripheral equipment; including disk controllers and streaming tape controllers


## The Ideal FIFO

The characteristics of an ideal FIFO are:

## INPUTS

- Infinitely variable input frequency ( 0 to infinity)
- Infinitely variable input handshaking signals

OUTPUTS

- Infinitely variable output frequency
- Infinitely variable output handshaking signals


## The Ideal FIFO (Continued)

## вотн

- Inputs and outputs are completely independent and asynchronous to each other, except that over-run or under-run are not possible.


## STATUS INDICATORS

- Full/empty
- One-half full, $1 / 4$ full, $1 / 4$ empty


## LATENCY

- The latency should be zero. In other words, the data should be available at the FIFO outputs as soon as it is written. In the empty condition this would be the next cycle.


## EXPANSION

- Expandable word length and depth without external logic and without performance degradation.


## NO FALLTHROUGH OR BUBBLETHROUGH TIME

## Analysis of Present Architectures

## Register Array

The first Integrated Circuit FIFOs were an extension of the simplest FIFO of all; a serial shift register.

## Input Stage

As illustrated in Figure 1, the input stage is a one word by m -bit parallel shift register that is under control of the input handshaking signals SI (Shift In) and IR (Input Ready).

## Output Stage

The output stage is also a one word by m-bit parallel shift register that is under control of the output handshaking signals OR (Output Ready) and SO (Shift Out).

## Register Array

The middle $\mathrm{N}-2 \mathrm{X}$ m-bit registers are controlled by signals derived from the preceding control signals.

## Valid Data

A flag bit is associated with each word of the FIFO in order to tell whether or not the data stored in that word is valid. The usual convention is to set the bit to a one when the data is written and to clear it when the data is read.

## Fallthrough and Bubblethrough

The preceding statements regarding input and output stages are not precisely correct under two special conditions, which occur when the FIFO is empty and full:

## EMPTY CONDITION - FALLTHROUGH

In the empty condition the data must enter the input stage and propagate to the output stage. This is called Fallthrough time and it limits the output data rate.

## FULL CONDITION - BUBBLETHROUGH

When the FIFO is full and one word is read, all of the remaining words must move down one word (or the empty word must propagate to the input). This is called Bubblethrough time and it limits the input data rate.
As we shall see, Bubblethrough time and Fallthrough time are usually equal because the same logic is used.

## Dual Port RAM Architecture

The dual port RAM architecture refers to the basic memory cell used in the RAM. By adding read and write transistors to the conventional two transistor RAM cell, the read and write functions can be made independent of each other. Obviously this increases the size of the RAM cell, but doing this is more than compensated for by simpler control logic and improved performance.
The RAM requires two address pointers; one to address the location where data is to be written and the other to address where data is to be read. Comparators are used to sense the empty and full conditions and control logic is required to prevent over-run and under-run.


Figure 1. Register Array Architecture

## Analysis of FIFOs

The procedure will be to first analyze the FIFO as a "black box" and then to compare the most important characteristics of a class of representative FIFOs with the characteristics of the CY7C401 FIFO.
The class of FIFOs chosen is the industry standard XXX401A and XXX402A that are available from several sources. The 401 is $64 \times 4$ and the 402 is $64 \times 5$ with the same performance. Both are of the register array architecture. Both are expandable in depth (number of words), which is called cascadeable, without additional logic as well as expandable in word width (number of bits per word) with additional logic. The operation will first be analyzed in the standalone configuration.

## Functional Description

## Data Input - Refer to Figures 2, 3

After power-on the Master Reset (MR) input is pulsed LOW to initialize the FIFO. When the IR output goes high it signifies that the FIFO is able to accept data from the producer at the DI inputs. Data is entered into the input stage when the SI input is brought high (if IR is also high). SI going high causes IR to go low, acknowledging receipt of the data, which is now in the input stage.
When SI goes low (in response to IR going low) and if the FIFO is not full, IR will go back high, indicating that more room is available in the FIFO. At the same time SI goes low data is propagated to the next empty location, which
may be the second location, but could be any location up to but not including the output stage.

## Data Output - Refer to Figures 4, 5

Data is read from the DO outputs of the output stage under control of the SO and OR handshaking signals. The high state of OR indicates to the consumer that valid data is available at the outputs. When OR is high, data may be shifted out by bringing the SO line high (request), which causes the OR line to go low (acknowledge). Valid data is maintained on the outputs as long as SO is high. When SO goes low (in response to OR going low) and if the FIFO is not empty, OR will go back high, indicating that there is new valid data at the outputs. If the FIFO is empty OR will remain low and the data on the outputs will not change.

## Empty/Full

If the FIFO is empty, OR will not go high within a fallthrough time after SO goes low, so this condition may be sensed and used to indicate EMPTY.
Similarly, if the FIFO is full, IR will not go high within a bubblethrough time after SI goes low, so this condition may be sensed and used to indicate FULL.

## Standalone Operation <br> Input Data Setup and Hold

The input data must be stable for an amount of time equal to the setup time ( $\mathrm{t}_{\mathrm{IDS}}$ ) before the rising edge of SI and


0044-2
Figure 2. Method of Data Input

Notes:
Shift in pulses applied while Input Ready is LOW will be ignored.
$\oplus$ External "producer" response time.

+ SI pulse could be of fixed positive duration and would then not depend upon response time of producer.
(1) Input Ready HIGH indicates space is available and a Shift in pulse may be applied.
(2) Input Data is loaded into the first word.
(3) Input Ready goes LOW indicating the first word is full.
(a) The Data from the first word is released to propagate to the second word.
(5) The Data from the first word is transferred to the second word. The first word is now empty as indicated by Input Ready HIGH.
(6) If the second word is already full then the data remains at the first word. Since the FIFO is now full, Input Ready remains low.


Figure 3. Input Timing for FIFO

## Analysis of FIFOs (Continued)



0044-4
Figure 4. The Method of Shifting Data Out of the FIFO

## Notes:

$\oplus$ External "consumer" response time.

+ SO pulse could be of fixed positive duration and would then not depend upon response time of consumer.
(1) Output Ready high indicates that data is available and a Shift Out pulse may be applied.
(2) Shift Out goes high causing the next step.
(3) Output Ready goes LOW.
(4) Contents of word 52 (B-DATA) is released to propagate to word 53.
(5) Output Ready goes high indicating that new data (B) is now available at the FIFO outputs.
(6) If the FIFO has only one word loaded (A-DATA) then Output Ready stays LOW and the A-DATA remains unchanged at the outputs.


0044-5
Figure 5. Output Timing for Register Array FIFO

Notes:
(1) The diagram assumes that, at this time, words $63,62,61$ are loaded with A, B, C Data respectively.
remain stable for an amount of time equal to the hold time ( $\mathrm{I}_{\mathrm{IDH}}$ ) after the rising edge of SI.

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{IDS}}=0 \mathrm{~ns} \\
& \mathrm{t}_{\mathrm{IDH}}=40 \mathrm{~ns}
\end{aligned}
$$

## Input Timing

Figure 3 shows the timing relationships between the input data and the handshaking signals when operating at the maximum input data rate of 15 MHz . The Input Ready signal lags (follows) the rising edge of the Shift In signal by 40 ns (max.) for this two edge handshake.

## Fallthrough Time

Figure 2 shows the method of entering data into the FIFO. The fallthrough time (Figure ©) is measured from the falling edge of the SI signal to the rising edge of the IR signal. For a 15 MHz Register Array FIFO, this time is specified as $\mathrm{t}_{\mathrm{PT}}=1.6 \mu \mathrm{~s}$ (microseconds).
(2) Data in the crosshatched region may be A or B Data.

## Register Array Propagation Delay Time

The register array propagation delay time may be approximated by using the delay from the falling edge of the SO signal to the rising edge of the OR signal as being representative of the data propagation delay through the output stage and subtracting this from the fallthrough time.

Reg. Prop. Delay $=$
Fallthrough time - Output Prop. Delay Time
The delay per stage is then calculated by dividing the register array propagation delay time by the number of stages the data propagates through.

$$
\begin{aligned}
\text { Reg. Prop. Delay } & =1.6 \mu \mathrm{~s}-50 \mathrm{~ns} \\
& =1.55 \mu \mathrm{~s} \\
\text { Delay per stage } & =\frac{1.55 \mu \mathrm{~s}}{64-2} \\
& =25 \mathrm{~ns}
\end{aligned}
$$

## Analysis of FIFOs (Continued) <br> Output Timing

Figure 5 shows the timing relationships between the output data and handshaking signals when operating at the maximum output data rate of 15 MHz . The Output Ready signal lags the Shift Out signal by 45 ns (max.) for this two edge handshake. Data is shifted to the output stage on the falling edge of SO, but does not stabilize until 45 ns later. OR goes low in response to SO going high ( 45 ns later) and then goes back high 50 ns (max) after the high to low transition of SO.
The reader may assume that the (new) output data is valid $50-45=5 \mathrm{~ns}$ before the rising edge of the OR signal, but this is incorrect. The data sheet specifies these two numbers only as maximums and not also as minimums. Evaluation of these FIFOs has revealed that the data may change several nanoseconds AFTER the rising edge of the OR signal.

The consumer is responsible for delaying the rising edge of the SO signal in order to satisfy his data setup time requirements, which may further reduce the throughput.

## Full Condition

The maximum propagation delay from SI going low until IR goes high is 40 ns (Figure 3). The bubblethrough time for the full condition is illustrated in Figure 7. This time, $t_{\text {tpT }}$, is specified as $1.6 \mu \mathrm{~s}$ on the data sheet. The delay per stage is calculated by subtracting 40 ns from $1.6 \mu \mathrm{~s}$ and dividing by the number of stages ( $64-2$ ).

Delay per stage $=$
$\underline{\text { Bubblethrough time - Output Delay time }}$

$$
\begin{aligned}
& \text { Number of stages } \\
& =\frac{1.6 \mu \mathrm{~s}-0.04 \mu \mathrm{~s}}{64-2} \\
& =25.16 \mathrm{~ns}
\end{aligned}
$$

## Bubblethrough Time

The bubblethrough timing is illustrated in Figure 7. It is seen to be equal to the fallthrough time.


Figure 6. Fallthrough Timing
Notes:
(4) Data enters internal register array.
(1) FIFO initially empty.
(5) Data is available at output.


Figure 7. Bubblethrough Timing
Notes:
(1) FIFO is initially full.
(2) Shift In held HIGH.
(3) Consumer reads data.
(4) Empty location begins to propagate to input.
(5) Empty location reaches input.

## Analysis of FIFOs (Continued)

## Maximum Throughput Calculations

The maximum throughput of the FIFO is seen to be limited by the fallthrough time when it is empty and the bubblethrough time when it is full.
The "throughput period" corresponding to the "standalone period" $\left(\mathrm{t}_{\mathrm{A}}\right)$ and the fallthrough time ( $\left.\mathrm{t}_{\mathrm{F}}\right)$ is:

$$
\mathbf{T}_{\max }=\mathbf{t}_{\mathbf{A}}+\mathbf{t}_{\mathbf{F}}
$$

Converting to frequency yields

$$
\frac{1}{\mathrm{~F}_{\max .}}=\frac{1}{\mathrm{~F}_{\mathrm{A}}}+\mathrm{t}_{\mathrm{F}}
$$

Rearranging and solving for $F_{\text {max }}$ yields

$$
\begin{equation*}
F_{\max }=\frac{1}{\frac{1}{F_{A}}+t_{F}} \tag{EQ. 1}
\end{equation*}
$$

The expressions for the throughput frequencies for the FIFO under the full and empty conditions are then;

EMPTY FIFO

$$
\begin{aligned}
& \mathrm{F}_{\text {in }}=\mathrm{F}_{\text {in }(\text { max. })} \\
& \mathrm{F}_{\text {out }}=\frac{1}{\frac{1}{\mathrm{~F}_{\mathrm{A}}}+\mathrm{t}_{\mathrm{F}}}
\end{aligned}
$$

## FULL FIFO

$$
\begin{aligned}
& \mathrm{F}_{\text {out }}=\mathrm{F}_{\text {out }(\text { max. })} \\
& \mathrm{F}_{\mathrm{in}}=\frac{1}{\frac{1}{\mathrm{~F}_{\mathrm{A}}}+\mathrm{t}_{\mathrm{F}}}
\end{aligned}
$$

The maximum throughput that can be handled by a "nearly empty" or a "nearly full" FIFO operating in the standalone mode is then:

$$
\begin{gathered}
\mathrm{F}_{(\text {max. })}=\frac{1}{\frac{1}{\mathrm{~F}_{\mathrm{A}}}+\mathrm{t}_{\mathrm{F}}} \\
\mathrm{~F}_{(\text {max. })}=\frac{1}{\frac{1}{15 \mathrm{MHz}}+1.6 \mu \mathrm{~s}}=\frac{1}{1.667 \mu \mathrm{~s}} \\
\mathrm{~F}_{(\text {max. })}=599.88 \mathrm{kHz}
\end{gathered}
$$

Note that this is considerably less than the 15 MHz specified on the data sheet.

FULLNESS SENSITIVITY (STANDALONE)
The number of words written into the FIFO corresponding to the fallthrough time if the input data rate is at the maximum ( 15 MHz ) is:

$$
\begin{equation*}
\frac{F_{\text {in }}}{F \text { fallthrough }}=\frac{15 \mathrm{MHz}}{\frac{1}{1.6 \mu \mathrm{~s}}}=24 \text { words. } \tag{EQ. 2}
\end{equation*}
$$

Since the bubblethrough time is the same as the fallthrough time (in this case) the same number of words can be output at the maximum data rate from a full FIFO.

What this means is that the FIFO can operate at its maximum data rate ( 15 MHz ) only when it is between 24 words and $64-24=40$ words full. In order to NOT be sensitive to its fullness, the FIFO must be operated at a maximum frequency less than or equal to the frequency corresponding to the fallthrough/bubblethrough time ( 625 KHz ).
Cypress proposes defining a Fullness Sensitivity (FS) figure of merit for FIFOs that is a measurement of the capacity range (or fullness) over which the FIFO can be operated at its maximum input rate AND its maximum output rate. The FS is normalized; one (1) is ideal and $1>$ FS $>0$.

$$
\begin{equation*}
F S=\frac{N-F_{I A} t_{F}-F_{O A} t_{B}}{N} \tag{EQ. 3}
\end{equation*}
$$

Where: $F S=$ Fullness Sensitivity
$\mathrm{N}=$ The number of words in the FIFO
$\mathrm{F}_{\text {IA }}=$ Standalone maximum input frequency
$\mathrm{t}_{\mathbf{F}}=$ Fallthrough time
$\mathrm{F}_{\mathrm{OA}}=$ Standalone maximum output frequency
$\mathrm{t}_{\mathrm{B}}=$ Bubblethrough time
As an example we will calculate FS for a typical register array FIFO.

$$
\begin{gathered}
\mathrm{F}_{\mathrm{IA}}=\mathrm{F}_{\mathrm{OA}}=15 \mathrm{MHz} \\
\mathrm{t}_{\mathrm{F}}=\mathrm{t}_{\mathrm{B}}=1.6 \mu \mathrm{~s} \\
\mathrm{~N}=64 \text { words } \\
\mathrm{FS}=\frac{64-15 \times 10^{6} \times 1.6 \times 10^{-9}-15 \times 10^{6} \times 1.6 \times 10^{-9}}{64} \\
\mathrm{FS}=\frac{64-24-24}{64} \\
\mathrm{FS}=0.25
\end{gathered}
$$

If the partial products would have had fractional parts we would have rounded them up to the next highest integers.

## FIFO Expansion

The interconnection of two 64 word FIFOs to form a 128 x 4 FIFO is shown in Figure 8. Observe that the OR output of the first FIFO becomes the SI input of the second FIFO and that the IR of the second becomes the SO input to the first.
What this means is that the bubblethrough/fallthrough times serially add when the FIFOs are cascaded.
The maximum throughput that can be handled by two FIFOs cascaded together is:

$$
\begin{gathered}
F_{(\text {max. })}=\frac{1}{\frac{1}{F_{A}}+2 t_{F}} \\
F_{(\text {max. })}=306 \mathrm{KHz} \\
\text { Where, as before, } \mathrm{F}_{\mathrm{A}}=15 \mathrm{MHz}, \mathrm{t}_{\mathrm{F}}=1.6 \mu \mathrm{~s}
\end{gathered}
$$

## Analysis of FIFOs (Continued)

In general, when N FIFOs are cascaded together, the maximum throughput of the combination is:

$$
\begin{equation*}
F_{(\max .)}=\frac{1}{\frac{1}{F_{A}}+N t_{F}} \tag{EQ. 4}
\end{equation*}
$$

The FS is also affected by the cascading of FIFOs. If $\mathbf{N}$ FIFOs are cascaded together the number of words that can be output or input is N times that of the standalone condition.

$$
\begin{equation*}
\frac{F_{\text {in }}}{F \text { fallthrough }}=\frac{F_{A}}{\frac{1}{N t_{F}}} \tag{EQ. 5}
\end{equation*}
$$

If this number is greater than the actual (physical) FIFO depth it means that the FIFO cannot be operated at its maximum frequency.
To make a wider word, as well as a deeper FIFO, connect the FIFOs as illustrated in Figure 9. Composite IR and OR signals must be generated using two external AND gates (e.g., 74LS08) to compensate for variations in the propagation delay of these signals from device to device. The max-
imum throughput for this configuration is 205 KHz ( $\mathrm{N}=3$ in preceding formula).

## Cascadability Considerations

In order to guarantee the ability of multiple FIFOs to reliably cascade with each other using the handshaking method previously described, certain conditions must be met. These are now considered.

## SI or OR Signal Compatability

In the cascaded configuration, the OR signal of the Nth FIFO must be specified such that it can be detected when it is applied to the SI input of the N+1th FIFO. See Figure 8. This means that the minimum high time (positive pulse width) of the OR output signal of the input FIFO must be able to be recognized at the SI input of the output FIFO.

## IR and SO Signal Compatability

In the cascaded configuration, the IR output of the $N+1$ th FIFO must be specified such that it can be detected when it is applied to the SO input of the Nth FIFO.

## Minimum Delay Between SI and IR

The minimum delay between SI going HIGH and IR going LOW is an unspecified parameter in the industry standard


0044-8
Figure 8. $128 \times 4$ FIFO


Figure 9. $192 \times 8$ FIFO

## Analysis of FIFOs (Continued)

data sheets. The Cypress FIFO exhibits a 6 to 10 ns minimum delay. Care must be taken when mixing Cypress FIFOs and competitive FIFOs to insure that the parts will cascade with one another. In general, delaying the IR output of the Cypress FIFOs enables competitive parts to cascade with Cypress parts. The Cypress FIFO can always recognize the output of the competitive product.

## Minimum Delay Between OR and SO

Another unspecified industry parameter is the delay between OR and SO. The minimum delay for Cypress FIFOs is 6 ns . A 500 pF capacitor added between the OR pin and ground and the IR pin and ground of all Cypress FIFOs will permit cascading with competitive FIFOs. These capacitors delay the signals the appropriate amount of time.

## Cascading at the Operating Frequency

In order to operate at a given frequency, $\mathrm{F}_{\mathrm{O}}$, in the cascaded configuration the following relationship must be satisfied;

$$
\mathrm{t}_{\mathrm{SIH}}+\mathrm{t}_{\mathrm{IRH}}<\frac{1}{\mathrm{~F}_{\mathrm{O}}}
$$

This condition is met by both the MMI and Cypress FIFOs.

## Description of the CY7C401

A block diagram of the CY7C401 is shown in Figure 10. It is a direct, pin for pin, functional equivalent, improved performance, replacement for the register array FIFOs. The similarities and differences between the 401, 402, 403, and 404 are summarized in the table.

Product	Configuration	tF	Package	Description
CY7C401	$64 \times 4$	65 ns	16 pin DIP	Industry Standard
CY7C403	$64 \times 4$	65 ns	16 pin DIP	Pin 1 is three-state   output enable
CY7C402	$64 \times 5$	65 ns	18 pin DIP	Industry Standard
CY7C404	$64 \times 5$	65 ns	18 pin DIP	Pin 1 is three-state   output enable



0044-10
Figure 10. CY7C401 Block Diagram

## Description of the CY7C401 (Continued)

## Architecture Refer to Figure 10

The architecture is that of a dual port RAM, which is accessed by two pointers; a read pointer and a write pointer. The input data and output data do not reside in input or output registers as in the register array architecture. Instead, the pointers address the memory locations of the input and output data. Comparators are used to control the IR and OR lines to prevent overflow and underflow. The key to this architecture is the dual port RAM cell, which is
illustrated in Figure 11. It is only 1.2 square mils in area. Separating the read and write functions enables the memory cell to be read from and written to simultaneously and independently. This increases the basic cell size, but simplifies the overall architecture and improves the performance.
The bubblethrough time is greatly reduced ( 65 ns versus $1.6 \mu \mathrm{~s}$ ) because it now represents the time required to update the pointers, not the time required for data to propagate through the memory array.


0044-11
Figure 11A. CY7C401 Ram Cell Layout


Figure 11B. Cell Schematic

SEMICONDUCTOR

## Description of The CY7C401 (Continued)

## Functional Description

To the "outside world" the CY7C401 appears functionally equivalent to the register array FIFOs. All of the timing diagrams as well as the expansion diagrams of Figures 8 and 9 apply.
Input data is sampled with the rising edge of the SI signal if the IR signal is high. The input (write) pointer is incremented on the falling edge of the SI signal.
Data is output with the falling edge of the SO signal if the OR signal is high. The output (read) pointer is incremented on the rising edge of the SO signal.

## Output Timing

In the discussion on output timing it was pointed out that (for the register array FIFO) the way the timing of the data out with respect to OR, there is no guarantee that the data will be stable before the rising edge of OR. This time ( t SOR) is guaranteed to be a minimum of 5 ns on the CY7C401 data sheet.

## Comparison of Register Array FIFOs and the CY7C401

## Throughput

Using equation 4 the values in the following table were calculated and are plotted in Figure 12.

## Fullness Sensitivity

## Register Array FIFOs in the Standalone Mode

Equation 2 was used to calculate the number of words that could be input and output corresponding to the maximum frequency of 15 MHz . Subtracting these from the FIFO capacity (64) gives us the capacity range over which the FIFO can operate at its maximum rate. This was calculated to be between 24 and 40 words, or $32 \pm 8$ words. Equation 3 was used to calculate the FS and it was found to be 0.25 .

Using equation 2 we have;

$$
\begin{aligned}
& \frac{F_{\text {in }}}{F \text { fallthrough }}=\frac{\mathrm{F}_{\mathrm{A}}}{\frac{1}{\mathrm{t}_{\mathrm{F}}}} \\
& =\frac{15 \mathrm{MHz}}{\frac{1}{67 \mathrm{~ns}}}=0.975 \text { words }
\end{aligned}
$$

			Throughput		
	$\mathbf{N}$	$\mathbf{D}$	C67401A	CY7C401-5	CY7C401-25
$\mathrm{F}_{\mathrm{A}}$	-	-	15 MHz	15 MHz	25 MHz
$\mathrm{t}_{\mathrm{F}}$	-	-	$1.6 \mu \mathrm{~s}$	65 ns	65 ns
	1	64	600 KHz	7.57 MHz	9.52 MHz
	2	128	306 KHz	5.01 MHz	5.8 MHz
	4	256	155 KHz	3 MHz	3.3 MHz
	8	512	77.7 KHz	1.7 MHz	1.78 MHz
	16	1024	38.9 KHz	903 KHz	925.9 KHz
	32	2048	19.5 KHz	465.7 KHz	471 KHz

The CY7C401 is seen to be much less sensitive to fullness than the register array FIFOs. Its capacity can range from 2 to 63 words, or $32 \pm 31$ words in the standalone mode.

The Fullness Sensitivities are plotted in Figure 13. They are also plotted in a slightly different form in Figure 14.

A little thought will convince the reader that Fullness Sensitivity is another way of quantifying the range of the difference between input and output data rates. The closer the FS is to 1 the greater the capacity of the FIFO to handle bursts of data.

## Latency

The classic definition of latency is the difference, in elapsed time, between when a resource is requested and when it is granted. In disks, the worst case latency is the time required for one revolution of the disk. The average latency is then the time required for one-half a revolution. The assumptions are one head per track and no contention for the head.

## Worst Case Latency - refer to Figures 6 and 7

The worst case latency for the consumer occurs when the FIFO is empty and for the producer when it is full. It is;

$$
\begin{aligned}
& \text { Where: } \mathrm{t}_{\mathrm{in}}+\mathrm{t}_{\text {out }}+\mathrm{t}_{\mathrm{F}} \\
& \mathrm{t}_{\text {in }}=\text { period of the input frequency } \\
& \mathrm{t}_{\text {out }}=\text { period of the output frequency } \\
& \mathrm{t}_{\mathrm{F}}=\text { Fallthrough time }
\end{aligned}
$$

## Average Latency

If the FIFO is operated such that it is not sensitive to its fullness $\mathrm{t}_{\mathrm{F}}=0$. In addition, if $\mathrm{t}_{\mathrm{in}}=\mathrm{t}_{\text {out }}$ the average latency is one cycle. Otherwise, it is;

$$
\frac{\mathrm{t}_{\mathrm{in}}+\mathrm{t}_{\mathrm{out}}}{2}
$$

Comparison of Register Array FIFO's and the CY7C401 (Continued)


0044-13
Figure 12. Maximum FIFO Throughput vs. Depth


0044-14
Figure 13. Fullness Sensitivity in the Standalone Mode


Figure 14. Standalone Throughput

## Summary and Conclusions

In most systems where FIFOs are used they are neither full nor empty, except at the beginning or end of an operation. After analyzing the preceding two FIFOs the reader can understand why. Serious performance degradation occurs under these conditions, especially if the FIFO uses the register array architecture. To compensate for this, manufac-
turers have added one-half empty/full indicators (etc.), which has helped by alerting the system controller before the performance suffers.
A better solution to the performance problem is to use a FIFO that has the dual port RAM architecture, which has been shown to result in a superior performance FIFO.

# Interfacing to the FIFO Application Brief 

## Introduction

This application brief is intended to be a guide to the FIFO user and to make him aware of certain conditions that should be considered when interfacing to the FIFO. The two areas of concern are (1) voltage sensitivity on the SI and SO inputs and, (2) metastability when the SI or the SO signals are derived from independent clocks. These two issues are independent of each other. All comments apply to the following Cypress CMOS FIFOs: CY7C401/402/403/404, СY7C3341, CY7C408/409.

## High Gain Inputs

The minimum positive SI and SO pulse widths are specified on the FIFO data sheet as 11 ns ( $25 \mathrm{MHz} \mathrm{SI} / \mathrm{SO}$ ) and 20 ns (other speed grades). At room temperature and nominal (5V) $\mathbf{V}_{\mathrm{cc}}$ the FIFO will operate reliably with SI/SO pulses as short as 5 ns . The reason these FIFOs respond to such short pulses is that the Cypress high performance CMOS process yields circuits that have very high gains and, consequently, require very little energy to change state.
Termination networks are recommended on the SI and SO lines (traces) on Printed Circuit Boards (PCBs) when the lines exceed seven inches in length (from source to load). The termination matches the load impedance to the characteristic impedance of the PCB trace, which is typically $50 \Omega$ or less for microstrip or stripline construction on G-10 glass epoxy material. For minimum voltage reflections a slightly overdamped termination is preferred. Cypress recommends a series capacitor of 10 pF and resistor of $47 \Omega$ be connected from the input pin (SI/SO) to ground as shown in Figure 1. This termination network acts as a low pass


0097-1
filter for short, high frequency pulses and dissipates no DC power. If more than one FIFO is connected in parallel to make a wider word only one termination network is required. It should be located at the input that is electrically the farthest away from the source.

## Synchronous And Asynchronous Operation

When the SI and SO signals are derived from a common frequency source (or clock) the FIFO is, by definition, operating in the synchronous mode. There is a precise, known relationship between the SI and SO signals.
Conversely, when the SI and SO signals are derived from two independent frequency sources, the FIFO is operating in an asynchronous mode.
In the synchronous mode the designer can assure that the OR signal not occur within the setup and hold time window that normally "surrounds" the output system clock edge (or sampling signal). The same reasoning applies to the occurance of the IR signal with respect to the input system clock.
In the asynchronous mode, the designer cannot assure a known relationship between the OR signal and the output system clock either with respect to frequency or with respect to phase. It is the responsibility of the designer to insure that, even though the output system clock edge may occur at the same time that the OR signal occurs, the FIFO still receives a SO clock that is wide enough to be reliably recognized as such by the FIFO. The same reasoning applies to the SI signal that is generated in response to the IR signal under control of the input system clock.


Figure 2. Pulse Synchronizer

## Pulse Synchronizer

The circuit of Figure 2 is recommended to generate the SO pulse as a function of OR under control of the output system clock. An identical circuit should be used to generate the SI pulse as a function of IR under control of the input system clock. If it is required to perform control functions on the OR or the IR signals, it should be done before they are clocked by the first $D$ flip-flop.

## State Diagram

The two stage shift register is analyzed as a state machine in Figure 3. Other, more complex state machines can be designed, but the idea is the same; reliably generate a single pulse of a known minimum width for every OR or IR LOW to HIGH transition.


0097-3
Figure 3. Pulse Synchronizer State Diagram

Transition Table				
A	B	STATE	DESCRIPTION	
0	0	0	IDLE AT STATE 0	
1	0	1	GENERATE SO = 1	
1	1	3	GENERATE SO $=0$	
0	1	2	TRANSITION STATE	

## Design Considerations

The frequency of the clock to the pulse synchronizer should be at least twice that of the maximum rate data is shifted into or out of the FIFO.

For example, if it is required to shift data into the FIFO at a 10 MHz (SI) rate, the clock to the input pulse synchronizer should be 20 MHz . If it is required to shift data out of the FIFO at a 15 MHz (SO) rate the clock to the output pulse synchronizer should be 30 MHz .

## Minimum SI/SO Pulse Width

The minimum pulse width of the SO signal of Figure 2 under normal operating conditions will be one cycle of the output clock (CLK). However, when the OR or the IR signal changes within the "unallowed window" around the clock edge, defined by the flip-flop setup time and hold time, the flip-flop may go into a metastable state. i.e., its outputs may be between the logic ONE and the logic ZERO voltage levels. The amount of time the flip-flop will stay in the metastable region will be approximately 4 X , where $\mathbf{X}=$ clock to output propagation delay time.
The minimum pulse width of the SO signal is determined by the delay, d , through the NOR gate, plus any delay the designer may add ( $D$, shown as a box) in the path from the /Q output of the A flip-flop to the input of the NOR gate. The NOR gate acts as a low pass filter and will not pass a pulse if its width is less than d. Adding an external delay, D , increases the minimum pulse width to $\mathrm{d}+\mathrm{D}$. The maximum frequency that the circuit can operate at, assuming equal gate turn-on and turn-off times, is then

$$
\mathrm{f}(\max .)=\frac{1}{2(\mathrm{~d}+\mathrm{D})}
$$

The total delay should be chosen such that the minimum pulse width is sufficient to reliably be detected by the FIFO. The preceding comments apply to lumped delays, not to analog or distributed delay lines.

## Implementation Of The Delay

If only the NOR gate provides the delay, the following table lists typical and maximum propagation delays under nominal $\mathrm{V}_{\mathrm{CC}}$ and loading ( 20 pF ) conditions.

Table 1. Propagation Delay in ns

Family	Typical	Maximum
LS	10	15
ALS	5	11
HCMOS	8	23
FACT	5	9.5

A 74LS02 NOR gate will result in a minimum pulse width of 10 ns , which will reliably operate a 25 MHz CY7C403 or a CY7C404 FIFO.
If it is required to operate a $10 \mathrm{MHz} \mathrm{CY7C401/402}$, output of the A flip-flop may be inverted through a 74LS04 and applied to the lower input of the NOR gate. The minimum pulse width is then $10+10=20 \mathrm{~ns}$.
A delay line or a RC network could also be used to delay the signal to the lower input of the NOR gate.
The circuit of Figure 2 can also be used to synchronize the SI and SO inputs of the CY7C3341.
The rising edge of the SO signal should be used to sample the FIFO data.

# Power Characteristics of Cypress Products 

## Introduction

## SCOPE AND PURPOSE

This document presents and analyzes the power dissipation characteristics of Cypress products. The purpose of this document is to provide the user with the knowledge and the tools to manage power when using Cypress CMOS products.

## DESIGN PHILOSOPHY

The design philosophy for all Cypress products is to achieve superior performance at reasonable power dissipation levels. The CMOS technology, the circuit design techniques, architecture and the topology have been carefully combined in order to optimize the speed/power ratio.

## SOURCES OF POWER DISSIPATION

Power is dissipated within the integrated circuit as well as external to it. Both internal and external power have a quiescent (or DC) component and a frequency dependent component. The relative magnitudes of each depend upon the circuit design objectives. In circuits designed to minimize power dissipation at low to moderate performance, the internal frequency dependent component is significantly greater than the DC component. In the high performance circuits designed and manufactured by Cypress, the internal frequency dependent power component is much less than the DC component. The reason for this is that a large percentage of the internal power is dissipated in linear circuits such as sense amplifiers, bias generators and voltage/current references that are required for high performance.

## External Power Dissipation

The input impedance of CMOS circuits is extremely high. As a result, the DC input current is essentially zero ( $10 \mu \mathrm{~A}$ or less). When CMOS circuits drive other CMOS circuits there is practically no DC output current. However,
when CMOS circuits drive either bipolar circuits or DC loads, external DC power is dissipated. It is standard practice in the semiconductor industry to NOT include the current from a DC load in the device $\mathrm{I}_{\mathrm{CC}}$ specification. Cypress supports this practice. It is also standard practice to NOT include the current required to charge and discharge capacitive loads in the data sheet $\mathbf{I}_{\mathrm{CC}}$ specification. Cypress also supports this standard practice.

## Frequency Dependent Power

CMOS integrated circuits inherently dissipate significantly less power than either bipolar or NMOS circuits. In the ideal digital CMOS circuit there is no direct current path between $\mathrm{V}_{\text {CC }}$ and $\mathrm{V}_{\text {SS }}$; in circuits using other technologies such paths exist and DC power is dissipated while the device is in a static state.
The principal component of power dissipation in a poweroptimized CMOS circuit is the transient power required to charge and discharge the capacitances associated with the inputs, outputs, and internal nodes. This component is commonly called CV2f power and is directly proportional to the operating frequency, f . The corresponding current is given by the formula

$$
\mathbf{I}_{\mathrm{CC}}(\mathbf{f})=\mathrm{CVf}
$$

The primary sources of frequency dependent power are due to the capacitances associated with the internal nodes and the output pins. For "regular" logic structures, such as RAMs, PROMs and FIFOs the internal capacitances are "balanced" so that the same delay and, therefore, the same frequency dependent power is dissipated independent of the location that is addressed. This is not true for programmable devices such as PALs because the capacitive loading of the internal nodes is a function of the logic implemented by the device. In addition, PALs and other types of logic devices may contain sequential circuits so the input frequency and the output frequency may be different.
The capacitance of each input pin is typically 5 pF , so its contribution to the total power is usually insignificant.

## Note:

The Cypress Power/Speed Program, which implements the equations in this application note, is available from Cypress for your use on personal computers.

## Introduction (Continued)

## Derivation of Applicable Equations

The charge, $Q$, stored on a capacitor, $C$, that is charged to a voltage, V , is given by the equation;

$$
\begin{equation*}
\mathrm{Q}=\mathrm{CV} \tag{EQ. 1}
\end{equation*}
$$

Dividing both sides of equation 1 by the time required to charge and discharge the capacitor (one period or T) yields;

$$
\begin{equation*}
\frac{\mathrm{Q}}{\mathrm{~T}}=\frac{\mathrm{CV}}{\mathrm{~T}} \tag{EQ. 2}
\end{equation*}
$$

By definition, current ( I ) is the charge per unit time and

$$
\mathrm{f}=\frac{1}{\mathrm{~T}}
$$

Therefore,

$$
\mathrm{I}=\mathrm{CVf}
$$

EQ. 3
The power ( $\mathbf{P}=\mathbf{V I}$ ) required to charge and discharge the capacitor is obtained by multiplying both sides of equation 3 by V.

$$
\begin{equation*}
\mathbf{P}=\mathrm{VI}=\mathrm{CV}^{2} \mathrm{f} \tag{EQ. 4}
\end{equation*}
$$

It is standard practice to make the assumption that the capacitor is charged to the supply voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$ so that

$$
\begin{equation*}
\mathrm{P}=\mathrm{V}_{\mathrm{CC}} \mathrm{I}=\mathrm{C}\left[\mathrm{~V}_{\mathrm{CC}}\right]^{2 \mathrm{f}} \tag{EQ. 5}
\end{equation*}
$$

The total power consumption for a CMOS integrated circuit is dependent upon:

- the static (quiescent or DC) power consumption.
- the internal frequency of operation
- the internal equivalent (device) capacitance
- the number of inputs, their associated capacitance, and the frequency at which they are changing
- the number of outputs, their associated capacitance, and the frequency at which they are changing
In equation form:

$$
\begin{align*}
P_{D}= & {\left[\left(\mathrm{C}_{\text {IN }}\right)\left(\mathrm{F}_{\text {IN }}\right)+\left(\mathrm{C}_{\text {INT }}\right)\left(\mathrm{F}_{\text {INT }}\right)+\left(\mathrm{C}_{\text {LOAD }}\right)\left(\mathrm{F}_{\text {LOAD }}\right)\right] } \\
& \text { EQC } \mathrm{I} \text { (quiescent }) \mathbf{V}_{\text {CC }} . \tag{EQ. 6}
\end{align*}
$$

The first three terms are frequency dependent and the last is not. This equation can be used to describe the power dissipation of every IC in the system. The total system power dissipation is then the algebraic sum of the individual components.
The relative magnitudes of the various terms in the equation are device dependent. Note that equation 6 must be modified if all of the inputs, internal nodes or all of the outputs are not switching at the same frequency. In the general case, each of the terms is of the form C1 F1 + $\mathrm{C} 2 \mathrm{~F} 2+\mathrm{C} 3 \mathrm{~F} 3+\ldots$ Cn Fn. In practical reality the terms are estimated using an equivalent capacitance and frequency.

## Transient Power: Input Buffers and Internal

In the N-well CMOS inverter, the P-channel pullup transistor and the N -channel pulldown transistor (which are in series with each other between $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathbf{S S}}$ ) are never on at the same time. This means that there is no direct current
path between $\mathrm{V}_{\mathrm{CC}}$ and ground, so that the quiescent power is very nearly zero. In the real world, when the input signal makes the transition through the linear region (i.e., between logic levels) both the N -channel and the P-channel transistors are partially turned ON. This creates a low impedance path between $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\text {SS }}$, whose resistance is the sum of the N -channel and P-channel resistances. These gates are used internally in Cypress products.

## DC or Static Power

In addition to the conventional gates there are sense amplifiers, input buffers and output buffers, bias generators and reference generators that all dissipate power. The RAMs and FIFOs also have memory cells that dissipate standby power whether the IC is selected or not. The PROM and PAL ${ }^{\circledR}$ products have EPROM memory cells that do not dissipate as much standby power as a RAM cell.

## Power Down Options

Many of the Cypress static RAMs have power down options that enable the user to reduce the power dissipation of these devices by approximately an order of magnitude when they are not accessed. The technique used is to disable or turn-off the input buffers and the sense amplifiers.

## Worst Case Device Power Specifications

All Cypress products are specified with $I_{C C}$ under worst, worst, worst case conditions. This means that the $\mathrm{V}_{\mathrm{CC}}$ voltage is at its maximum ( 5.5 V ), the operating temperature is at its minimum, which is $0^{\circ} \mathrm{C}$ for commercial product and $-55^{\circ} \mathrm{C}$ for military product and all inputs are at $\mathrm{V}_{\text {IN }}=2 \mathrm{~V}$.

## ICC TEMPERATURE DEPENDENCE

For all Cypress products operating under all conditions, the $I_{C C}$ current increases as the temperature decreases. The $\mathrm{I}_{\mathrm{CC}}$ temperature coefficient is $-0.12 \%$ per ${ }^{\circ} \mathrm{C}$. To calculate the percentage change in $\mathrm{I}_{\mathrm{CC}}$ from one temperature to another, this temperature coefficient is multiplied by the temperature difference.
If, for example, it is required to calculate the expected reduction in ICC if either a commercial or a military grade Cypress IC is operated at room temperature $\left(25^{\circ} \mathrm{C}\right)$, the calculations are:
For commercial products
$[0-25] \times[-0.12 \%]=3 \%$ less $\mathrm{I}_{\mathrm{CC}}$ at room temperature than at $0^{\circ} \mathrm{C}$.
For military products
$[-55-(25)] \times[-0.12 \%]=9.6 \%$ less $\mathrm{I}_{\mathrm{CC}}$ at room temperature than at $-55^{\circ} \mathrm{C}$.

## Procedure

The procedure will be to develop a general purpose power dissipation model that applies to all of the Cypress CMOS products and to then present tables so that users can estimate typical and worst case power dissipations for each product. The data will be presented in chart form as functions of product type and capacitance, that is: SRAM, PROM, PAL or Logic; including FIFOs.


Figure 1. Power Dissipation Model

## Power Dissipation Model

A general purpose power dissipation model for all Cypress integrated circuits is shown in Figure 1.
The procedure will be to isolate the four components of power dissipation described by equation 6 by controlling the inputs to the IC. The quiescent ( $\mathrm{I}_{\mathrm{CC}}$ ) current is measured with the inputs to the IC at 0.4 V or less. Under this condition the input buffers and output buffers (unloaded DC wise) draw only leakage currents. All other direct currents are due to the substrate bias generator, sense amplifiers, other internal voltage or current references and NMOS memory circuits.
At $\mathrm{V}_{\mathrm{IN}}=1.5 \mathrm{~V}$ the input buffers draw maximum $\mathrm{I}_{\mathrm{CC}}$ current. The total current is measured and the quiescent current subtracted to find the total input buffer $I_{C C}$ current. The current per input buffer is then calculated by dividing the total input buffer current by the number of input buffers.

## INPUT BUFFERS

Three different types of input buffers are used in Cypress products. For purposes of illustration they are referred to as types A, B and C. Table 1 lists the maximum ICCs.

Table 1. Types of Input Buffers

Buffer   Type	$\mathbf{I}_{\text {CC }}$   (max. in mA)
A	1.3
B	0.8
C	0.6

The schematics and input characteristics for the three types of buffers are illustrated in Figure 2. A circle on the gate of a transistor means that it is a $\mathbf{P}$-channel device.
As can be seen from the figure, the input buffers draw essentially zero $\mathrm{I}_{\mathrm{CC}}$ current when $\mathrm{V}_{\mathrm{IN}}$ is 0.4 V or less or
(except for type $A$ ) when $V_{\text {IN }}$ is $4 V$ or more. In other words, if the inputs are driven "rail to rail" the B and C input buffers will dissipate power only during the input signal transitions.
To reach these levels the input pins should be either driven by a CMOS driver or by a TTL driver whose output does not drive any other TTL inputs.
When the inputs are driven by the minimum TTL levels $\left(\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}\right)$ each input buffer draws $20 \%$ more $\mathrm{I}_{\mathrm{CC}}$ current than if it were driven rail to rail.


0059-3
Figure 2A


0059-4
Figure 2B
Type $\mathbf{A}$

## Power Dissipation Model (Continued)

## DUTY CYCLE CONSIDERATIONS

The input characteristics of the type $B$ (Figure 2D) and the type $C$ (Figure 2F) buffers may be approximated by triangles symmetric about the $\mathrm{V}_{\text {IN }}=1.5 \mathrm{~V}$ points, whose amplitudes are 0.8 mA and 0.6 mA , respectively. Therefore, between the $\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$ and $\mathrm{V}_{\text {IN }}=3.5 \mathrm{~V}$ points the average current is one-half the peak current, or 0.4 mA and 0.3 mA , respectively. In most systems the input signal slew rates are one-half volt per nanosecond or greater so the input transitions occur quickly. Under these conditions the duty cycle of the input buffers must be considered.


0059-5
Figure 2C


0059-6
Figure 2D
Type B


Figure 2E


0059-8
Figure 2F
Type C
For example, if the CY7C167-35 RAM were used with input signals having a slew rate of one-half volt per nanosecond it would take

$$
[3.5 \mathrm{~V}-0.5 \mathrm{~V}] \times \frac{1}{0.5 \mathrm{~V} / \mathrm{ns}}=6 \mathrm{~ns}
$$

for the input signals to go through the 3 V transition. During the transition each input buffer would be drawing 0.3 mA of current from the $\mathrm{I}_{\mathrm{CC}}$ supply. However, this time is only $6 \mathrm{~ns} / 35 \mathrm{~ns}=0.17$ or $17 \%$ of the access cycle. Therefore, the actual input buffer transient current is only $0.17 \times 0.3 \mathrm{~mA}=0.051 \mathrm{~mA}$. It will be shown that this is insignificant in most power calculations.

## INPUT BUFFER FREQUENCY DEPENDENT CURRENT

This is the current required to charge and discharge the capacitance associated with each input buffer. The capacitance is typically 5 pF and the voltage swing is typically 4V.
Using equation 3; $\quad I=\mathbf{C V f}$

$$
\begin{aligned}
& I_{C C}(f)=5 \times 10^{-12} \times 4 \times \mathbf{f} \\
& I_{C C}(f)=20 \times 10^{-12} \mathrm{f}
\end{aligned}
$$

## CORE AND OUTPUT BUFFERS

The memory core will have a standby power dissipation due to the substrate bias generator, reference generators, sense amplifiers, and polyload RAM cells or EPROM cells. This current is measured with $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$, so that the input buffers draw no current. Under these conditions the output buffers will draw only leakage current and dissipate essentially no power.
The output buffers have N -channel pullup devices that cause the output voltage level to reach $\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}$. The capacitance of the output buffers, including stray capacitance, is typically 10 pF .

$$
\text { If } \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{~V}_{\mathrm{OH}} \cong 4 \mathrm{~V}
$$

Again, using equation $3, I_{C C}(f)=40 \times 10^{-12} \mathrm{f}$ for the output buffers.

Table 2 (Continued)

Part No.	Buffer Type	No. Inputs	No. Outputs	$\begin{aligned} & \mathbf{C}_{\text {INT }} \\ & (\mathrm{pF}) \end{aligned}$	$\underset{(\mathbf{m A})}{\mathbf{I}_{\mathbf{C C}}(\mathbf{Q})}$	$\underset{(\mathrm{mA})}{\mathrm{I}_{\mathrm{CC}}(\text { Max. })}$
CY7C167	C	17	1	75	25	70
CY7C168/169	C	18	4	75	50	70
CY7C170	B	18	4	50	33	90
CY7C171/172	B	18	4	100	27	70
CY7C185/186	B	25	8	330	13	100
CY7C187	B	19	1	150	7	100
CY7C189/190	B	10	4	21	32	90

## PROMs

Table 3

Part No.	Buffer   Type	No.   Inputs	No.   Outputs	$\mathbf{C}_{\text {INT }}$   $(\mathbf{p F})$	$\mathbf{I}_{\mathbf{C C}(\mathbf{Q})}^{(\mathbf{m A})}$	$\mathbf{I}_{\mathbf{C C ( M a x})}^{(\mathbf{m A})}$
CY7C225	B	12	8	32	35	90
CY7C235	B	13	8	35	35	90
CY7C245	B	13	8	35	50	90
CY7C261/3/4	C	14	8	60	45	100
CY7C268/269	C	$19 / 17$	9	60	60	100
CY7C281/282	B	14	8	35	35	100
CY7C291/292	B	14	8	35	50	100

## PALs

For the $16 \mathrm{~L} 8,16 \mathrm{R} 8,16 \mathrm{R} 6$ and 16R4 the number of inputs and outputs is, within limits, user configurable. All use type $B$ buffers.

Table 4

Part No.	$\mathbf{C}_{\text {INT }}$   $(\mathbf{p F})$	$\mathbf{I}_{\mathbf{C C}}(\mathbf{( Q )}$   $(\mathbf{m A )}$	$\mathbf{I}_{\mathbf{C C ( M a x} .)}$   $(\mathbf{m A})$
PALC16L8/R8/R6/R4	40	25	45
PLDC20G10	50	30	55
PALC22V10	50	40	80
PLDCY7C330	300	42	120

## LOGIC PRODUCTS

Table 5

Part No.	Buffer   Type	No.   Inputs	No.   Outputs	$\mathbf{C}_{\mathbf{I N T}}$   $(\mathbf{p F})$	$\mathbf{I}_{\mathbf{C C}(\mathbf{Q})}^{(\mathbf{m A})}$	$\mathbf{I}_{\text {CC(Max.) }}$   $(\mathbf{m A})$
CY7C401	B	6	6	53	30	75
CY7C402	B	7	7	53	30	75
CY7C403	B	7	6	53	30	75
CY7C404	B	8	7	53	30	75
CY7C408	B	11	12	100	42	135
CY7C409	B	11	13	100	42	135
CY7C510	C	-	-	60	30	100
CY7C516/517	C	-	-	60	30	100
CY3341	B	6	6	53	30	45
CY7C901	C	$28 / 24$	$10 / 14$	160	25	70
CY7C909	C	21	5	80	25	55
CY7C911	C	13	5	80	25	55
CY7C9101	C	-	-	70	30	85

The CY7C901 has four bi-directional I/O pins.

## Static RAM Example

To illustrate how to use the preceding tables and perform the required calculations the following example is provided. Estimate the typical $I_{C C}$ current for the CY7C169-35
RAM at room temperature ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ) and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Assume the duty cycle is $100 \%$ at the specified access time.

## Static RAM Example (Continued)

Calculate typical and worst case $\mathrm{I}_{\mathrm{CC}}$ (all inputs and outputs changing) with output loading of 10 pF .
From the RAM product characteristic table;

```
\# inputs \(=18\)
\# outputs \(=4\)
\(\mathrm{C}_{\mathrm{INT}}=75 \mathrm{pF}\)
\(\mathrm{I}_{\mathrm{CC}}(\mathrm{Q})=50 \mathrm{~mA}\)
```


## TRANSIENT INPUT BUFFER CURRENT

The input buffers on the CY7C169 are type C, so the average current is 0.3 mA . If the input signal level transitions are 4 V and the transition times are $0.5 \mathrm{~V} / \mathrm{ns}$, the transition time is:

$$
\mathrm{Tt}=\frac{4 \mathrm{~V}}{0.5 \mathrm{~V} / \mathrm{ns}}=8 \mathrm{~ns}
$$

The duty cycle is then;

$$
8 \mathrm{~ns} / 35 \mathrm{~ns}=0.23
$$

Therefore, each input buffer draws

$$
0.3 \mathrm{~mA} \times 0.23=0.069 \mathrm{~mA}
$$

If all inputs change, the total transient input buffer current is
$18 \times 0.069=1.24 \mathrm{~mA}$.
CVf Input Buffer Current

$$
\begin{array}{lrl}
\mathbf{I}=\mathbf{C V f} & \text { CIN }_{\text {IN }}=5 \mathrm{pF} \\
\mathbf{I}=0.57 \mathrm{~mA} & \mathbf{V}=4 \mathrm{~V} \\
& \mathbf{f}=1 / 35 \mathrm{~ns}
\end{array}
$$

Total $=18 \times 0.57=10.28 \mathrm{~mA}$
Internal CVf Current

$$
\begin{array}{rlrl}
\mathbf{I} & =\mathrm{CVf} & \mathrm{C}_{\mathrm{INT}} & =75 \mathrm{pF} \\
\mathbf{I} & =10.71 \mathrm{~mA} \quad \mathrm{~V} & =5 \mathrm{~V} \\
& \mathrm{f} & =1 / 35 \mathrm{~ns}
\end{array}
$$

## Output CVf Current

$$
\begin{array}{rlrl}
\mathbf{I} & =\mathrm{CVf} & \text { COUT } & =10 \mathrm{pF} \\
\mathbf{I} & =1.15 \mathrm{~mA} & \mathbf{V} & =4 \mathrm{~V} \\
& \mathbf{f} & =1 / 35 \mathrm{~ns}
\end{array}
$$

Total $=4 \times 1.15=4.6 \mathrm{~mA}$
The Quiescent Current is 50 mA

The Total Current At TCY $=\mathbf{3 5} \mathrm{ns}$ is;	
Input Transient	1.24 mA
Input CVf	10.28 mA
Internal CVf	10.71 mA
Output CVf	4.6 mA
Quiescent	$50 \quad \mathrm{~mA}$
Total ICC	76.83 mA (all inputs/outputs changing)

Note that the worst case transient current is 26.83 mA .
If one-half of the inputs and outputs change this is reduced to 13.4 mA , which gives a total current of 63.4 mA (typical $\mathrm{I}_{\mathrm{C}}$ ).

If the duty cycle is $10 \%$ the transient current is reduced to 1.34 mA , which results in a total current of 51.34 mA .

Note also that the Input CVf current and the output CVf current would have the same values for a bipolar device.

## WORST, WORST, WORST CASE ICC

Next, let's estimate the $I_{C C}$ for worst case $V_{C C}$ and low temperature, in addition to all inputs and outputs changing and compare it with the $I_{C C}$ specified on the data sheet.
The $I_{C C}$ current will be greater at high $\mathrm{V}_{\mathrm{CC}}$, which is 5.5 V or $1.1 \times$ the nominal $5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$. The increase in $\mathrm{I}_{\mathrm{CC}}$ due to the lower temperature is $3 \%$, so the total increase is $13 \%$. These factors apply to the internal CVf current (10.71 $\mathrm{mA})$, the output CVf current $(4.6 \mathrm{~mA})$, and the quiescent current ( 50 mA ), (total 65.31 mA ).

$$
\begin{aligned}
\text { Total }^{\mathrm{ICC}}= & \text { Input Transient } \mathrm{I}_{\mathrm{CC}}+\text { Input CVf } \mathrm{I}_{\mathrm{CC}}+ \\
& \text { [Internal CVf } \left.+ \text { Output CVf }+\mathrm{I}_{\mathrm{CC}}(\mathrm{Q})\right] \times 1.13 \\
\mathrm{I}_{\mathrm{CC}}= & 1.24+10.28+[65.31] \times 1.13=85.32 \mathrm{~mA} .
\end{aligned}
$$

This is approximately $95 \%$ of the 90 mA specified on the data sheet.

Note, however, that the data sheet $I_{C C}$ maximum does NOT include the output CVf current.

## Typical ICC Versus Frequency Characteristic

The ICC versus frequency curves for all Cypress products have the same basic shape, which is illustrated by the PAL 16R8 curve of Figure 4. The current remains essentially constant at the quiescent $I_{C C}$ value until the frequency increases to the point where the capacitances begin to cause appreciable currents. This point depends upon the capacitances (input, internal, and output), the number of inputs and outputs, the rate at which they change, and the voltage levels that they are switched between. For Cypress products this point is in the $1-10 \mathrm{MHz}$ range.
The PAL 16R8 devices that were tested to obtain the data for the curve were exercised such that all inputs and all outputs changed every cycle. Curve A shows the total ICC current for a 50 pF load on each of the eight outputs. Curve $B$ shows the total $I_{C C}$ current when the outputs are disabled. The $\mathbf{B}$ curve results from the input and the internal capacitances. In most applications the actual operation of the device will be somewhere between the $A$ and $B$ curves.
The A and B curves may be extrapolated backwards until they intersect the quiescent current (point C in Figure 4).
Point C is approximately 5.6 MHz . This gives the user an easy to use approximate formula to calculate the ICC current.

For frequencies less than 5.6 MHz

$$
\mathrm{I}_{\mathrm{CC}}=\mathrm{I}_{\mathrm{CC}}(\mathrm{Q})=25 \mathrm{~mA}
$$

For frequencies greater than 5.6 MHz

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{CC}}=\mathrm{I}_{\mathrm{CC}}(\mathrm{Q})+3.5 \mathrm{~mA} \text { per } \mathrm{MHz} \text { (all outputs changing) } \\
& \text { or, } \\
& \mathbf{I}_{\mathrm{CC}}=\mathrm{I}_{\mathrm{CC}}(\mathrm{Q})+0.5 \mathrm{~mA} \text { per } \mathrm{MHz} \text { (no outputs changing) }
\end{aligned}
$$

## Frequency in Hertz



Figure 4. Typical ICC vs f

# Systems Design Considerations When Using Cypress CMOS Circuits 

## Introduction

This document is intended to be a guide for the systems designer. Its purpose is to make him aware of the things to consider either when designing new systems using Cypress high performance CMOS integrated circuits or when Cypress products replace either bipolar or NMOS circuits in existing systems. The two major areas of concern are transmission line effects due to impedance mismatching between the source and load, and device input sensitivity.

## Design for Performance

In order to achieve maximum performance when using Cy press CMOS integrated circuits, the systems designer must pay attention to the placement of the components on the Printed Circuit Board (PCB), the routing of the metal traces that interconnect the components, the layout and decoupling of the power distribution system on the PCB and, perhaps most important of all, the impedance matching of (some of) the traces (which, under certain conditions, must be analyzed as transmission lines) between the source and the loads. The most critical traces are those of clocks, write strobes (on SRAMS), and chip enables.

## Issues of Concern When Cypress ICs Replace Either Bipolar or NMOS ICs

Cypress CMOS ICs have been designed to replace both bipolar ICs and NMOS products, and to achieve equal or better performance at one-third (or less) the power of the components they replace.
When high performance Cypress CMOS circuits replace either bipolar or NMOS circuits in existing sockets, the user must be aware of certain conditions, which may be present in the existing system, that could cause the Cypress ICs to behave in a manner different than expected. These conditions fall into two general categories; (1) device input sensitivity and, (2) sensitivity to reflected voltages.

## Input Sensitivity

High performance products, by definition, require less energy at their inputs in order to change state than low or medium performance products.
Unlike a bipolar transistor, which is a current sensing device, a MOS transistor is a voltage sensing device. In fact, a MOS circuit design parameter called $K^{\prime}$ is analogous to the
gm of a vacuum tube, and is inversely proportional to the gate oxide thickness.
The thin gate oxides, which are required to achieve the desired performance, result in highly sensitive inputs that require very little energy. High frequency signals that bipolar devices would not respond to may be detected by CMOS products.
MOS transistors also have extremely high ( 5 to 10 million ohm) input impedances, which make their gate inputs analogous to the input of a high gain amplifier (or an RF antenna). In contrast, bipolar ICs have input impedances of $1000 \Omega$ or less, so they require much more energy to change state than MOS ICs. In fact, a Cypress IC requires less than 10 picojoules of energy to change state.
Therefore, when Cypress CMOS ICs replace either bipolar or NMOS ICs in existing systems, they may respond to pulses of energy that are present in the system that are not detected by the bipolar or NMOS products.

## Reflected Voltages

Cypress CMOS ICs have very high input impedances and, to achieve TTL compatibility and to drive capacitive loads, low output impedances. The impedance mismatch, due to low impedance outputs driving high impedance inputs may, under certain conditions, cause unwanted voltage reflections and ringing, which could result in less than optimum system operation.
When the impedance mismatch is very large, a nearly equal and opposite negative pulse is reflected back from the load to the source when the (electrical) length of the line (PCB trace) is greater than

$$
\ell=\frac{\mathrm{T}_{\mathrm{R}}}{2 \mathrm{~T}_{\mathrm{pd}}}(\mathrm{~ns})
$$

where $T_{R}$ is the rise time of the signal at the source and $T_{P D}$ is the one-way propagation delay of the line per unit length.
The input clamping diodes that bipolar logic "IC families" (e.g., TTL, LS, ALS, FAST) all have are inherent in the fabrication process. The p-substrate is usually grounded and $n$ wells are used for the NPN transistors and $p$ type resistors. The wells are reverse biased by connecting them to the $\mathrm{V}_{\mathrm{CC}}$ supply. As a result, a PN junction diode is formed between every input pin (cathode or $n$ material)

## Introduction (Continued)

and the substrate (anode or p-material). When a negative voltage occurs at an input pin, either due to lead inductance or to a voltage reflection, the diode is forward biased, turns on, and clamps the input pin to a Vf below ground (approximately -0.8 V ).
As circuit performance improved, the output rise and fall times of the bipolar circuits decreased to the point where voltage reflections began to occur (even for short traces) when there was an impedance mismatch between the line and the load. Most users, however, were unaware of these reflections because they were suppressed by the clamping action of the diodes.
Conventional CMOS processing results in PN junction diodes. However, they adversely affect the ESD (Electrostatic Discharge) protection circuitry at each input pin and cause an increased susceptibility to latchup. To eliminate this, a substrate bias generator is used.
Voltage reflections should be eliminated by using impedance matching techniques and crosstalk should be reduced by careful PCB layout.

## Crosstalk

The rise and fall times of the waveforms generated by the output circuits are 2 to 4 ns between levels of 0.4 V and 4 V . The fast transition times and the large voltage swings could cause capacitive and inductive coupling (crosstalk) between signals if insufficient attention is paid to PCB layout. Crosstalk is reduced by avoiding running PCB traces parallel to each other. If this is not possible, ground traces should be run between signal traces. In synchronous systems, the worst time for the crosstalk to occur is during the clock edge with which the data is sampled. In most systems it is sufficient to isolate the clock and other data strobe lines so that they do not cause coupling to the data lines.

## The Theory of Transmission Lines

A connection (trace) on a PCB should be considered as a transmission line if the wavelength of the applied frequency is short compared to the line length. If the wavelength of the applied frequency is long compared to the length of the line, conventional circuit analysis can be used.
In practice, transmission lines on PCBs are designed to be as nearly lossless as possible. As a result, the mathematics required for their analysis, compared to a lossy (resistive) line can be simplified.
Ideally, all signals between ICs travel over constant-impedance transmission lines that are terminated in their charac-
teristic impedances at the load. In practice this ideal situation is seldom achieved for a variety of reasons.
Perhaps the most basic reason is that the characteristic impedances of all real transmission lines are not constants, but present different impedances depending upon the frequency of the applied signal. For "classical" transmission lines driven by a single frequency signal source the characteristic impedance is "more constant" than when the transmission line is driven by a square wave or a pulse.
A square wave is composed of an infinite set (Fourier series expansion) of discrete frequency components, i.e., fundamental plus odd harmonics of decreasing amplitudes. When the square wave is propagated down a transmission line the higher frequencies are attenuated more than the lower frequencies and, due to dispersion, all of the frequencies do not travel at the same speed.
Dispersion indicates the dependance of phase velocity upon the applied frequency. (Ref. 1, pg. 192). The result is that the square wave is distorted when all of the frequency components are added together at the load.
A secondary reason why practical transmission lines are not ideal is that they frequently (of necessity) have multiple loads. The loads may be distributed along the line at regular (or irregular) intervals or they may be lumped together (as close as practical) at the end of the line. The signal-line reflections and ringing caused by impedance mismatches, nonuniform transmission line impedances, inductive leads, and non-ideal resistors could compromise the dynamic system noise margins and cause inadvertent switching.
One of the system design objectives is to analyze the critical signal paths and design the interconnections such that adequate system noise margins are maintained. There will always be signal overshoot and undershoot. The objective is to accurately predict them and to keep them within acceptable limits.

## The Ideal (Lossless) Transmission Line

An equivalent circuit for a transmission line is presented in Figure 2.1. It consists of subsections of series resistance (R) and inductance ( L ) and parallel capacitance ( C ) and shunt admittance (G) (or parallel resistance, $\mathrm{R}_{\mathrm{P}}$ ). For clarity and consistency these parameters will be defined per unit length. The value of the parameter ( $\mathrm{R}, \mathrm{L}, \mathrm{C}, \mathrm{R}_{\mathrm{P}}$ ) must be multiplied by the length of the subsection, $\ell$, to find the total value. The line is assumed to be infinitely long.
If the line of Figure 2.1 is assumed to lossless $\left(\mathbf{R}=0, \mathbf{R}_{\mathbf{P}}\right.$ $=$ infinity) Figure 2.1 is reduced to Figure 2.2.


Figure 2.1. Transmission Line Model

## The Theory of Transmission Lines (Continued)



0099-2
Figure 2.2. Ideal Transmission Line Model

## Input or Characteristic Impedance

We shall now calculate the characteristic impedance (AC impedance or surge impedance) looking into terminals a-b of Figure 2.2.
Let the input impedance looking into terminals a-b be Z1, that looking into terminals $\mathrm{c}-\mathrm{d}$ be Z 2 , that looking into terminals e-f be Z3, etc. The input impedance, Z 1 , looking into terminals $\mathrm{a}-\mathrm{b}$ is the series impedance of the first inductor ( $\ell \mathrm{L}$ ) in series with the parallel combination of Z 2 and the impedance of the capacitor ( $\ell \mathrm{C}$ ).
From AC theory:

$$
\mathrm{XL}=\mathrm{j} \omega \ell \mathrm{~L}
$$

Where XL is the inductive reactance.

$$
\mathrm{XC}=\frac{1}{\mathrm{j} \omega \ell \mathrm{C}}
$$

Where XC is the capacitive reactance.
Then

$$
\begin{equation*}
\mathrm{Z} 1=\mathrm{XL}+\frac{\mathrm{Z} 2 \mathrm{XC}}{\mathrm{Z} 2+\mathrm{XC}} \tag{2-1}
\end{equation*}
$$

If the line is "reasonably" long $\mathbf{Z 1}=\mathbf{Z 2}=\mathbf{Z} 3$. Substituting $\mathrm{Z} 1=\mathrm{Z} 2$ into equation 2-1 yields;

$$
\begin{equation*}
\mathrm{Z} 1=\mathrm{XL}+\frac{\mathrm{Z} 1 \mathrm{XC}}{\mathrm{Z} 1+\mathrm{XC}} \tag{2-2}
\end{equation*}
$$

Or, $\quad \mathrm{Z} 1^{2}-\mathrm{Z} 1 \mathrm{XL}-\mathrm{XC} \mathrm{XL}=0$
Substituting the expressions for XC and XL yields;

$$
\begin{equation*}
\mathrm{Z1}^{2}-\mathrm{j} \omega \ell \mathrm{~L}=\frac{\mathrm{L}}{\mathrm{C}} \tag{2-3}
\end{equation*}
$$

Equation 2-3 contains a complex component that is frequency dependent. It can be eliminated by allowing $\ell$ to become very small and by recognizing that the ratio $\mathrm{L} / \mathrm{C}$ is constant and independent of $\ell$ or $\omega$.

$$
\begin{equation*}
\mathrm{Z} 1=\sqrt{\frac{\mathrm{L}}{\mathrm{C}}} \tag{2-4}
\end{equation*}
$$

The AC input impedance of a purely reactive, uniform, lossless line is a resistance. This is true for AC or DC excitation.

## Propagation Velocity and Propagation Delay

The propagation velocity (or phase velocity) of a sinusoid traveling on an ideal line (Ref. 1, pg. 33) is:

$$
\alpha=\frac{1}{\sqrt{\mathrm{LC}}}
$$

The propagation delay for a lossless line is the reciprocal of the propagation velocity.

$$
\begin{align*}
\mathrm{T}_{\mathrm{pd}} & =\sqrt{\mathrm{LC}}  \tag{2-5}\\
& =\mathrm{Z} 1 \mathrm{C}
\end{align*}
$$

where L and C are the intrinsic line inductance and capacitance per unit length.
If additional stubs or loads are added to the line the propagation delay will increase by the factor (Ref. 2, pg. 129).

$$
\sqrt{1+\frac{C_{D}}{C}}
$$

Where $C_{D}=$ load capacitance.
Therefore, the propagation delay, $\mathrm{T}_{\mathrm{PD}^{\prime}}$, of a loaded line is:

$$
\begin{equation*}
\mathrm{T}_{\mathrm{PD}}{ }^{\prime}=\mathrm{T}_{\mathrm{PD}} \sqrt{1+\frac{\mathrm{CD}_{\mathrm{D}}}{\mathrm{C}}} \tag{2-6}
\end{equation*}
$$

The characteristic impedance of a capacitively loaded line is decreased by the same factor that the propagation delay is increased.

$$
\begin{equation*}
\mathrm{Z} 1^{\prime}=\frac{\mathrm{Z} 1}{\sqrt{1+\frac{\mathrm{C}_{\mathrm{D}}}{\mathrm{C}}}} \tag{2-7}
\end{equation*}
$$

## Reflection Coefficients

The third attribute of the ideal transmission line; reflection coefficients, are not actually a line characteristic. The line is treated as a circuit component (which it is) and reflection coefficients are defined that measure the impedance mismatches between the line and its source and the line and its load. The reason for defining the reflection coefficients will become apparent later when it will be shown that if the impedance mismatch is sufficiently large, either a negative voltage or a positive voltage may be reflected back from the load to the source, where it may either add to or subtract from the original signal. If the impedance of the source is mismatched to the line impedance it may also cause a voltage reflection, which in turn will be reflected back to the load. Therefore, two reflection coefficients will be defined.
For classical transmission lines driven by a single frequency source the impedance mismatches cause standing waves. When pulses are transmitted and the output impedance of the source changes depending upon whether a LOW to HIGH or a HIGH to LOW transition occurs, the analysis is further complicated. Classical transmission analysis,

## The Theory of Transmission Lines (Continued)

where pulses are represented by complex variables with exponentials, could be used to calculate the voltages at the source and the load after several back and forth reflections. However, these complex equations tend to obscure what is physically happening.

## Energy Considerations

Consider next, driving the ideal transmission line from a source capable of generating digital pulses and analyze the behavior of the line under various driving and loading conditions.
The circuit to be analyzed is illustrated in Figure 2.3. The ideal transmission line of length $\ell$ is being driven by a digital source of internal resistance $\mathrm{R}_{\mathrm{S}}$ and loaded with a resistive load of RL. The characteristic impedance of the line appears as a pure resistance, $\mathrm{Z}_{\mathrm{O}}=\sqrt{\mathrm{L} / \mathrm{C}}$ to any excitation.
The ideal case is when $\mathrm{R}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{O}}=\mathrm{RL}$. The maximum energy transfer from source to load occurs under this condition, and there are no reflections. One half the energy is dissipated in the source resistance, $\mathrm{R}_{\mathrm{S}}$, and the other half is dissipated in the load resistance, RL, (the line is lossless).
If the load resistor is greater (larger) than the characteristic impedance of the line there will be extra energy available at the load, which will be reflected back to the source. This is called the underdamped condition, because the load underuses the energy available. If the load resistor is smaller than the line impedance the load will attempt to dissipate more energy than is available. Since this is not possible, a reflection will occur that is a signal to the source to send more energy. This is called the overdamped condition. Both of these cases will cause negative traveling waves, which would cause standing waves if the excitation were sinusoidal. The condition $\mathrm{Z}_{\mathrm{O}}=\mathrm{RL}$ is called critically damped.
It should be intuitively obvious to the reader that the "safest" termination condition, from a systems design viewpoint, is the slightly overdamped condition. No energy is reflected back to the source.

## Derivation of the Line Voltage for Step Function Excitation

The procedure is to apply a step function to the ideal line and to analyze the behavior of the line under various loading conditions. The following section will analyze pulses, reflections from various terminations, and the effects of rise times on the waveforms.
The step function response is important because any pulse can be represented by the superposition of a positive step function and a negative step function, delayed in time with respect to each other. By proper superposition the response of any line and load to any width pulse can be predicted. The principle of superposition applies to all linear systems.
According to theory, the risetime of the signal driven by the source is not affected by the characteristics of the line. This has been substantiated in practice by using a special coaxially constructed reed delay that delivered a pulse of 18 amperes into $50 \Omega$ with a risetime of $0.070 \mathrm{~ns}(70 \mathrm{ps})$. (Ref. 1, pg. 162).

The equation representing the voltage waveform going down the line (Figure 2.3) as a function of distance and time is:

$$
\begin{align*}
& V L(X, t)=V A(t) U(t-X \text { tpd }) \text { for } t<T_{O}  \tag{2-8}\\
& e: \quad V A(t)=V_{S}(t)\left(\frac{Z_{O}}{Z_{O}+R_{S}}\right) \tag{2-9}
\end{align*}
$$

Where:

$$
\begin{aligned}
\mathrm{VA} & =\text { the voltage at point } \mathrm{A} \\
\mathrm{X} & =\text { the voltage at a point } \mathrm{X} \text { on the line } \\
\ell & =\text { the total line length } \\
\mathrm{t}_{\mathrm{pd}} & =\text { the propagation delay of the line in } \mathrm{ns} / \mathrm{ft} . \\
\mathrm{T}_{\mathrm{O}} & =\ell \mathrm{t}_{\mathrm{pd}}, \text { or the one-way line propagation delay } \\
\mathrm{U}(\mathrm{t}) & =\text { a unit step function occurring at } \mathrm{X}=0, \text { and } \\
\mathrm{V}_{\mathbf{S}}(\mathrm{t}) & =\text { the source voltage }
\end{aligned}
$$

When the incident voltage reaches the end of the line a reflected voltage, $\mathrm{VL}^{\prime}$, will occur if RL is not equal to $\mathrm{ZO}_{\mathrm{O}}$. The reflection coefficient at the load, $\rho \mathrm{L}$, can be obtained by applying Ohm's Law.
The voltage at the load is $V L+\mathrm{VL}^{\prime}$, which must be equal to ( $\left.\mathrm{I}_{\mathrm{L}}+\mathrm{I}_{\mathrm{L}}{ }^{\prime}\right) \mathrm{RL}$. But $\mathrm{I}_{\mathrm{L}}=\mathrm{VL} / \mathrm{Z}_{\mathrm{O}}$ and $\mathrm{I}_{\mathrm{L}}{ }^{\prime}=-\mathrm{VL}^{\prime} / \mathrm{Z}_{\mathrm{O}}$ (the minus sign is due to $I_{L}$ being negative. i.e., it is opposite to the current due to VL.)
Therefore,

$$
\begin{equation*}
\mathrm{VB}=\mathrm{VL}+\mathrm{VL}^{\prime}=\left(\frac{\mathrm{VL}^{2}}{\mathrm{Z}_{\mathrm{O}}}-\frac{\mathrm{VL}^{\prime}}{\mathrm{Z}_{\mathrm{O}}}\right) \mathrm{RL} \tag{2-10}
\end{equation*}
$$

By definition:

$$
\rho \mathrm{L}=\frac{\text { reflected voltage }}{\text { incident voltage }}=\frac{\mathrm{VL}^{\prime}}{\mathrm{VL}} .
$$

Solving for $\mathrm{VL}^{\prime} / \mathrm{VL}$ in equation 2-10 and substituting in the equation for $\rho \mathrm{L}$ yields:

$$
\begin{equation*}
\rho \mathrm{L}=\frac{\mathrm{RL}-\mathrm{Z}_{\mathrm{O}}}{\mathrm{RL}+\mathrm{Z}_{\mathrm{O}}} . \tag{2-11}
\end{equation*}
$$

The reflection coefficient at the source is:

$$
\begin{equation*}
\rho S=\frac{\mathrm{R}_{\mathrm{S}}-\mathrm{Z}_{\mathrm{O}}}{\mathrm{RL}+\mathrm{Z}_{\mathrm{O}}} \tag{2-12}
\end{equation*}
$$

Re -arranging equation $2-10$ yields:

$$
\begin{equation*}
\mathrm{VB}=\mathrm{VL}+\mathrm{VL}^{\prime}=\left(1+\frac{\mathrm{VL}^{\prime}}{\mathrm{VL}}\right) \mathrm{VL}=(1+\rho \mathrm{L}) \mathrm{VL} \tag{2-13}
\end{equation*}
$$

Equation 2-13 describes the voltage at the load (VB) as the sum of an incident voltage (VL) and a reflected voltage ( $\rho \mathrm{L}$ $\mathrm{VL})$ at time $\mathrm{t}=\mathrm{T}_{\mathrm{O}}$. When $\mathrm{RL}=\mathrm{Z}_{\mathrm{O}}$ no voltage is reflected. When $\mathrm{RL}<\mathrm{Z}_{O}$ the reflection coefficient at the load is negative, so the reflected voltage subtracts from the incident voltage, giving the load voltage. When RL > Zo the reflection coefficient is positive, so the reflected voltage adds to the incident voltage, again giving the load voltage. Note that the reflected voltage at the load has been defined as positive when traveling toward the source. This means that the corresponding current must be negative, subtracting from the current driven by the source, which it does.
This "piecewise" analysis is cumbersome and can be tedious. However, it does provide an insight into what is physi-

## The Theory of Transmission Lines (Continued)

cally happening and demonstrates that a complex problem can be solved by dividing it into a series of simpler problems. Also, the mathematics are simple if the exponentials, which provide phase information in the classical transmission line equations, are eliminated. One must provide the "bookkeeping" to combine the reflections at the proper time. This is quite straightforward, since a pulse travels with a constant velocity along an ideal or low loss line and the time delay between reflected pulses can be predicted.
The rules to keep in mind are that at any point and instant of time the voltage or the current is the algebraic sum of the waves traveling in the positive X and the negative X directions. For example, two voltage waves of the same polarity and equal amplitudes, traveling in opposite directions, at a given point and time will add together to yield a voltage of twice the amplitude of the individual wave. The same reasoning applies to points of termination and discontinuities on the line. The total voltage or current is the algebraic sum of all of the incident and reflected waves. Polarities must be observed. A positive voltage reflection results in a negative current reflection and vice versa.
Before considering reflections at the source, due to impedance mismatches between the source impedance and the line impedance, the behavior of the ideal line with various loads will be analyzed when it is driven by a step function.

## Step Function Response of the Ideal Line for Various Loads

The voltage and current waveforms at point A (line input, Figure 2.3) and point B (the load) for various loads are presented in Table 1. They have been reproduced from Table 5.1, pages 158, 159 of Reference 1. Note that $\mathrm{R}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{O}}$ and that VA at $t=0$ is equal to $V_{S} / 2$, which means that there is no impedance mismatch between the source and the line, so there will be no reflection from the source at $\mathrm{t}=2 \mathrm{~T}_{\mathrm{o}}$.
$\mathrm{T}_{\mathrm{O}}$ is the one way propation of the line.
The time domain response of the reactive loads are obtained by applying a step function to the LaPlace transform of the load and then taking the inverse transform.
Note that the reflection coefficient at the load is not the total reflection coefficient (a complex number) but represents only the real part of the load. The reason for doing this is to eliminate the complex ( $\mathrm{j} \omega \mathrm{t}$ ) terms because we are performing the bookkeeping involving the phase relationships, which are performed by them in classical transmission line analysis.
Also note that for the open circuit condition, Table 1 (b), $\mathrm{ZL}=$ infinity, so that $\rho \mathrm{L}=+1$. The voltage is reflected back from the load to the source (at amplitude $\mathrm{V}_{\mathrm{O}}=$ $\mathrm{V}_{\mathrm{S}} / 2$ ), so that at time $=2 \mathrm{~T}_{\mathrm{O}}$ it adds to the original voltage, $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{S}} / 2$ to give a value of $2 \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{S}}$. During the time the voltage wave is traveling down to and back from the load a current of $I_{O}=V_{O} / Z_{O}=V_{S} / 2 Z_{O}$ exists. This current charges up the distributed line capacitance to the value $\mathrm{V}_{\mathrm{S}}$, at which time it stops.


VA, IA $\rightarrow+\mathrm{X}$
VB, IB $\leftarrow-X$

Figure 2.3. Ideal Transmission Line Loaded and Driven

## 

## The Theory of Transmission Lines (Continued)

Table 1. Step Function Response of Figure $\mathbf{2 . 3}$ for Various Terminations

$$
\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{S}} / 2, \quad \mathrm{I}_{\mathrm{O}}=\mathrm{V}_{\mathrm{O}} / \mathrm{Z}_{\mathrm{O}}, \quad \mathrm{~T}_{\mathrm{O}}=\ell \sqrt{\mathrm{LC}}, \quad \rho \mathrm{~L}=\left(\mathrm{R}_{\mathrm{L}}-\mathrm{Z}_{\mathrm{O}}\right) /\left(\mathrm{R}_{\mathrm{L}}+\mathrm{Z}_{\mathrm{O}}\right)
$$



## The Theory of Transmission Lines (Continued)

The waveforms at the source and load for (g) and (h) are of particular interest because (g) represents a series RC termination that dissipates no DC power and can be used to terminate a transmission line in its characteristic impedance at the input to a Cypress IC. The equivalent circuit of the input to a Cypress IC is represented by (h). The addition of (g) and (h) then models a Cypress IC driven by a transmission line terminated in its characteristic impedance when the values of R and C are properly chosen.

## Reflections Due to Discontinuities

Table 2 illustrates three types of common discontinuities found on transmission lines. When a discontinuity occurs at a point on the line it causes a reflection and some energy is directed back to the source. The amount of energy reflected back is determined by the reflection coefficient at that point. Discontinuities are usually small (by design), so most of the energy is transmitted to the load.

## Pulse Response of the Ideal Transmission Line

Consider next the behavior of the ideal transmission line when driven by a pulse whose width is short compared to the electrical length of the line. In other words, when the width of the pulse is less than the one-way propagation delay time, $T_{O}$, of the line.
The voltage waveforms at point A (line input, Figure 2.3) and point $B$ (the load) for various loads are presented in Table 3. They have been reproduced from Table 5.2, pages 160,161 of Reference 1 . Note that $\mathrm{R}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{O}}$ and that VA at $t=0$ is equal to $V_{S} / 2$, which means that there is no impedance mismatch between the source and the line, so there will be no reflection from the source at $t=2 \mathrm{~T}_{\mathrm{O}}$.

Table 2. Reflections from Discontinuities with an Applied Step Function

Discontinuity
(a) Series Inductance


0099-12
(b) Shunt Capacitance


0099-13


Voltage Seen at Input End: $\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{S}} / 2$ also, $\mathrm{R}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{O}}$

0099-15


0099-16
(c) Series Resistance


## Pulse Response of the Ideal Transmission Line (Continued)

Table 3. Pulse Response of Figure 2-3 for Various Terminations

$$
\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{S}} / 2, \quad \mathrm{~T}_{\mathrm{O}}=\ell \sqrt{\mathrm{LC}}, \quad \rho_{\nu}=\left(\mathrm{R}_{\mathrm{L}}-\mathrm{Z}_{\mathrm{O}}\right) /\left(\mathrm{R}_{\mathrm{L}}+\mathrm{Z}_{\mathrm{O}}\right)
$$

Termination
Input waveform $\mathrm{V}_{\text {in }}$
Output waveform $\mathrm{v}_{\mathrm{B}}$
(a) SHORT CIRCUIT




(c) SMALL RESISTOR


0099-18
(e) SERIES RESISTANCE AND inductance



(f) Parallel resistance and INDUCTANCE

(g) SERIES RESISTANCE AND CAPACITANCE

(h) PARALLEL RESISTANCE AND CAPACITANCE








Systems Design Considerations When Using Cypress CMOS Circuits

## Finite Rise Time Effects

Now consider the effects of step functions with finite rise times driving the ideal transmission line.
If TR is sufficiently fast, the voltage at the load will change in discrete steps. The amplitude of the steps is determined by the impedance mismatch and the width of the steps is determined by the two-way propagation delay of the line.
As the risetime becomes slower and the line shorter (smaller $\mathrm{T}_{\mathrm{O}}$ ), or both, the result converges to the familiar RC time constant, where C is the static capacitance. All devices should be treated as transmission lines for transient analysis when an ideal step function is applied. However, as the rise time becomes larger (slower) and the traces shorter (or both) the transmission line analysis reduces to conventional AC circuit analysis.

## Reflections from Small Discontinuities

Table 4 shows a pulse with a linear rise time and rounded edges driving the transmission line of Table 2 (a), (b). The expressions for $\mathrm{V}_{\mathrm{r}}$ are derived on pages 171 and 172 of Reference 1 . The reflection caused by the small series inductance is useful for calculating the value of the inductor, $L^{\prime}$, but little else.

Table 4. Reflections from Small Discontinuities with Finite Rise Time Pulse
(a) Applied Pulse from Generator


0099-20
(b) Reflection from Small Series Inductor $\mathrm{L}^{\prime}$

(c) Reflection from Small Shunt Capacitor $\mathrm{C}^{\prime}$


The reflection caused by the small shunt capacitor is more interesting because if it is sufficiently large it could cause a device connected to the transmission line to see a logic ZERO instead of a logic ONE.

## The Effect of Rise Time on Waveforms

Next, consider the ideal line terminated in a resistance less than its characteristic impedance and driven by a step function with a linear rise time. The stimulus, the circuit, and the response are illustrated in Figures 4.1 (a), (b) and (c), respectively. Once again, note that the source resistance is equal to the line characteristic impedance, so there are no reflections from the source.


Figure 4.1. Effect of Rise Time on Step Response of Mismatched Line with $\mathbf{R}_{\ell}<\mathbf{Z}_{\mathbf{O}}$
The resulting waveforms are similar to those of Table 1 (c) as modified as shown in Figure 4.1 (c). The final value of the waveform must be the same as before (Table 1 (c)).
The resultant wave at the line input $\left(\mathrm{V}_{\text {in }}\right)$ is easily obtained by superposition of the applied wave and the reflected wave at the proper time. In Figure 4.1 the rise time of the step function is less than the (two-way) propagation delay of the line so the input wave reaches its final value, $\mathrm{V}_{\mathbf{S}} / 2$. At $\mathrm{t}=$ $2 T_{O}$ the reflected wave arrives back at the source and subtracts from the applied step function.
The cases where the step function rise time is equal to twice the propagation delay and greater than the propagation delay are illustrated in Figure 4.2 (a) and (b), respectively.

## Finite Rise Time Effects (Continued)



Figure 4.2. Effects of Rise Time on Step Response for

$$
\mathbf{R}_{\ell}<\mathbf{Z}_{\mathbf{O}}: \text { (a) } \mathbf{T}_{\mathbf{R}}=\mathbf{2} \mathbf{T}_{\mathbf{O}} ; \text { (b) } \mathbf{T}_{\mathbf{R}}>2 \mathbf{T}_{O}
$$

## Multiple Reflections and Effective Time

## Constant

We will now consider the case of an ideal transmission line with multiple reflections causes by improper terminations at both ends of the line. The circuit and waveforms are illustrated in Figure 4.3. The reflection coefficients at the source and the load are both negative. i.e., the source resistance and the load resistance are both less than the line characteristic impedance. Refer to equations 2-11 and 2-12.
When the switch is initially closed, a step function of amplitude $V_{O}=V_{\text {in }}=\frac{V_{S} Z_{O}}{R_{S}+Z_{O}}$ appears on the line and travels toward the load. A one-way propagation delay time later, $\mathrm{T}_{\mathrm{O}}$, the wave is reflected back with an amplitude of $\rho L V_{o}$.
This first reflected wave then travels back to the source and at time $t=2 T_{0}$ it reaches the input end of the line. At this time the first reflection at the source occurs and a wave of amplitude $\rho S\left(\rho \mathrm{~L} \mathrm{~V}_{\mathrm{O}}\right)$ is reflected back to the load. At time $t=3 T_{O}$ this wave is again reflected from the load back to the source with amplitude $\rho \mathrm{L} \rho \mathrm{S}\left(\rho \mathrm{L} \mathrm{V}_{\mathrm{O}}\right)=\rho S$ $\rho L^{2} V_{O}$. This back and forth reflection process continues until the amplitudes of the reflections become so small that they cannot be observed, at which time the circuit is said to be in a quiescent state.

## Effective Time Constant

From an examination of Figure 4.3 it is reasonable that if the voltage reflections occur in small increments that are of short durations the resultant waveform will approximate an exponential function, as indicated by the dashed line in Figure 4.3 (b). The smaller and narrower the steps become, the more closely the waveform will approach an exponential.


Figure 4.3. Step Function Applied to Line Mismatched on both ends; waveforms shown for negative values of $\rho_{S}$ and $\rho_{\ell}$.
The mathematical derivation is presented on pages 178 and 179 of Reference 1. The time constant is shown to be:

$$
\begin{equation*}
K=-\frac{2 T_{O}}{1-\rho S \rho L} \tag{4-1}
\end{equation*}
$$

So that the resultant waveform can be approximated by;

$$
\begin{equation*}
V(t)=V_{O} \in\left(\frac{t}{K}\right) \tag{4-2}
\end{equation*}
$$

In order for equation 4-2 to be accurate $\rho \mathrm{L}$ and $\rho$ s must be reasonably large (approaching $\pm 1$ ) so that the incremental steps are small. The product $\rho S \rho \mathrm{~L}$ is a positive number, less than one, so the time constant is a negative number, which indicates that the exponential decreases with time. This is usually the case in transient circuits.
Both reflection coefficients must also have the same sign in order to yield a continually decreasing (or increasing) waveform. Opposite signs will give oscillatory behavior that cannot be represented by an exponential function.

## Types of Transmission Lines

The types of transmission lines are:
Coaxial cable
Twisted pair
Wire over ground
Microstrip lines
Strip lines

## Coaxial Cable

Coaxial cable offers many advantages for distributing high frequency signals. The well defined and uniform characteristic impedance permits easy matching. The ground shield on the cable reduces crosstalk and the low attenuation at high frequencies make it ideal for transmitting the fast rise and fall time signals generated by Cypress CMOS integrated circuits. However, because of its high cost, coaxial cable is usually restricted to applications where there are no other alternatives. These are usually clock distribution lines on PCBs or backplanes.

## Characteristic Impedance

Coaxial cables have characteristic impedances of $50,75,93$, or 150 ohms. Special cables can be made with other impedances, but these are the most common.

## Propagation Delay

The propagation delay is very low. It may be computed using the formula;

$$
\begin{equation*}
\mathrm{T}_{\mathrm{pd}}=1.017 \sqrt{\mathrm{e}_{\mathrm{r}}} \mathrm{~ns} / \mathrm{ft} \tag{5-1}
\end{equation*}
$$

where $e_{r}$ is the relative dielectric constant and depends upon the dielectric material used. For solid teflon and polyethylene it is 2.3 . The propagation delay is 1.54 ns per foot. For maximum propagation velocity, coaxial cables with dielectric styrofoam or polystyrene beads in air may be used. Many of these cables have high characteristic impedances and are slowed considerably when capacitively loaded.

## Twisted Pair

Twisted pairs can be made from standard wire (AWG 2428) twisted about 30 turns per foot. Typical characteristic impedance is $110 \Omega$. Because the propagation delay is directly proportional to the characteristic impedance (equation 2-5) the propagation delay will be approximately twice that of coaxial cable. Twisted pairs are used for backplane wiring and for breadboarding.

## Wire Over Ground

Figure 5.1 shows a wire over ground. The wire over ground is used for breadboarding and for backplane wiring. The characteristic impedance is approximately $120 \Omega$ and may vary as much as $\pm 40 \%$, depending upon the distance from the groundplane, the proximity of other wires, and the configuration of the ground.


0099-32

$$
\mathrm{Z}_{\mathrm{O}}=\frac{60}{\sqrt{\mathrm{e}_{\mathrm{r}}}} \ln \left(\frac{4 \mathrm{~h}}{\mathrm{~d}}\right)
$$

Figure 5.1. Wire Over Ground

## Types of Transmission Lines (Continued)

## Microstrip Lines

A microstrip line (Figure 5.2) is a strip conductor (signal line) on a PCB separated from a ground plane by a dielectric. If the thickness and width of the line, and the distance from the ground plane are controlled, the characteristic impedance of the line can be predicted with a tolerance of $\pm 5 \%$.

where:
$e_{r}=$ relative dielectric constant of the board material (about 5 for G-10 fiber-glass epoxy boards),
$\mathrm{w}, \mathrm{h}, \mathrm{t},=$ dimensions indicated.
Figure 5.2. Microstrip Line
The formula of Figure 5.2 has proven to be very accurate for ratios of width to height between 0.1 and 3.0 and for dielectric constants between 1 and 15 .
The inductance per foot for microstrip lines is;

$$
\begin{equation*}
\mathrm{L}=\mathrm{Z}_{\mathrm{O}}^{2} \mathrm{C}_{\mathrm{O}} \tag{5-2}
\end{equation*}
$$

where $Z_{O}=$ characteristic impedance,
$\mathrm{C}_{\mathrm{O}}=$ capacitance per foot.
The propagation delay of a microstrip line is;

$$
\begin{equation*}
\mathrm{T}_{\mathrm{pd}}=1.017 \sqrt{0.45 \mathrm{e}_{\mathrm{r}}+0.67} \mathrm{~ns} \text { per foot } \tag{5-3}
\end{equation*}
$$

Note that the propagation delay is dependent only upon the dielectric constant and is not a function of the line width or spacing. For G-10 fiber-glass epoxy PCBs (dielectric constant of 5 ) the propagation delay is 1.74 ns per foot.

## Strip Line

A strip line consists of a copper strip centered in a dielectric between two conducting planes (Figure 5.3). If the thickness and width of the line, the dielectric constant, and the distance between ground planes are all controlled, the tolerance of the characteristic impedance will be within $\pm 5 \%$. The equation of Figure 5.3 is accurate for $\mathrm{W} /(\mathrm{b}-\mathrm{t})$ $<0.35$ and $\mathrm{t} / \mathrm{b}<0.25$.


0099-34

$$
\mathrm{Z}_{\mathrm{O}}=\frac{60}{\sqrt{\mathrm{e}_{\mathrm{r}}}} \ln \left(\frac{4 \mathrm{~b}}{0.67 \pi \mathrm{w}\left(0.8+\frac{\mathrm{t}}{\mathrm{w}}\right)}\right)
$$

Figure 5.3. Stripline

The inductance per foot is given by the formula;

$$
L_{O}=Z_{O}{ }^{2} C_{0}
$$

The propagation delay of the line is given by the formula;

$$
\begin{equation*}
\mathrm{T}_{\mathrm{pd}}=1.017 \sqrt{\mathrm{e}_{\mathrm{r}}} \mathrm{~ns} \text { per foot. } \tag{5-4}
\end{equation*}
$$

For G-10 fiber-glass epoxy boards the propagation delay is 2.27 ns per foot. The propagation delay is not a function of line width or spacing.

## Power Distribution

## Instantaneous Current

In order to realize the fast rise and fall times that Cypress CMOS integrated circuits are capable of achieving, the power distribution system must be capable of supplying the instantaneous current required when the device outputs switch from LOW to HIGH.
The energy is stored as charge on the local decoupling capacitors. It is standard practice to use one decoupling capacitor for each IC that drives a transmission line and to use one for every three devices that do not.
The value of the decoupling capacitor is determined by estimating the instantaneous current required when all the outputs of the IC switch from LOW to HIGH, assuming a reasonable "droop" of the voltage on the capacitor.
Calculations
The charge stored on the local decoupling capacitor of Figure 6.1 is $\mathrm{Q}=\mathrm{CV}$. Differentiating yields;

$$
\begin{equation*}
\mathrm{i}(\mathrm{t})=\frac{\mathrm{dQ}}{\mathrm{dt}}=\mathrm{C} \frac{\mathrm{dV}}{\mathrm{dt}} \tag{6-1}
\end{equation*}
$$

The characteristic impedance of a typical transmission line is $50 \Omega$. Heavily (capacitively) loaded lines will have lower characteristic impedances (equation 2-7).


0099-35
Figure 6.1. Local Decoupling Capacitor
Next, assume that the IC is an eight output PROM, such as the CY7C245 or the CY7C261. The outputs will reach $\mathrm{V}_{\mathrm{CC}}-\mathrm{Vt}=5 \mathrm{~V}-1 \mathrm{~V}=4 \mathrm{~V}$. Each output will then require $4 V / 50=8 \mathrm{~mA}$. Since there are eight outputs a total of 64 mA will be required.
Solving equation 6-1 for C yields;

$$
\begin{equation*}
\mathrm{C}=\mathrm{I} \frac{\mathrm{dt}}{\mathrm{dV}} \tag{6-2}
\end{equation*}
$$

The signal rise and fall times are 2 to 4 ns so we will use dt $=3 \mathrm{~ns}$.
The last step is to assume a reasonable, tolerable droop in the capacitor voltage. Assume dV $=100 \mathrm{mV}$.
Therefore, substituting these values in equation 6-2 yields; $\mathrm{C}=\frac{64 \times 10^{-3} \times 3 \times 10^{-9}}{100 \times 10^{-3}}=0.192 \times 10^{-9}=192 \mathrm{pF}$.

It is standard practice to use 0.01 to $0.1 \mu \mathrm{~F}$ decoupling capacitors. A $0.01 \mu \mathrm{~F}$ capacitor is capable of supplying 330 mA under the preceding conditions.

## Power Distribution (Continued)

Decoupling capacitors for high speed Cypress CMOS circuits should be of the high $\mathbf{K}$ ceramic type with a low ESR (Equivalent Series Resistance). Capacitors using 5 ZU dielectric are a good choice.

## Low Frequency Filter Capacitors

A solid tantalum capacitor of $10 \mu \mathrm{~F}$ is recommended for each 50 to 100 ICs to reduce power supply ripple. This capacitor should be as close as possible to where the $\mathrm{V}_{\mathrm{CC}}$ and ground enter the PCB or module.

## When Should Transmission Lines Be Terminated?

Transmission lines should be terminated when they are long. From the preceding analysis it should be apparent that

$$
\text { Long Line }>\frac{\mathrm{T}_{\mathrm{r}}}{2 \mathrm{~T}_{\mathrm{pd}}} \text {. }
$$

Where $T_{p d}$ is the propagation delay per unit length.
For Cypress products the rise time, $\mathbf{T}_{\mathrm{r}}$, is typically two nanoseconds.
The propagation delay per unit length has been shown to be as small as 1.7 ns per foot.

$$
\text { Long Line }>\frac{2 \mathrm{~ns}}{2 \times 1.7 \mathrm{~ns} / \mathrm{ft} .}=0.59 \mathrm{ft} \text {. or } 7 \text { inches. }
$$

Not all lines exceeding 7 inches will need to be terminated. Terminations are usually only required on clock inputs, write and read strobe lines on SRAMs, and chip select or output enable lines on RAMs, PROMs, and PLDs. Address lines and data lines on RAMs and PROMs usually have time to settle.
In the case where multiple loads are connected to a transmission line, only one termination circuit is required. The termination network should be located at the load that is electrically the longest distance from the source. This is usually the load that is the longest physical distance from the source.

## Types of Terminations

There are three basic types of terminations. They are called series damping, parallel, and pullup/pulldown. Each has their advantages and disadvantages.
Except for series damping, the termination network should be attached to the input (load) that is electrically furthest away from the source. Component leads should be as short as possible in order to prevent reflections due to lead inductance.

## Series Damping

Series damping is accomplished by inserting a small resistor (typically $10 \Omega$ to $75 \Omega$ ) in series with the transmission line, as close to the source as possible, as illustrated in Figure 8.1. Series damping is a special case of damping in which the series resistor value plus the circuit output impedance is equal to the transmission line impedance. The strategy is to prevent the wave that is reflected back from the load from reflecting back from the source by making the source reflection coefficient equal to zero.

The channel resistance ( ON resistance) of the pulldown device for Cypress ICs is ten to twenty ohms (depending upon the current sinking requirements), so this value should be subtracted from the series damping resistor, $\mathrm{R}_{\mathbf{S}}$.


0099-36
Figure 8.1. Series Damping
The disadvantage of the series damping technique is that during the two-way propagation delay time the voltage at the input to the line is half-way between the logic levels, due to the voltage divider action of Rs. This means that no inputs can be attached along the line, because they would respond incorrectly. However, any number of devices may be attached to the load end of the line because all of the reflections will be absorbed at the source.
Due to the low input current required by Cypress CMOS ICs, there will be essentially no DC power dissipation and the only AC power required will be to charge and discharge the parasitic capacitances.

## Pullup/Pulldown

The pullup/pulldown resistor termination shown in Figure 8.2 is included only for the sake of completeness. If both resistors are used there will be DC power dissipated all the time and if only a pulldown resistor is used DC power will be dissipated when the input is in the logic HIGH state. Due to these power dissipations, this termination is not recommended.


0099-37
Figure 8.2. Pullup/Pulldown
However, in special cases where inputs should be either pulled up (HIGH) for logic reasons or because of very slow rise and fall times, a pullup resistor to $\mathrm{V}_{\mathrm{CC}}$ may be used in conjunction with the terminating network described below. DC power will be dissipated when the source is LOW.

## Parallel AC Termination; Figure 8.3

This is the recommended general purpose termination. It does not have the disavantage of the half-voltage levels of series damping and it causes no DC power dissipation. Loads may be attached anywhere along the line and they will see a full voltage swing.


0099-38
Figure 8.3. Parallel AC
The disadvantages is that it requires two components, versus the series damping termination of one.

## Types of Terminations (Continued)

The value of C should be as small as possible. Such that Xc is less than two ohms at the frequency

$$
\mathrm{F}=\frac{1}{2 \mathrm{~T}_{\mathrm{PD}}}
$$

$\mathrm{R}_{\mathrm{S}}$ can then equal $\mathrm{Z}_{\mathrm{O}}$.

## Schottky Diode Termination

In certain instances it may be expedient to use Schottky diodes to terminate lines. Where line impedances are not well defined, as in breadboards and backplanes, the use of diode terminations is convenient and may save time.
A typical diode termination is shown in Figure 9.1. The low forward voltage, $\mathrm{V}_{\mathrm{f}}$, of the diode (typically 0.3 to 0.45 V ) clamps the input signal to a $\mathrm{V}_{\mathrm{f}}$ below ground (lower diode) and $\mathrm{V}_{\mathrm{CC}}+\mathrm{V}_{\mathrm{f}}$ (upper diode), thereby significantly reducing signal undershoot and overshoot. In some applications both diodes may not be required.


## 0099-39

Figure 9.1. Schottky Diode Termination
The advantages of diode terminations are:

- Impedance matched lines are not required.
- The diodes replace terminating resistors or RC terminations.
- The clamping actions of the diodes reduce overshoot and undershoot.
- Although diodes are more expensive than resistors, the total cost of layout may be less because a precise, controlled transmission line environment is not required.
- If ringing is discovered to be a problem during system checkout the diodes can be easily added.
As with resistor or RC terminations, the leads should be as short as possible in order to avoid ringing due to lead inductance.
A few of the types of Schottky diodes commercially available are :
- 1N4148 (Switching)
- 1N5711
- MBD101 (Motorola)
- HP5042 (Hewlett Packard)


## Example: Unterminated Line

The following example is presented to illustrate the procedure for calculating the waveforms when a Cypress PLD is used to generate the write strobe for a Cypress SRAM. The PLD is a PAL® ${ }^{\circledR}$ C 20 device and the SRAM is the CY7C189-25.
The equivalent circuit is illustrated in Figure 10.1 and the (unmodified) driving waveform in Figure 10.2. The rise and fall times are two nanoseconds. The length of the micro-
strip trace on the PCB is eight inches and the characteristic line impedance is $50 \Omega$. It is required to calculate the voltage waveforms at the source (point A) and the load (point B) as functions of time.


Figure 10.2. $\mathrm{V}_{\mathrm{A}}(\mathrm{t})$, Unmodified

## Equivalent Circuits for The PLD and SRAM

The equivalent ON channel resistance of the PLD pullup device, $28 \Omega$, was calculated using the output source current versus voltage graph over the region of interest ( 0 to 2 V ) from the data sheet. The equivalent resistance of the pulldown device, $10 \Omega$, was calculated in a similar manner, using the output sink current versus output voltage graph, also on the data sheet.
The equivalent input circuit for the SRAM was constructed by approximating the input and stray capacitance with a 10 pF capacitor and the resistance with a 5 million ohm resistor. The input leakage current for all Cypress products is specified as a maximum of $\pm 10 \mu \mathrm{~A}$, which guarantees a minimum of $500,000 \Omega$ at $\mathrm{V}_{\text {in }}=5 \mathrm{~V}$. Typical leakage current is one microampere.

## Transmission Line Calculations

The next step is to calculate the propagation delay and loaded characteristic impedance of the line.

## Propagation Delay

The unloaded propagation delay of the line is calculated using equation $5-3$ with a dielectric constant of 5 .

$$
\mathrm{T}_{\mathrm{pd}}=1.74 \mathrm{~ns} / \mathrm{ft}
$$

In order to calculate the loaded line propagation delay, the intrinsic capacitance must first be calculated using equation 2-5.

$$
\mathrm{T}_{\mathrm{pd}}=\mathrm{Z}_{\mathrm{O}} \mathrm{Co}_{\mathrm{o}}
$$

where $Z_{O}$ is the intrinsic characteristic impedance and $C_{0}$ is the intrinsic capacitance.

$$
\mathrm{C}_{\mathrm{O}}=\frac{\mathrm{T}_{\mathrm{pd}}}{\mathrm{Z}_{\mathrm{O}}}=\frac{1.74 \mathrm{~ns} / \mathrm{ft.}}{50}=34.8 \rho \mathrm{~F} / \mathrm{ft} .
$$

## Example: Unterminated Line (Continued)

The line is loaded with 10 pF , so equation $2-6$ is used to compute the loaded propagation delay of the line.

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{pd}^{\prime}}=\mathrm{T}_{\mathrm{pd}} \sqrt{1+\frac{\mathrm{C}_{\mathrm{D}}}{\mathrm{C}_{\mathrm{O}}}} \\
& \mathrm{~T}_{\mathrm{pd}^{\prime}}=1.74 \mathrm{~ns} / \mathrm{ft} . \sqrt{1+\frac{10 \rho \mathrm{~F}}{34.8 \rho \mathrm{~F} / \mathrm{ft} . \times \frac{8 \mathrm{in} .}{12 \mathrm{in} . / \mathrm{ft} .}}} \\
& \mathrm{T}_{\mathrm{pd}^{\prime}}=2.08 \mathrm{~ns} / \mathrm{ft} .
\end{aligned}
$$

Note that the capacitance per unit length must be multiplied by the line length to arrive at an equivalent lumped capacitance.

## Characteristic Impedance

The intrinsic line impedance is reduced by the same factor by which the propagation delay is increased (1.96). See equation 2-7.

$$
\mathrm{Z}_{\mathrm{O}^{\prime}}=\frac{50 \Omega}{1.196}=41.8 \Omega
$$

## Initial Conditions

At time $\mathrm{t}=0$ the circuit of Figure 10.1 is in a quiescient state. The voltage at points A and B must be the same.

By inspection;

$$
\begin{aligned}
\mathrm{VA} & =\mathrm{VB}=\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{Vf}\right)\left(\frac{\mathrm{RL}}{\mathrm{RS}+\mathrm{RL}}\right) \\
& =(5-1)\left(\frac{5 \times 10^{6}}{28+5 \times 10^{6}}\right)=4 \mathrm{~V}
\end{aligned}
$$

## The Falling Edge of the Write Strobe

At $t=0$ the driving waveform changes from $4 V$ to $0 V$ (approximately) with a fall time of two nanoseconds. This is represented in Figure 10.1 by the switch arm moving from position 1 to position 2. The wave propagates to the load at the rate of 2 ns per foot (approximately) and arrives there

$$
\mathrm{T}_{\mathrm{O}}=2 \mathrm{~ns} / \mathrm{ft} . \times \frac{8 \mathrm{in} .}{12 \mathrm{in} . / \mathrm{ft} .}=1.33 \mathrm{~ns}
$$

later, as illustrated in Figure 10.3 (b).
The reflection coefficient at the load is $\rho L=1$, so a nearly equal and opposite polarity waveform is propagated back to the source from the load, arriving at $\mathrm{t}=2 \mathrm{~T}_{\mathrm{O}}=2.66$ ns, as shown in Figure 10.3 (a). (See Table 3 \{ h$\}$ ). Note that the fallime is preserved. The reflection coefficient at the source is;

$$
\rho s=\frac{\mathrm{RS}-\mathrm{ZO}_{\mathrm{O}^{\prime}}}{\mathrm{RS}+\mathrm{Z}_{\mathrm{o}^{\prime}}}=\frac{10-41.8}{10+41.8}=-0.61
$$

The magnitude of the reflected voltage at the source is then;


Figure 10.3 (b)

## Example: Unterminated Line (Continued)

$$
\mathrm{VS} 1=-4 \mathrm{~V} \times(-0.61)=2.44 \mathrm{~V}
$$

This wave propagates from the source to the load and arrives at $t=3 \mathrm{~T}_{\mathrm{O}}$, and adds to the (zero volts) signal. The risetime is preserved, so the time required for the signal to go from 0 V to 2.44 V is;

$$
\mathrm{t}_{\mathrm{r}}=2.44 \mathrm{~V} \times 2 \mathrm{~ns} / 4 \mathrm{~V}=1.22 \mathrm{~ns}
$$

The signal at the load thus reaches the 2.44 V level at time $\mathrm{t}=3 \mathrm{~T}_{\mathrm{O}}+1.22 \mathrm{~ns}=5.22 \mathrm{~ns}$ and remains at that level until the next reflection occurs at $t=5 \mathrm{~T}_{\mathrm{O}}$. The wave that arrived at the load at $3 \mathrm{~T}_{O}$ is reflected back to the source and arrives at $\mathrm{t}=4 \mathrm{~T}_{\mathrm{O}}(5.32 \mathrm{~ns})$. The 2.44 V level adds to the -4 V level, so that the resultant level is -1.56 V . The risetime is preserved, so that this level is reached at $\mathrm{t}=4$ $\mathrm{T}_{\mathrm{O}}+1.22 \mathrm{~ns}=6.54 \mathrm{~ns}$, and maintained until the next reflection occurs at $t=6 \mathrm{~T}_{\mathrm{O}}$. The 2.44 V wave that arrived at the source at $t=4 T_{O}$ is reflected back to the load and arrives at $\mathrm{t}=5 \mathrm{~T}_{\mathrm{O}}$. The portion that is reflected back is;

$$
\mathrm{VS} 2=2.44 \times(-0.61)=-1.49 \mathrm{~V}
$$

This subtracts from the 2.44 V level to give $2.44-1.49=$ 0.95 V . The falltime is preserved, so the time required for the signal to go from 2.44 V to 0.95 V is;

$$
\mathrm{t}_{\mathrm{f}}=1.49 \mathrm{~V} \times 2 \mathrm{~ns} / 4 \mathrm{~V}=0.75 \mathrm{~ns}
$$

The 0.95 V level is thus reached at time $\mathrm{t}=5 \mathrm{~T}_{\mathrm{O}}+0.75$ $\mathrm{ns}=7.4 \mathrm{~ns}$.
At $t=6 \mathrm{~T}_{\mathrm{O}}$ the 0.95 V wave arrives back at the source, where it subtracts from the -1.56 V level to give -0.61 V . The risetime is $\mathrm{t}_{\mathrm{r}}=0.95 \times 0.5 \mathrm{~ns} / \mathrm{V}=0.45 \mathrm{~ns}$.
The 0.95 V wave that arrived at the source at $t=6 \mathrm{~T}_{\mathrm{O}}$ is reflected back to the load and arrives at $t=7 \mathrm{~T}_{\mathrm{O}}$. The portion that is reflected back is;

$$
\mathrm{VS} 3=0.95 \times(-0.61)=-0.58 \mathrm{~V}
$$

This subtracts from the 0.95 V level to give 0.37 V . The falltime is approximately 0.5 ns .
This process continues until the voltages at points A and B decay to approximately zero volts.

## Observations

The positive reflection coefficient at the load and the negative reflection coefficient at the source result in an oscillatory behavior that eventually decays to acceptable levels. The voltage at point A reaches -0.61 V after $6 \mathrm{~T}_{\mathrm{O}}$ delays and the voltage at point $B$ reaches 0.37 V after $7 \mathrm{~T}_{\mathrm{O}}$ delays.
The reflection at the load that causes the voltage to exceed the TTL minimum ONE level $(2 \mathrm{~V})$ at $\mathrm{T}=3 \mathrm{~T}_{\mathrm{O}}$ could cause a problem if either the data to be written in the RAM changes up to $5 \mathrm{~T}_{\mathrm{O}}$ delays after the falling edge of the write strobe or if the observed shortening of the write strobe by 5 $\mathrm{T}_{\mathrm{O}}$ delays violates the minimum write strobe specification.
However, if this reflection occurred on a clock line to a logic device, registered PROM, or a PLD the reflection could be interpreted by the device as a second clock. The width of the pulse caused by the reflection in this case is 2 $\mathrm{T}_{\mathrm{O}}=2.66 \mathrm{~ns}$, which is probably too short to be detected. If the line were either slightly longer or more heavily capacitively loaded the pulse would be wider and could be detected as a second clock.

## The Rising Edge of the Write Strobe

At $\mathrm{t}=22 \mathrm{~ns}$ the rising edge of the write strobe begins, which is the equivalent of closing the switch in Figure 10.1 in the 1 position. For this analysis it its convenient to start the time scale over at zero, as is shown in Figures $10.3 a$ and $b$.
If the forcing function were a step function, the equations of Table 1 (h) would apply. The time constant in the equation is:

$$
\begin{equation*}
\mathrm{T}=\frac{\mathrm{R} \mathrm{Z}_{\mathrm{O}^{\prime}} \mathrm{Ce}}{\mathrm{R}+\mathrm{Z}_{\mathrm{O}^{\prime}}} \tag{10-1}
\end{equation*}
$$

Because $\mathrm{R} \gg \mathrm{Z}_{\mathrm{O}^{\prime}}, \mathrm{T}=\mathrm{Z}_{\mathrm{O}^{\prime}} \mathrm{Ce}$, where $\mathrm{Z}_{\mathrm{O}^{\prime}}=41.8 \Omega$ and $\mathrm{Ce}=33.2 \rho \mathrm{~F}$.
This is the equivalent of saying that the five megohm device input resistance can be ignored for transient circuit analysis. Substitution of $\mathrm{Z}_{\mathrm{O}}{ }^{\prime}$ and Ce into the preceding equation yields a time constant of $\mathrm{T}=1.39 \mathrm{~ns}$.
Writing the equation for the voltages for the circuit of Figure 10.1

$$
\begin{equation*}
\mathrm{VA}(\mathrm{t})=\mathrm{i} \mathrm{Z}_{\mathrm{O}^{\prime}}+\frac{1}{\mathrm{Ce}} \int_{\mathrm{o}}^{\mathrm{t}} \mathrm{idt} . \tag{10-2}
\end{equation*}
$$

Also, VA(t) $=K t \mathrm{U}(\mathrm{t})-\mathrm{K}(\mathrm{t}-\mathrm{T} 1) \mathrm{U}(\mathrm{t}-\mathrm{T} 1)$.
Where Kt is the rising edge of the write strobe $(\mathrm{K}=$ $2 \mathrm{~V} / \mathrm{ns}$ ) applied at $\mathrm{t}=0$ using a unit step function, $\mathrm{U}(\mathrm{t})$, and $-K(t-T 1)$ represents an equal but opposite waveform applied at $\mathrm{t}=\mathrm{T} 1$ (after the risetime) using a unit step function, $U(t-T 1)$.
Equating the equations and taking the LaPlace transforms of both sides yields:

$$
\frac{K}{s^{2}}-\frac{K \epsilon^{-T 1 S}}{s^{2}}=Z_{O^{\prime}} I(s)+\frac{I(s)}{C e s}=\left(Z_{O^{\prime}}+\frac{1}{\operatorname{Ces}}\right) I(s)
$$

$$
\begin{equation*}
\text { However, } \mathrm{VB}(\mathrm{t})=\frac{1}{\mathrm{Ce}} \int_{0}^{\mathrm{t}} \mathrm{idt} \text {, or } \mathrm{VB}(\mathrm{~s})=\frac{\mathrm{I}(\mathrm{~s})}{\mathrm{Ces}} \tag{10-4}
\end{equation*}
$$

Therefore:

$$
\begin{equation*}
\frac{K}{s^{2}}-\frac{K \epsilon-\mathrm{T1S}}{\mathrm{~s}^{2}}=\left(\mathrm{Z}_{\mathrm{O}^{\prime}}+\frac{1}{\mathrm{CeS}}\right) \operatorname{Ces} \mathrm{VB}(\mathrm{~s}) \tag{10-5}
\end{equation*}
$$

Solving for VB(s) yields:

$$
\begin{equation*}
\mathrm{VB}(\mathrm{~s})=\frac{\frac{\mathrm{K}}{\mathrm{~s}^{2}}\left(1-\epsilon^{-\mathrm{T} 1 \mathrm{~S}}\right)}{\mathrm{Ces}\left(\mathrm{Z}_{\mathrm{O}^{\prime}}+\frac{1}{\mathrm{Ces}}\right)} \tag{10-6}
\end{equation*}
$$

Which is equivalent to:

$$
\begin{equation*}
V B(s)=\frac{\frac{K}{Z_{O^{\prime}} \mathrm{Ce}}\left(1-\epsilon^{-T 1 S}\right)}{s^{2}\left(S+\frac{1}{Z_{O^{\prime}} \mathrm{Ce}}\right)} \tag{10-7}
\end{equation*}
$$

## Example: Unterminated Line (Continued)

Taking the inverse LaPlace transform yields:
$V B(t)=\left[K Z_{O^{\prime}} \mathrm{Ce}\left(\epsilon \frac{-t}{\mathrm{Z}_{O^{\prime} \mathrm{Ce}}}-1\right)+K t\right] U(t)-_{(10-8)}$
$\left[K Z_{O^{\prime}} \mathrm{Ce}\left(\epsilon^{\left.\left.\frac{-(\mathrm{t}-\mathrm{T} 1)}{\mathrm{Z}_{O^{\prime} \mathrm{Ce}}}-1\right)+K(t-T 1)\right] U(t-T 1)}\right.\right.$
Equation 10-8 consists of two terms. The first term applies from time zero up to and including T1 and the second term applies after T1.


where $\mathrm{K} 1=$ final value $=4 \mathrm{~V}$
Substitution of the proper values into equation 10-9 yields at $\mathrm{t}=\mathrm{Tl}=2 \mathrm{~ns}$.
$\mathrm{VB}(\mathrm{t}=\mathrm{T} 1)=$

$$
\begin{gathered}
\frac{2 \times 41.8 \times 33.2 \times 10^{-12}}{2 \times 10^{-9}}\left(\epsilon^{-1.439-1)+\frac{2 V}{n s}} \times 2 \mathrm{~ns}\right. \\
=-1.057+4=2.94 \mathrm{~V}
\end{gathered}
$$

If the forcing function would have been a step function the equation would be:

$$
\begin{equation*}
\mathrm{VB}(\mathrm{t})=4 \mathrm{~V}\left(1-\epsilon^{\left.\frac{-\mathrm{t}}{\mathrm{Z}_{o^{\prime} \mathrm{Ce}}}\right)}\right. \tag{10-11}
\end{equation*}
$$

at $\mathrm{t}=2 \mathrm{~ns}, \mathrm{VB}=3 \mathrm{~V}$, which is greater than the 2.94 V calculated using equation 10-9.
At $t=(22 \mathrm{~ns})+\mathrm{T}_{\mathrm{O}}$ the voltage waveform begins to build up at the load and continues to build until the first reflection from the source occurs at $t=3 \mathrm{~T}_{\mathrm{O}}$.
Equation $10-10$ is used to calculate the voltage at the load at $t=2 T_{O}$ (because $1 T_{O}$ is used for propagation delay time).
$\mathrm{VB}\left(\mathrm{t}=2 \mathrm{~T}_{\mathrm{O}}\right)=$

$$
\begin{gathered}
\frac{-2 \mathrm{~V} \times 41.8 \times 33.2 \times 10^{-12}}{2 \times}\left(1-0^{-9} 1.439\right)\left(\epsilon^{-2}\right)+4 \\
=-1.39(0.762)(0.135)+4 \\
=-0.143+4=3.86 \mathrm{~V}
\end{gathered}
$$

The voltage at the load will remain at this value until the first reflection from the source reaches the load at $t=3$ To.

Meanwhile, at $t=T_{O}$, the wave at the load is reflected back to the source and arrives there at $t=2 \mathrm{~T}_{\mathrm{O}}$. It subtracts from the 4 V level at the source as illustrated in Table 4 (c). The amplitude of the "droop" is given by:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{r}} \cong \frac{\mathrm{C}^{\prime} \mathrm{Z}_{\mathrm{O}^{\prime}}}{2} \frac{\mathrm{~V}_{\mathrm{O}}}{\mathrm{TR}} \tag{10-11}
\end{equation*}
$$

for the case $\mathrm{Vs}^{\prime}=\mathrm{Z}_{\mathrm{O}}{ }^{\prime}$.
If $V s \neq Z_{O^{\prime}}$ equation $10-11$ must be modified. Instead of $\frac{\mathrm{V}_{\mathrm{O}}}{2}$ the voltage is $\mathrm{V}_{\mathrm{O}}\left(\frac{\mathrm{R}_{\mathrm{S}}}{\mathrm{R}_{\mathrm{S}}+\mathrm{Z}_{\mathrm{O}^{\prime}}}\right)$, so that equation 10-11 becomes:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{r}} \cong \frac{\mathrm{C}^{\prime} \mathrm{Z}_{\mathrm{O}^{\prime}} \mathrm{V}_{\mathrm{O}}}{\mathrm{TR}}\left(\frac{\mathrm{R}_{\mathrm{S}}}{\mathrm{R}_{\mathrm{S}}+\mathrm{Z}_{\mathrm{O}^{\prime}}}\right) \tag{10-12}
\end{equation*}
$$

where: $\mathrm{C}^{\prime}=10 \mathrm{pF}$

$$
\begin{aligned}
\mathrm{Z}_{O^{\prime}} & =41.8 \Omega \\
\mathrm{R}_{\mathrm{S}} & =28 \Omega \\
\mathrm{~T}_{\mathrm{R}} & =2 \mathrm{~ns} \\
\mathrm{~V}_{\mathrm{O}} & =4 \mathrm{~V}
\end{aligned}
$$

Substitution of these values into equation 10-12 yields:

$$
\mathbf{V}_{\mathbf{r}}=0.33 \mathrm{~V}
$$

$4 \mathrm{~V}-0.33 \mathrm{~V}=3.67 \mathrm{~V}$, so there is no danger of the voltage dropping below the minimum HIGH level.
The reflection coefficient at the source is:

$$
\begin{gathered}
\rho s=\frac{\mathrm{R}_{\mathrm{S}}-\mathrm{Z}_{\mathrm{O}^{\prime}}}{\mathrm{R}_{\mathrm{S}}+\mathrm{Z}_{\mathrm{O}^{\prime}}} \text { where: } \begin{array}{l}
\mathrm{R}_{\mathrm{S}}=28 \Omega \\
\mathrm{Z}_{\mathrm{O}^{\prime}}=41.8 \Omega
\end{array} \\
\hline 0.198
\end{gathered}
$$

The amount of voltage reflected from the source back to the load is then:

$$
\mathrm{VS}_{1}=(-0.33) \times(-0.198)=+0.065 \mathrm{~V}
$$

This same result could have been obtained by applying the ramp function of Figure 10.2 to a large resistor and then to a capacitive load and adding the results using superposition.

## Observations

The risetime of the waveform at the load is reduced by the 10 pF load capacitor. The reflection at the source caused by the load capacitor is insufficient to reduce the 4 V level to less than the TTL one level (2V).
The reflection coefficient at the source is sufficiently small so that the energy reflected back to the load is insufficient to cause a problem.

## Summary

The example has demonstrated that, under certain conditions, the voltage reflections caused by the impedance mismatch between a PCB trace and the input of a Cypress CMOS integrated circuit may cause a pulse whose energy is sufficient to be detected by another circuit.
It is the responsibility of the system designer to identify and to analyze these conditions and to then modify the design such that the reflections will not occur.

## References

1. Matick, Richard E,: Transmission Lines For Digital and Communications Networks, McGraw Hill, 1969.
2. Blood, Jr, William R.,: MECL System Design Handbook, Motorola Inc., 1983.

## Microcoded Systems Performance

The microcoded processor family of devices offered by Cy press Semiconductor are the fastest available. High performance systems designed for specific applications can be configured using this high performance chip set. The performance of these devices in 16 - and 32 -bit processors is detailed below.
Increasing functional integration is evident in the CY7C9101 16-bit slice, which is the equivalent to four CY7C901s (4-bit slice) and a 2902 carry lookahead genera-
tor. By placing these functions on a single chip, the interconnect delays between chips are reduced. Significant improvement in overall system throughput, reduced board space, and reduced power requirements are among the advantages of the CY7C9101 systems over CY7C901 based systems. Following is a critical path timing analysis of the data loop and control loop for generic 16- and 32-bit systems. A discussion of the speed and power advantages offered by CY7C9101 systems will also be presented.

## Minimum Cycle Time Calculations for 16- and 32-Bit Systems



0096-1
Figure 1. CY7C901 Based 16-Bit System (Pipelined System, Add without Simultaneous Shift)

Data Loop			Control Loop		
CY7C245	Clock to Output	12	CY7C245	Clock to Output	12
CY7C901	$\mathrm{A}, \mathrm{B}$ to $\overline{\mathrm{G}}, \overline{\mathbf{P}}$	28	MUX	Select to Output	12
Carry Logic	$\overline{\mathrm{G}}_{0}, \overline{\mathrm{P}}_{0}$ to $\mathrm{C}_{\mathrm{n}}+\mathrm{z}$	9	CY7C910	CC to Output	22
CY7C901	$\mathrm{C}_{\mathrm{n}}$ to Worst Case	18	CY7C245	Access Time	20
Register	Setup	4			66 ns
		71 n			
Minimum Clock Period $=71$ ns					

## Minimum Cycle Time Calculations for 16- and 32-Bit Systems (Continued)



Figure 2. CY7C901 Based 32-Bit System (Pipelined System, Add without Simultaneous Shift)

Data Loop
CY7C245
CY7C901
Carry
Logic
CY7C901
Register

Clock to Output $\quad 12$
A, B to $\bar{G}, \bar{P} \quad 28$
$\left[\begin{array}{lr}\overline{\mathrm{G}}_{0}, \overline{\mathrm{P}}_{0} \text { to } \overline{\mathrm{G}}, \overline{\mathrm{P}} & 12 \\ \overline{\mathrm{G}}_{0}, \overline{\mathrm{P}}_{0} \text { to } \mathrm{C}_{\mathrm{n}}+\mathrm{x} & 9 \\ \mathrm{C}_{\mathrm{n}} \text { to } \mathrm{C}_{\mathrm{n}}+\mathrm{x}, \mathrm{z} & 14\end{array}\right.$
$\begin{array}{ll}\mathrm{C}_{\mathrm{n}} \text { to } \mathrm{C}_{\mathrm{n}}+\mathrm{x}, \mathrm{y}, \mathrm{z} & 14 \\ \mathrm{C}_{\mathrm{n}} \text { to Worst Case } & 18\end{array}$ Setup

## Control Loop

CY7C245
MUX
CY7C910
CY7C245
Clock to Output


0096-3
Figure 3. CY7C9101 Based 16-Bit System (Pipelined System, Add without Simultaneous Shift)

Data Loop			Control Loop		
CY7C245	Clock to Output	12	CY7C245	Clock to Output	12
CY7C9101	A, B to Y, $\mathrm{C}_{\mathrm{n}}+16, \mathrm{OVR}$	37	MUX	Select to Output	12
Register	Setup	4	CY7C910	CC to Output	22
		53 ns	CY7C245	Access Time	20
					66 ns
Minimum Clock Period $=66 \mathrm{~ns}$					

## Minimum Cycle Time Calculations for 16- and 32-Bit Systems (Continued)



0096-4
Figure 4. CY7C9101 Based 32-Bit System (Pipelined System, Add without Simultaneous Shift)
CY7C245
CY7C9101
CY7C9101
Register

## Data Loop

## CY7C245 <br> CY7C9101 <br> Register

Clock to Output	12
A, B to $\mathrm{C}_{\mathrm{n}}+16$	35
$\mathrm{C}_{\mathrm{n}}$ to Worst Case	24
Setup	$\frac{4}{75} \mathrm{~ns}$

Minimum Clock Period $=75$ ns

Power is an important consideration in microcoded systems. For an equivalent system, the CY7C901 offers substantial savings in power over the bipolar devices. Coupled with other low power Cypress CMOS devices, the power savings over bipolar is clearly evident. The functional integration of four CY7C901s with carry lookahead gives the CY7C9101 even greater advantages. The number of ALU elements is reduced by a factor of four, also, there is a reduction in the carry logic needed. A comparison between bipolar, CY7C901-based, and CY7C9101-based systems is given below in Table 1. Note that in this comparison, the devices common to all 16 - and 32 -bit system configurations are included in the I ICC computations.
Cypress CMOS devices offer the highest speed microcoded solutions while keeping power consumption to reasonable levels. The CY7C901-based systems win over bipolar's fastest devices in a speed comparison, while consuming roughly $1 / 3$ the power. Upgrading to the CY7C9101 will result in even faster systems, at close to $1 / 3$ the power of the CY7C901-based systems. This comparison is illustrated below, in Table 2.

Control Loop
Clock to Output 12
Select to Output 12
CC to Output 22
Access Time
$\frac{20}{66} \mathrm{~ns}$

Table 1

ICC Calculations for 16-Bit Systems (All Figures in mA)			
	Cypress CMOS		Bipolar
	$\begin{aligned} & \text { CY7C901 } \\ & \text { Based } \end{aligned}$	$\begin{gathered} \text { CY7C9101 } \\ \text { Based } \end{gathered}$	
Sequencer	100	100	340
Registered PROM	90	90	185
Carry Logic	110	-	110
ALU Elements $4 x$ Four-Bit Slice 16-Bit Slice	320	75	1060
Total	620	265	1695
ICC Calculations for 32-Bit Systems (All Figures in mA)			
	Cypress CMOS		Bipolar
	CY7C901   Based	$\begin{gathered} \text { CY7C9101 } \\ \text { Based } \end{gathered}$	
Sequencer	100	100	340
Registered PROM	90	90	185
Carry Logic	330	110	330
ALU Elements   8x Four-Bit Slice   2x Sixteen-Bit Slice	640	150	2120
Total	1160	450	2975

Table 2. Speed/Power Comparison between Bipolar, CY7C901, CY7C9101

	Minimum Clock Cycle (ns)			Maximum ICC (mA)		
	Bipolar	CY7C901	CY7C9101	Bipolar	CY7C901	CY7C9101
16-Bit Systems	85	71	66	1695	620	265
32-Bit Systems	111	97	75	2975	1160	450

# Introduction to Diagnostic PROMs 

## Scope and Purpose

This Application Brief will provide the reader with a basic understanding of the concept of a diagnostic PROM, as well as a brief introduction to possible applications.
Beginning with a short tutorial on system diagnostics, the reason for incorporating diagnostics into a design and the special testability problems associated with sequential designs are presented. The concept of shadow-register-based diagnostics is presented, and the benefits of this approach are outlined.
Next, a description of Diagnostic PROMs is given. This covers the similarity/dissimilarity of diagnostic PROMs relative to standard registered PROMs, as well as fundamental operation of a diagnostic PROM followed by a description of the Cypress CY7C268 and CY7C269 8K x 8 Diagnostic PROMs.
In conclusion, an application example is presented.

## Introduction to System Diagnostics

As electronic systems continue to grow in size, functionality, and complexity, it is becoming increasingly difficult to test them and determine their reliability, as well as to service the end product in the field. One way to simplify the task of testing electronic systems is to design some form of testability into the system.
Controllability and observability are the key points of testability. These two qualities are easily obtained for a combinatorial system where the outputs are strictly a function of the current inputs. Test vector methods are easily devised
and implemented for combinatorial systems. But, for a sequential system, where the outputs are a function of both the current inputs and the previous state(s), controllability and observability may be lost due to lack of access to the internal states of the machine. Consequently, building testability into a system means being able to control and observe all possible states of a system.
Consider the simple sequential machine in Figure 1. As is evident, access to internal states-which is necessary for complete controllability and observability-is either denied or difficult to obtain. The obvious way to add testability to this system is to permit access to these internal states. One way to gain this access is through addition of a diagnostic shadow register, as shown in Figure 2. Observability is effected by adding a serial data output path (SDO) to allow shifting internal state information out of the system. Controllability is gained by permitting a serial data input path (SDI) to set the state of the internal registers. As a result, relatively simple test vector methods can again be used to test the system. Consider, for example, the complex sequential machine shown in Figure 3. This system would be virtually impossible to test in the current configuration, due to the fact that we can not control or observe the internal states of the machine. In order to increase the testability of this machine, observability must be added at points 01,02 , and 03 . If this were accomplished, one would be able to observe the internal states of the machine. Additionally, controllability must be added at points $\mathrm{C} 1, \mathrm{C} 2$, and C3. This would enable the internal states of the machine to set. This controllability and observability can be attained by adding shadow registers, as depicted in Figure 4. The result is a complex sequential machine with a


0125-1
Figure 1. Simple Sequential Machine


0125-2
Figure 2. Simple Sequential Machine with Diagnostic Capability


Figure 3. Complex Sequential Machine
high degree of testability. As a result of these actions, simple test vector methods can now be used to fully test the machine. For instance, the state of the register at point C1 can be set, the machine may be clocked through some known number of cycles, and the state of the machine may be observed at points 01, 02, and 03.
Knowing what state the machine should be in at that particular point in time at each observation point, the known "correct" state of the machine can be compared with the observed machine state (at each observation point), thereby determining if: a) the machine is functioning correctly; and b) if not, which "machine primitive" is not functioning correctly (fault detection). Note that this approach to sequential design will also permit testing to see what the machine would do if a glitch caused a jump into an unused state, which in turn makes the design task of forcing the machine back into a known state much less complex.

The real advantage of this approach is that it requires no changes in architecture, minimal hardware changes, and results in a minimal ( $5-10 \%$ ) area hit when integrated into existing integrated circuits.

## Diagnostic PROMs

Diagnostic PROMs are a relatively minor migration from standard registered PROMs. A block diagram of a diagnostic PROM is presented in Figure 5. The addition of diagnostic capability to a registered PROM includes the addition of:
-a shadow register
-multiplexer
-MODE pin
-SDI (Serial Data In) pin
-SDO (Serial Data Out) pin
-diagnostic clock

Introduction to Diagnostic PROMs


0125-4
Mode, SDI, SDO, and DCLK for each "Machine Primitive"
Figure 4. Complex Sequential Machine with Diagnostic Capability


Figure 5. Diagnostic PROM Block Diagram

The shadow register is dynamically configured based on the value of the mode signal. If mode is set such that the user desires to input data to the PROM, the shadow register is configured as serial-in, parallel-out; if the user desires to extract information from the PROM, the shadow register is configured as a parallel-in, serial-out. So the shadow
register serves two purposes: First, the shadow register can be configured to serially receive the data that can be transferred to the register containing state information and appear at the outputs during the next cycle. The obvious advantage of this feature is that it allows the user to effectively preset the condition that will be sent through the part of
the system that "follows" the PROM; ie, the user can insert state information into the system. This feature adds controllability to the system.
The second purpose that the shadow register serves is to allow the user transfer data from the register containing state information and to serially shift that data out of the PROM. This feature adds observability by allowing the user to observe the state of the PROMs pipeline register at any given point in time. Inclusion of the above named features in a registered PROM can therefore add testability to any system by providing the user with the mechanism to build both controllability and observability into his system. Note that this increase in functionality is effected without loss of other desirable registered PROM features such as programmable initialization, programmable output enable, etc.

## Cypress Diagnostic PROMs

Cypress Semiconductor manufactures two Diagnostic PROMs, the CY7C268 and CY7C269. These 64 K bytewide Diagnostic PROMs are manufactured in CMOS for the optimum speed/power tradeoff resulting in 550 mW power dissipation while maintaining 40 ns maximum setup and 20 ns clock-to-output. Both contain an edge-triggered pipeline register and on-chip diagnostic shift register. Both are capable of withstanding $>2001 V$ ESD. Both are produced in our EPROM-based process, which allows testing for $100 \%$ programmability. Both are available in PLCC/LCC and Dual Inline Packages, and both are available in a windowed package for reprogrammability. The CY7C268 features full diagnostic capability and is available in 32-lead PLCC/LCC or 32-pin 0.5 in DIPs. The CY7C269 features limited diagnostic capability and is available in 28 -lead PLCC/LCC or 28 -pin 0.3 in DIPs.
For an in-depth description of functionality, refer to the data sheet. The following discussion briefly describes the diagnostic functions available in each device.

## CY7C268

A condensed block diagram of the CY7C268 is presented in Figure 6. The pin names and functions of the CY7C268 are as follows:

Name	I/O	Function
$\mathrm{A}_{0}-\mathrm{A}_{12}$	I	Address Input
$\mathrm{O}_{0}-\mathrm{O}_{7}$	O	Data Lines
$\overline{\mathrm{ENA}}$	I	Synchronous or Asynchronous   Output Enable
$\overline{\text { INIT }}$	I	Asynchronous Initialize
MODE	I	Sets PROM to Operate in   Pipelined or Diagnostic Mode
DCLK	I	Diagnostic Clock (Used to Clock   the Shadow Register)
PCLK	I	Pipeline Clock (Used to Clock   the Output Registers)
SDI	I	Serial Data In (Used to Serially   Shift Data into the Diagnostic   Register)
SDO	O	Serial Data Out (Used to Serially   Shift Data Out of the Diagnostic   Register)

Note that full diagnostic capability is realized through the use of four control signals: SDI (Serial Data In), SDO (Serial Data Out), MODE, and DCLK (diagnostic clock). Inclusion of both DCLK and PCLK assures that serial data can be shifted into or out of the diagnostic register while the PROM is operating in normal pipeline fashion. As a result, the CY7C268 has three possible modes of operation:
i. normal (pipelined)
ii. diagnostic
iii. both simultaneously


Figure 6. Condensed Block Diagram of the CY7C268

The following table summarizes the operational modes of the CY7C268:

Data Flow Description	Mode	$\overline{\text { ENA }}[1]$	SDI	SDO	DCLK	PCLK
Normal Operation $[1]$	L	H, L	DATA IN	SDO	-	$\uparrow$
Shadow to Pipeline ${ }^{[1]}$	H	H, L	X	SDI	-	$\uparrow$
Pipeline to Shadow	H	L	L	SDI	$\uparrow$	-
Data In to Shadow	H	H	L	SDI	$\uparrow$	-
Shift Shadow Reg.[1]	L	H, L	DATA IN	SDI	$\uparrow$	-
No Operation ${ }^{[1]}$	H	H, L	H	SDI	$\uparrow$	-

Note:

1. For the asynchronous enable operation, data out is enabled on the first LOW to HIGH clock transition after $\overline{\mathrm{E}}$ is brought LOW. When $\overline{\mathrm{E}}$ goes from LOW to HIGH (enable to disable) the outputs will go to the high impedance state (after a propagation delay) immediately if the asynchronous enable was programmed. If the synchronous enable was selected, a LOW to HIGH transition is required.

## CY7C269

A condensed block diagram of the CY7C269 is presented in Figure 7. As is evident, the CY7C269 has reduced diagnostic functionality relative to the CY7C268. The CY7C269 is ideal for applications requiring limited diagnostics with a premium on board space conservation, and is available in 28 -pin, 300 mil DIPs (windowed or opaque) and in 28-lead PLCC/LCC packages. The pin names and functions of the CY7C269 are as follows:

Name	I/O	Function
$\mathrm{A}_{0}-\mathrm{A}_{12}$	I	Address Inputs
$\mathrm{O}_{0}-\mathrm{O}_{7}$	O	Data Lines
$\overline{\mathrm{E}}, \overline{\mathrm{I}}$	I	Enable or Initialize
Clock	I	Pipeline and Diagnostic Clock
Mode	I	Sets PROM to operate in either   diagnostic or regular pipelined   mode (note that the two modes   are mutually exclusive).
SDI	I	Serial Data In
SDO	O	Serial Data Out

Note that limited diagnostic capability is realized through inclusion of three diagnostic signals: MODE, SDI, and SDO. Since there is only one CLOCK, the regular and diagnostic modes are mutually exclusive. The following table summarizes the operating modes of the CY7C269:

Data Flow Description	Mode	$\overline{\mathbf{E}}, \overline{\mathbf{I}}$	Clock	SDI	SDO
Normal Operation	L	$[1][2]$	$\uparrow$	X	High Z
Shadow to Pipeline	H	L	$\uparrow$	L	SDI
Pipe or Bus to Shadow	H	L	$\uparrow$	H	SDI
Shift Shadow	H	H	$\uparrow$	Data In	SDO

Notes:

1. $\overline{\mathrm{E}}$ or $\overline{\mathrm{I}}$ function selected during programming.
2. If I selected, outputs always enabled. If $\overline{\mathrm{E}}$ selected, outputs are enabled synchronously or asynchronously as programmed.
3. If $\bar{I}$ selected, outputs always enabled. If $\bar{E}$ selected, during diagnostic operation the data outputs will remain in the state they were in when the mode was entered. When enabled, the data outputs will reflect the outputs of the pipeline register. Any changes in the data in the pipeline register will appear on the output pins.


Figure 7. Condensed Block Diagram of the CY7C269

## Design Example

As an example, consider the complex sequential machine presented earlier. This machine could be easily implemented using CY7C268's or CY7C269's, as shown in Figure 8. Note that the block labeled "diagnostic control" could consist of PLDs, PROMs a sequencer, or a small microcontroller. The choice between using the CY7C268 or the CY7C269 would be based complexity of the diagnostic
function required. For full diagnostics that can function simultaneously with regular pipelined operation, the CY7C268 should be used. For an application where limited diagnostic capability is required-perhaps only a power-up or at some other well-defined point in time-the CY7C269 may be used.


Figure 8. Complex Sequential Machine Implemented with Cypress Diagnostic PROMs

# CY7C330 Design Example: High Speed Asynchronous SCSI Controller 

## Introduction

This application note describes a minimal, though extremely fast SCSI (Small Computer Systems Interface) controller that is built up from a few parts surrounding a CY7C330 synchronous state machine PLD. The controller is compliant with the SCSI standard for a host-based minimally featured interface.

A speed of 12 Megacycles is achieved by efficiently using various features of the CY7C330. The 50 MHz speed, the input registers, and the device size including the array size are all features which help to achieve this level of performance.
At 50 MHz , the register to register transfers can occur at 20 ns intervals which is fast enough to keep datapath transfers out of the way of SCSI transfers. In order to achieve optimal throughput, the SCSI handshake transfer must be made the limiting factor, so this clock speed is necessary.

The input registers are used to synchronize external signals. Synchronization is necessary so that the state machine can respond to these signals, and the input section of the state machine is the correct place to perform the task. Since the signals are synchronized at the input to the array, adherence to grey code transitions can be ignored in the design and thus time critical transitions can be made in less cycles.
The device and array size of the CY7C330 are sufficient to accommodate the entire control section of the interface. In fact, because the device is large enough, several signals are
shared and therefore more features can be accommodated in this design than would be the case if the interface was constructed from smaller PLDs.

The minimally featured SCSI Host implementation is a complete interface to one or more SCSI controllers from a single host.

## Conventions

In this document, conventions are followed so that signal names in timing and state diagrams can be related to schematics unambiguously.
If a signal name appears suffixed by a minus sign ( - ) then that signal is active low. The minus sign is part of the signal name, and not an operator. As an example, the signal ACK - appears on several timing diagrams and the minus is there to remind the reader that a low on the timing diagram is the asserted state.
In state diagrams the asserted states appear as 1's. This makes the diagram easier to read than one with T's and F's. In any case there is no ambiguity because the boolean variables which are used in state diagrams are not circuit level signals. For example, the variable CDIT is used in a state diagram with a 1 being true, while the corresponding signal name in the schematic and the timing diagram is CDIT - with a low assertion level.
The slash ' $/$ ' is the inversion operator. This is similar to the BAR operator in boolean algebra, so /A has the same

meaning as $\overline{\mathbf{A}}$. An operator does not signify activity level, so the inclusion of a signal suffix ( - or blank) is additional information.

The PLD definitions and equations, the signal assertion level should only appear in the pin name declaration. PLD equations should then be written referring only to variable names as they appear in state diagrams and truth tables.
The design file for this CY7C330 application has not been included in this note, but is available from Cypress Semiconductor.

## History

The SCSI standard evolved from the SASI controller specification by DTC and Shugart which was a widely adopted parallel interface for disk controllers. The current SCSI standard is upwards compatible from this original specification.
Apart from the more rigorous timing and electrical specifications, most SCSI additions (i.e. reselection, arbitration, and synchronous mode) apply when the interface is being used as a network. If the sole use of the interface is to access a mass storage subsystem, then these features may be omitted and the resultant SCSI implementation will be smaller and faster.
The current SCSI interface is 8 bits wide, and it is possible to operate in asynchronous mode for a minimally featured interface at a rate of up to 16 Megacycles. The interface may be widened to 16 bits at some time in the near future; if so, then the SCSI throughput rate will double to a theoretical maximum of about 32 Megabytes per second.
The SCSI standard is likely to prevail in storage system interfaces. The only competing standard is ESDI which, being a serial data interface, has a much lower data throughput.

## System Considerations

A block diagram of a minimal SCSI implementation is shown in Figure 1. Normally the Mass Store Subsystem is inside the same enclosure as the computer; if it is not, then for emission considerations differential drivers and receivers should be used. In this application note, it is assumed that the flat cable SCSI bus is about a foot long so that transmission delays are minimal ( 5 ns ).
The Mass Store Subsystem consists of one or more disk drives or other high density storage devices, and one or more controllers with SCSI ports. Unused lines in the SCSI bus are not shown in Figure 1.
The computer system itself will access the SCSI controller from its own bus. For this example, a simple asynchronous interface has been implemented. This interface has only one data strobe and there are two signals - RTS (Request to send) and CTS (Clear to send) to request or acknowledge data access cycles. These signals allow for the connection of a DMA device or another data interface.

## The SCSI Transfer Protocol

A SCSI data access consists of a command transfer followed by a data transfer. The command transfer proceeds as follows:

1) The host waits for BSY to go inactive, then asserts SEL and one of the 8 data bits (to select one of 8 controllers).


Figure 2. Command Transfer
2) The controller drives BSY active when this selection combination is detected.
3) The host releases SEL and the data bit used for selection.
4) The controller assets C/D and REQ to read a command byte from the host.
5) The host outputs the first byte of the command and asserts ACK.
6) The controller accepts the data and deasserts REQ.
7) The host then deasserts ACK.
8) Steps 4 through 7 are repeated for 6 bytes (more in special cases).
After the command has been read in by the controller, the operation is either performed or aborted. After executing a command, a status byte (C/D asserted) is sent to the host to indicate success or an error condition.
If the command is a write command, then data is first transferred from the host to a buffer on the controller. After the data is written to the disk, a command complete status message is sent to the host.
If the command is a read command, then data is read from the disk, checked for validity, and passed to the host. Some controllers offer a 'Fly-by' mode which means data is passed to the host as soon as it is read, and an error condition is signalled afterwards.
The normal data transfer protocol follows the above description (steps 4 to 7). At the end of the access, the status byte is transferred, then activity ceases. BSY goes inactive to signal the end of the access.

## Interface Timing Considerations

There is one major delay and one minor delay to be observed during selection, and there is a data setup delay to be observed during data transfer.
For the host interface, under the single initiator option in the SCSI specification, there is a 400 ns 'bus settle delay' to
be observed after BSY goes false, and before SEL is asserted. Additionally, SEL is to be deasserted at least two deskew delays after BSY is asserted. A deskew delay is 45 ns .
Data is to be setup for a minimum of one deskew delay plus one cable skew delay ( $45+10 \mathrm{~ns}$ ) before the ACK signal is given.
Like the host interface, the controller interface has timing constraints associated with selection and data access.
The controller implements the same data setup delay as the host, but the strobe which is accommodated from the controller side is REQ.
The response to SEL must be shorter than 200 microseconds.
The setup time allowed for I/O and C/D [control signals] is specified as one 'bus settle delay' or 400 ns .
It is worth nothing here that the response to SEL, and the various 'bus settle delay' constraints, are really system level response times, and need not be of concern in the hardware design at this level.

## Performance Considerations

The 7C330 is a Moore machine; there are no combinatorial paths from the inputs to the outputs. One problem that arises in state machine design with Moore machines is that the turnaround time or handshake delay to external signals becomes the limiting factor in throughput. This problem is most obvious in asynchronous interfaces.
Figure 3 shows a hypothetical synchronized transfer cycle. This is the cycle as it could be implemented with a 7 C 330 synchronous state machine, if the ACK - signal was directly controlled by the 7 C 330 .


0130-3
Figure 3. Synchronized Transfer Cycle

## Definitions for Figure 3:

1. $\mathrm{T}_{\mathrm{SU}}: 55 \mathrm{~ns}$ setup time for data.
2. T $\mathrm{T}_{\mathrm{LA}}$ : Latency time delay; this consists of device propagation delays plus 0 or 1 clock cycles. For preliminary estimates, assume a 20 ns clock and 15 ns of delay.
3. $\mathrm{T}_{\mathrm{C}}$ : Clock period.
4. $T_{D}:$ Data delay (max) after REQ deasserted.

The time for one cycle using synchronized transfer cycles is about 180 ns . This cycle time corresponds to a throughput rate of just under 6 MHz , which is not as high a rate as the 7C330 is capable of supporting.
The problem is that for every edge there is a synchronization or latency delay plus a clock delay before the corre-
sponding handshake signal is given. These delays are undesirable and for the most part unnecessary, since the data path is capable of accepting data at a higher rate.
This result underscores the need for supervisory control over the handshake sequence. If the output data is ready and waiting, there is no need to delay the handshake sequence until the state machine synchronizes to the event and reacts. Likewise, if the input buffer is empty then it can be asynchronously loaded.
In the schematic (Figure 10) a NOR buffer is used to drive the output strobes, and to perform the asynchronous handshake, and to latch ACK - until the state machine has had sufficient time to react. The signal CDIT - is used by the 7C330 to supervise the handshake sequence.

## The SCSI Interface: Transfer to the Controller

For transfers to the controller, the asynchronous signal that needs to be controlled is ACK - (active low acknowledge). This signal should go low soon after REQ - is asserted by the controller, but only after data has been setup for a minimum of 55 ns . This signal should go high when REQ - is deasserted.
To guarantee that the state machine sees the cycle take place, ACK - is latched low until released by a controlling signal (CDIT -) that comes from the state machine. The same signal is used to hold off ACK - until the data setup has been met (refer to Schematic for latch circuit details).
Another signal is required to clock data into the output register (CAB). This signal has a duration of two clock cycles for data setup timing. In Figure 4 the signal CAB__D is a delayed feedback version of CAB which is used to add a delay cycle.


Figure 4. Host to Controller Transfer Cycle

## Definitions for Figure 4:

1. TAT: Asynchronous turnaround time ( 8 ns ).
2. TLA: Latency time delay; this consists of device propagation delays plus 0 or 1 clock cycles. For preliminary estimates, assume a 20 ns clock and 15 ns of delay ( 25 ns average).
3. TC: Clock period ( 20 ns ).
4. TDO: Delay to output ( 15 ns ).
5. Asynchronous turnaround time for controller end ( 8 ns ).

Figure 4 shows the resultant transfer cycle to the controller from the host. The cycle time can be estimated from one REQ - rising edge to another. This time works out to an expected value of 108 ns .


0130-5
Figure 5. SCSI Transfer to Controller
The state diagram for the part of the controller that handes the interface timing is shown in Figure 5. At the start of the cycle, CDIT - is active because it is assumed that data has been at the interface for at least the setup requirement. CAB is the register clock for the output register, and it goes high after REQ - goes inactive (high), if there is data available (DAV, which is a logic function yet to be defined). The cycle then proceeds to completion and as CDIT - goes active another cycle can start.


Figure 6. System Transfer to SCSI
The state diagram for the associated system transfer to the SCSI controller is shown in Figure 6. E0- and E1- are output enables for the two input registers; CK0 and CK1 are clocks for the same two registers; CTS - is a signal to the Host system that these registers are empty.
At the beginning [state 0000], E 0 - and E1- are inactive, the clocks are low, and CTS - is active [0]. When DS - is asserted, the clocks go high to capture the data, EO - goes active and CTS- goes inactive to signal that the registers have been loaded [state 1011, CTS- $=1$ ].

When either CK0 or CK1 are high, data is considered available by the state machine in Figure 5 and consequently, DAV $=$ CK0 + CK1. After CAB goes high, E1goes active, $\mathrm{E} 0-$ inactive, and CK0 goes low [state 0101].
The next time CAB goes high, CK1 goes low to signify that the input registers are empty again [state 0100]. The state counter then automatically progresses [0000].
The machine waits for DS - to go inactive before allowing another cycle so that double clocking does not occur on one write cycle.

## Transfer to the Host

When data is transferred to the Host from the controller, the handshake happens so quickly that there is a possibility that the interface will not see it and for this reason ACK must be latched until the 7C330 signals [moves CDIThigh] to release it.
In this case, CDIT - is a signal that signifies that there is room in the receiving buffer for a data transfer. CBA is the clock for the input buffer and it goes high when CDIT goes low or afterwards.


Figure 7. Controller to Host Transfer

## Definitions for Figure 7:

1. TAT: Asynchronous turnaround time ( 8 ns ).
2. TLA: Latency time delay; this consists of device propagation delays plus 0 or 1 clock cycles. For preliminary estimates, assume a 20 ns clock and 15 ns of delay. ( 25 ns average).
3. TC: Clock period. ( 20 ns ).
4. TDO: Delay to output ( 15 ns ).

Figure 7 shows the relevant timing for this transfer cycle. The cycle time can be estimated from the rising edge of CDIT - to the next similar edge. In this case, it is reasonable to expect a cycle time of about 80 ns .


Figure 8. SCSI Tranfer to Host
Figure 8 shows the state diagram for this cycle.


0130-9
Figure 9. Transfer to Host System
Figure 9 shows the data diagram for the system to interface transfer cycle.

## Staging Considerations

Staging considerations include the initialization, startup, and change of direction of the interface. The signal ' $\mathrm{I} / \mathrm{O}$ '
from the SCSI port mandates the direction of transfer, and this changes during the process of command completion, so there is a need to make sure that the relevant state machines are all qualified by 'IO'.
A readback path is provided for the CPU on the Host system to be able to read the SCSI signals directly. The signal DS - is reserved for normal data, but the signals CSO - thru CS1 - allow D0 on the system data bus to be used to read SCSI signals.
The following addresses apply:
$\mathrm{CSO}=0$ : enable readback to D 0
$\mathrm{CS} 0=1$ : disable readback
CS2,CS1: 00 - BSY
CS2,CS1: 01 - C/D
CS2,CS1: 10 - I/O
CS2,CS1: 11 - REQ
The reset function for SCSI Controllers is independent of the Host interface controller. In the schematic of Figure 10, the signal RST is set by the Host system and this simply forces the RST - signal low on the interface.
The controller can be reset at any time by asserting INIT from the Host system. If the code 001 is on CS2, CS1, CS0 then a select is performed: SEL- is pulled low until BSY - appears.
The transfer of data to the interface, in particular the device select code, should be done before the selection sequence is performed. After INIT - is released, data can be transferred normally and the REQ, ACK handshake will operate properly.
The transfer of diagnostic data (i.e. sense byte, errors) to the Host will be indicated by the DIAG - flag which is set until INIT - is asserted.

PRODUCT ..... 1 INFORMATIONSTATIC RAMS $\overline{\equiv={ }^{2}} 2$
PROMS ..... 3
EPLDS ..... 4
LOGIC ..... 5
RISC ..... 6
BRIDGEMOS ..... 7
QUICKPRO ..... 8
QUALITY AND ..... 9RELIABILITY
APPLICATION BRIEFS10


## Section Contents

CYPRESS
SEMICONDUCTOR

## Packages

## Page Number

Thermal Management and Component Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1
Package Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-6

# Thermal Management and Component Reliability 

One of the key variables determining the long-term reliability of an integrated circuit is the junction temperature of the device during operation. Long-term reliability of the semiconductor chip degrades proportionally with increasing temperatures following an exponential function described by the Arrhenius equation of the kinetics of chem-
ical reactions. The slope of the logarithmic plots is given by the activation energy of the failure mechanisms causing thermally activated wear out of the device (Figure 1).
Typical activation energies for commonly observed failure mechanism in CMOS devices are shown in Table 2.


Figure 1. Arrhenius plot, which assumes a failure rate proportional to EXP ( $-\mathbf{E}_{\mathbf{A}} / \mathbf{k T}$ ) where $\mathbf{E}_{\mathbf{A}}$ is the activation energy for the particular failure mechanism

Table 2. Failure Mechanisms and Activation Energies in CMOS Devices

Failure Mode	Approximate   Activation Energy (EQ)
Oxide Defects	0.3 eV
Silicon Defects	0.3 eV
Electromigration	0.6 eV
Contact Metallurgy	0.9 eV
Surface Charge	$0.5-1.0 \mathrm{eV}$
Slow Trapping	1.0 eV
Plastic Chemistry	1.0 eV
Polarization	1.0 eV
Microcracks	1.3 eV
Contamination	1.4 eV

To reduce thermally-activated reliability failures, Cypress Semiconductor has optimized both their low power generating $1.2 \mu$ CMOS device fabrication process and their high heat dissipation packaging capabilities. Table 3 demonstrates this optimized thermal performance by comparing bipolar, NMOS and Cypress high speed 1K SRAM CMOS devices in their respective plastic packaging environments under standard operating conditions.

Table 3. Thermal Performance of Fast 1K SRAMS in Plastic Packages

Technology	Bipolar	NMOS	Cypress   CMOS
Device Number	93422	9122	7C122
Speed (ns)	30	25	25
$\mathrm{I}_{\mathrm{CC}}(\mathrm{mA})$	150	110	60
$\mathrm{~V}_{\mathrm{CC}}(\mathrm{V})$	5.0	5.0	5.0
P $_{\text {MAX }}(\mathrm{MW})$	750	550	300
Package RTH (JA) $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	120	120	70
Junction Temperature   at Data Sheet $\left.{ }^{\circ} \mathrm{C}\right)$   MAX	160	136	91

${ }^{*} \mathrm{~T}_{\text {ambient }}=70^{\circ} \mathrm{C}$
The Cypress 7C122 device, during its normal operation, experiences a $91^{\circ} \mathrm{C}$ junction temperature, whereas competitive devices in their respective packaging environments see a $45^{\circ} \mathrm{C}$ and $69^{\circ} \mathrm{C}$ higher junction temperature. In terms of relative reliability life expectancy, assuming a 1.0 eV activation energy failure mechanisms, this translates into an improvement in excess of two orders of magnitude (100X) over the bipolar 93422 device and more than one order of magnitude (30X) over the NMOS 9122 device.

## Thermal Performance Data of Cypress Component Packages

The thermal performance of a semiconductor device in its package is determined by many factors, including package design and construction, packaging materials, chip size, chip thickness, chip attachment process and materials, package size, etc.

## Thermal Resistance ( $\boldsymbol{\theta}_{\mathbf{J A}}, \boldsymbol{\theta}_{\mathbf{J C}}$ )

For a packaged semiconductor device, heat generated near the junction of the powered chip causes the junction temperature to rise above the ambient temperature. The total thermal resistance is defined as,

$$
\theta_{\mathrm{JA}}=\frac{\mathrm{T}_{\mathrm{J}}-\mathrm{T}_{\mathrm{A}}}{\mathrm{P}}
$$

and $\theta_{\text {JA }}$ physically represents the temperature differential between the die junction and the surrounding ambient at a power dissipation of 1 watt.
The junction temperature is given by the equation:

$$
\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\mathrm{P}\left[\theta_{\mathrm{JA}}\right]=\mathrm{T}_{\mathrm{A}}+\mathrm{P}\left[\theta_{\mathrm{JC}}+\theta_{\mathrm{CA}}\right]
$$

where:

$$
\theta_{\mathrm{JC}}=\frac{\mathrm{T}_{\mathrm{J}}-\mathrm{T}_{\mathrm{C}}}{\mathrm{P}} \text { and } \theta_{\mathrm{CA}}=\frac{\mathrm{T}_{\mathrm{C}}-\mathrm{T}_{\mathrm{A}}}{\mathrm{P}}
$$

$\mathrm{T}_{\mathrm{A}}=$ Ambient temperature at which the device is operated; Most common standard temperature of operation equals $70^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathbf{J}}=$ Junction temperature of the IC chip
$\mathrm{T}_{\mathrm{C}}=$ Temperature of the case (package)
$\mathbf{P}=$ Power at which the device operates
$\theta_{\mathrm{JC}}=$ Junction to case thermal resistance
$\theta_{\mathrm{JA}}=$ Junction to ambient thermal resistance
$\theta_{\mathrm{CA}}=$ Case to ambient thermal resistance
The junction-to-ambient environment is a still-air environment where the device is inserted into a low-cost standard device socket and mounted on a standard .062" G10 PC board. For junction-to-case measurements, the same assembly is immersed into a constant temperature liquid reservoir approaching infinite heat sinking for the heat dissipated from the package surface.
The thermal resistance values of Cypress standard packages are graphically illustrated in Figures 4 through 7. Each envelope represents a spread of typical Cypress integrated circuit chip sizes (upper boundary $=5000 \mathrm{Mils}^{2}$, lower boundary $=30,000 \mathrm{Mils}^{2}$ ) in their thermally optimized packaging environment.
All thermal characteristics are measured using the TSP (Temperature Sensitive Parameter) test method described in MIL STD 883C, Method 1012.1. A thermal silicon test chip, containing a $25 \Omega$ diffused resistor to heat the chip and a calibrated TSP diode to measure the junction temperature, is used for all characterizations.


LEAD COUNT $\longrightarrow$
Figure 4. Thermal Resistance of Cypress Plastic DIP Packages


Figure 5. Thermal Resistance of Cypress Cerdip Packages


Figure 6. Thermal Resistance of Cypress Hermetic Chip Carriers (HLCC)


0064-5
Figure 7. Thermal Resistance of Cypress SOICs

SEMICONDUCTOR

## Packaging Materials

## CYPRESS PLASTIC PACKAGES

 INCORPORATE:- High thermal conductivity copper lead frame.
- Molding compound with high thermal conductivity.
- Silver filled conductive epoxy as die attach material.
- Gold bond wires.


## CYPRESS CERDIP PACKAGES

 INCORPORATE:- High conductivity Alumina substrates.
- Silver filled glass as die attach material.
- Alloy 42 lead frame.
- Aluminum bond wires.


## Package Diagrams

16 Lead (300 MIL) Cerdip D2


20 Lead ( $\mathbf{3 0 0}$ MIL) Cerdip D6
MIL. M 38510 D-8 CONFIG. 1


18 Lead (300 MIL) Cerdip D4


22 Lead (400 MIL) Cerdip D8

or $\qquad$

22 Lead (300 MIL) Cerdip D10


## 24 Lead (300 MIL) Cerdip D14



24 Lead ( 600 MIL) Cerdip D12


28 Lead ( 600 MIL) Cerdip D16


40 Lead (600 MIL) Cerdip D18


32 Lead ( 600 MIL ) Cerdip D20 (Preliminary)


28 Lead (300 MIL) Cerdip D22


48 Lead ( 600 MIL ) Sidebraze DIP D26


52 Lead ( 900 MIL) Bottombraze DIP D28


64 Lead ( 900 MIL) Bottombraze DIP D30


16 Lead Rectangular Flatpack F69
(MIL-M-38510 F-5 CONFIG 2)


20 Lead Rectangular Flatpack F71


18 Lead Rectangular Flatpack F70


24 Lead Rectangular Flatpack F73
(MIL-M-38510 F-6 CONFIG 2)



68 Pin Grid Array Package G68


20 Lead Plastic Leadless Chip Carrier J61



28 Lead Plastic Leadless Chip Carrier J64


44 Lead Plastic Leadless Chip Carrier J67


52 Lead Plastic Leadless Chip Carrier J69
dIMENSIONS IN INCHES
MIN.


68 Lead Plastic Leadless Chip Carrier J81
DIMENSIONS IN INCHES



20 Lead Rectangular Cerpack K71



24 Lead Rectangular Cerpack K73


28 Lead Rectangular Cerpack K74
(MIL-M-38510 F-11 CONFIG 1)


20 Pin Rectangular Leadless Chip Carrier L51


18 Pin Rectangular Leadless Chip Carrier L50
(MIL-M-38510 C-10A)


22 Pin Rectangular Leadless Chip Carrier L52


24 Pin Rectangular Leadless Chip Carrier L53


32 Pin Rectangular Leadless Chip Carrier L55


## 28 Pin Rectangular Leadless Chip Carrier L54



20 Pin Square Leadless Chip Carrier L61
(MIL-M-38510 C-2A)


## 28 Pin Square Leadless Chip Carrier L64

(MLL-M-38510 C-4)


44 Pin Square Leadless Chip Carrier L67


48 Pin Square Leadless Chip Carrier L68


52 Pin Square Leadless Chip Carrier L69


68 Pin Square Leadless Chip Carrier L81


16 Lead (300 MIL) Molded DIP P1


18 Lead (300 MIL) Molded DIP P3


11


22 Lead (300 MIL) Molded DIP P9


22 Lead (400 MIL) Molded DIP P7


24 Lead (600 MIL) Molded DIP P11



40 Lead ( 600 MIL) Molded DIP P17


28 Lead (600 MIL) Molded DIP P15


28 Lead (300 MIL) Molded DIP P21


48 Lead ( 600 MIL) Molded DIP P25


64 Lead (900 MIL) Molded DIP P29


32 Pin Windowed Rectangular Leadless Chip Carrier Q55


20 Pin Windowed Square Leadless Chip Carrier Q61


28 Pin Windowed Leadless Chip Carrier Q64


## 16 Lead Molded SOIC S1



18 Lead Molded SOIC S3


## 20 Lead Molded SOIC S5



24 Lead Molded SOIC S13


28 Lead Molded SOIC S21


24 Lead Windowed Cerpack T73
(Preliminary)


## 28 Lead Windowed Cerpack T74

(Preliminary)


20 Lead Molded SOJ V5


24 Lead Molded SOJ V13


28 Lead Molded SOJ V21


## 

20 Lead Windowed Cerdip W6


24 Lead ( $\mathbf{6 0 0}$ MIL) Windowed Cerdip W12


## 24 Lead Windowed Cerdip W14



28 Lead ( 600 MIL) Windowed Cerdip W16


32 Lead ( 600 MIL) Windowed Cerdip W20 (Preliminary)


28 Lead Windowed Cerdip W22


DIMENSIONS IN INCHES
$\frac{\text { MIN. }}{\text { MAX. }}$


- SEATING PLANE



## Typical Marking for DIP Packages (P and D Type)



## Direct Sales Offices

California<br>Cypress Semiconductor<br>Corporate Headquarters<br>3901 N. First Street<br>San Jose, CA 95134<br>(408) 943-2600<br>Telex: 821032 CYPRESS SNJ UD<br>TWX: 9109970753<br>FAX: 408-943-2741<br>Cypress Semiconductor<br>23586 Calabasas Rd., Ste. 201

Calabasas, CA 91302
(818) 884-7800

FAX: (818) 348-6307
Cypress Semiconductor
2151 Michelson Dr., Ste. 284
Irvine, CA 92715
(714) $476-8211$

FAX: (714) 476-8317
Cypress Semiconductor
16496 Bernardo Center, Ste. 215
San Diego, CA 92128
(619) 487-9446

## Colorado

Cypress Semiconductor
4851 Independence St., Ste. 189
Wheat Ridge, CO 80033
(303) 424-9000

FAX: (303) 424-0627

## Florida

Cypress Semiconductor
10014 N. Dale Mabry Hwy., 101
Tampa, FL 33618
(813) 968-1504

FAX: (813) 468-8474

## Illinois

Cypress Semiconductor
1530 E. Dundee Rd., Ste. 190
Palatine, IL 60067
(312) 934-3144

FAX: (312) 934-7364

## Maryland

Cypress Semiconductor
9891 Brokenland Parkway, Ste. 300
Columbia, MD 21045
(301) 290-5921

FAX: (301) 290-5285

## Massachusetts

Cypress Semiconductor
2 Dedham Place, Ste. 1
Dedham, MA 02026
(617) 461-1778

## Minnesota

Cypress Semiconductor
14525 Hwy. 7, Ste. 115
Minnetonka, MN 55345
(612) 935-7747

FAX: (612) 935-6982

## Oregon

Cypress Semiconductor
6950 S.W. Hampton St., Ste. 217
Portland, OR 97223
(503) 684-1112

FAX: (503) 684-1113

## Pennsylvania

Cypress Semiconductor
2 Neshaminy Interplex, Ste. 203
Trevose, PA 19047
(215) 639-6663

FAX: (215) 639-9024

## Texas

Cypress Semiconductor
333 West Campbell Rd., Ste. 220
Richardson, TX 75080
(214) 437-0496

FAX: (214) 644-4839
Cypress Semiconductor International
51 Rue du Moulin a Papier, Bte 11
1160 Brussels, Belgium
Tel: (32) 026722220
Telex: 64677 CYPINT B
FAX: (32) 026600366

## France

Cypress Semiconductor France
Bureaux de Sèvres
72-78 Grande Rue
92310 Sèvres
Tel: (33) 145341010
Telex: 631606
FAX: (33) 145340109

## Germany

Cypres, Semiconductor Gmbi.
Hohenlinder Str. 6
D-8016 Feldhirchen
Tel: (49) 0899031071
FAX: (49) 0899038427

## United Kingdom

Cypress Semiconductor U.K.
Business \& Technology Centre
Bessemer Drive, Stevenage
Hertfordshire, SG1 2DX
Tel: (44) 0438310118
Telex: 94013897 CYPR G
FAX: (44) 438740141

## North American Sales Representatives

Alabama<br>CSR Electronics<br>303 Williams Ave., Ste. 931<br>Huntsville, AL 35801<br>(205) 533-2444<br>TWX: 510-600-2831<br>FAX: 205-536-4031

## Arizona

Luscombe Engineering
7533 E. First Street
Scottsdale, AZ 85251
(602) 949-9333

FAX: (602) 949-9095

## California

Cypress Semiconductor
Corporate Headquarters
3901 N. First Street
San Jose, CA 95134
(408) 943-2600

Telex: 821032 CYPRESS SNJ UD
TWX: 9109970753
FAX: 408-943-2741
Cypress Semiconductor
23586 Calabasas Rd., Ste. 201
Calabasas, CA 91302
(818) 884-7800

FAX: (818) 348-6307
Cypress Semiconductor
2151 Michelson Dr., Ste. 284
Irvine, CA 92715
(714) 476-8211

FAX: (714) 476-8317
Cypress Semiconductor
16496 Bernardo Center, Ste. 215
San Diego, CA 92128
(619) 487-9446

Taarcom
451 N. Bailey Avenue
Mountain View, CA 94043
(415) 960-1550

## Canada

E.S.P.

447 McLeod St. Unit 3
Ottawa, Ontario K1R 5P5
(613) 236-1221

FAX: (613) 236-7119
E.S.P.

5200 Dixie Road, Ste. 201
Mississauga, Ontario L4W 1E4
(416) 626-8221

FAX: (416) 238-3277
E.S.P.

116 McKee St.
Chateauguay, Quebec J6J 3N2
(514) 592-1323

FAX: (514) 691-2726

## Colorado

Cypress Semiconductor
4851 Independence St., Ste. 189
Wheat Ridge, CO 80033
(303) 424-9000

FAX: (303) 424-0627

## Connecticut

HLM
3 Pembroke Road
Danbury, CT 06810
(203) 791-1878

FAX: (203) 791-1876
Delaware
*L. D. Lowery
2801 West Chester Pike
Broomall, PA 19008
(215) 356-5300

FAX: (215) 356-8710
Florida
CM Marketing 1435D Gulf to Bay Blvd.
Clearwater, FL 34615
(813) 443-6390

CM Marketing
6091-A Buckeye Ct.
Tamarac, FL 33319
(305) 722-9369

CM Marketing
PO Box 560776
Orlando, FL 32856
(305) 898-3596

Cypress Semiconductor
10014 N. Dale Mabry Hwy., 101
Tampa, FL 33618
(813) 968-1504

FAX (813) 468-8474

## Georgia

CSR Electronics
1651 Mt. Vernon Rd., Ste. 200
Atlanta, GA 30338
(404) 396-3720

TWX: 5106002162
FAX: 404-394-8387

## Illinois

Cypress Semiconductor
1530 E. Dundee Rd., Ste. 190
Palatine, IL 60067
(312) 934-3144

FAX: (312) 934-7364
Micro Sales Inc.
54 West Seegers Road
Arlington Hts., IL 60005
(312) 956-1000

Telex: 5106000756
FAX: (312) 956-0189

## Indiana

Technology Mktg. Corp.
599 Industrial Dr.
Carmel, IN 46032
(317) 844-8462

FAX: (317) 573-5472
Technology Mktg. Corp.
3428 W. Taylor
Ft. Wayne, IN 46802
(219) 432-5553

FAX: (219) 432-5555

## Iowa

Midwest Tech. Sales
2510 White Eagle Trail S.E.
Cedar Rapids, IA 52403
(319) 365-4011

FAX: (319) 362-9832

## Kansas

Midwest Tech. Sales
21901 Lavista
Goddard, KS 67052
(316) 794-8565

Midwest Tech. Sales
15301 W. 87 Parkway, Ste. 200
Lenexa, KS 66219
(913) 888-5100

FAX: (913) 888-1103

## Kentucky

Technology Mktg Corp.
4012 Dupont Circle
Louisville, KY 40207
(502) 893-1377

Maryland Cypress Semiconductor 9891 Brokenland Parkway, Ste. 300
Columbia, MD 21045
(301) 290-5921

FAX: (301) 290-5285

## Massachusetts

Cypress Semiconductor
2 Dedham Place, Ste. 1
Dedham, MA 02026
(617) 461-1778

## Michigan

Techrep
2950 Packard Road
Ypsilanti, MI 48197
(313) 572-1950

FAX: (313) 572-0263

## Minnesota

Cypress Semiconductor 14525 Hwy. 7, Ste. 115
Minnetonka, MN 55345
(612) 935-7747

FAX: (612) 935-6982

[^28]SEMICONDUCTOR

## North American Sales Representatives (Continued)

Missouri
Midwest Tech. Sales
1314 Robertridge
St. Charles, MO 63303
(314) 441-1012

FAX: (314) 447-3657

## New Jersey

HLM
1300 Route 46
Parsippany, NJ 07054
(201) 263-1535
*L. D. Lowery Inc. 2801 West Chester Pike
Broomall, PA 19008
(215) 356-5300

FAX: (215) 356-8710

## New Mexico

Quatra Associates
9704 Admiral Dewey N.E.
Albuquerque, NM 87111
(505) 821-1455

## New York

HLM
64 Mariners Lane
Northport, NY 11768
(516) 757-1606

Reagan/Compar
3449 St. Paul Blvd.
Rochester, NY 14617
(716) 338-3198

Reagan/Compar
41 Woodberry Road
New Hartford, NY 13413
(315) 732-3775

Reagan/Compar
42 Winding Brook Drive
Fairport, NY 14450
(716) 271-2230

Reagan/Compar
3215 East Main St.
P.O. Box 135

Endwell, NY 13760
(607) 754-2171
(607) 754-8946

North Carolina
Tingen Tech. Sales
2809 Millbrook Rd., Ste. 203
Raleigh, NC 27604
(919) 878-4440

TWX: 5109280540
FAX: 9198788681

Ohio
Lyons
4812 Frederick Rd., Ste. 101
Dayton, OH 45414
(513) 278-0714

FAX: (513) 278-3609
Lyons
4615 W. Streetsboro Road
Richfield, OH 44286
(216) 659-9224

FAX: (216) 659-6214
Lyons
248 N. State St.
Westerville, OH 43081
(614) 895-1447

## Oregon

Cypress Semiconductor
6950 S.W. Hampton St., Ste. 217
Portland, OR 97223
(503) 684-1112

FAX: (503) 684-1113

## Pennsylvania

${ }^{*}$ L. D. Lowery Inc.
2801 West Chester Pike
Broomall, PA 19008
(215) 356-5300

FAX: (215) 356-8710
Cypress Semiconductor 2 Neshaminy Interplex, Ste. 203
Trevose, PA 19047
(215) 639-6663

Puerto Rico
ETS Inc.
P.O. Box 10758

Caparra Heights Station
San Juan, P.R. 00922
(809) 720-1300

FAX: (809) 720-1178
Tennessee
CSR Electronics
2728 Davenport Rd., Ste. 1
Knoxville, TN 37902
(615) 577-1317

TWX: 5106002162
FAX: 615-577-1306
Texas
Cypress Semiconductor
333 W. Campbell Rd \# 220
Richardson, TX 75080
(214) 437-0496

Texas
Southern States Marketing
1143 Rockingham, Ste. 106
Richardson, TX 75080
(214) 238-7500

FAX: (214) 231-7662
TWX: 9108674754
Southern States Marketing
400 E. Anderson Lane, Ste. 111
Austin, TX 78752
(512) 835-5822

FAX: (512) 835-1404
TWX: 9108742006
Southern States Marketing
5644 Westheimer Ste. 308
Houston, TX 77056
(713) 960-9556

FAX: (713) 960-9706
Utah
Sierra Technical Sales
4700 South 900 East 3-150
Salt Lake City, UT 84117
(801) 566-9719

Virginia
${ }^{*}$ L. D. Lowery Inc. 2801 West Chester Pike
Broomall, PA 19008
(215) 356-5300

FAX: (215) 356-8710

## Washington

Electronic Sources
300120 St. N.E.
Bldg. 1, Ste. 100
Bellevue, WA 98005
(206) 451-3500

Washington, D.C.
*L. D. Lowery Inc.
2801 West Chester Pike
Broomall, PA 19008
(215) 356-5300

FAX: (215) 356-8710

## Wisconsin

Micro Sales Inc.
N. 81 W. 12920 Leon Rd., Ste. 115

Menomonee Falls, WI 53051
(414) 251-0151

FAX: (414) 251-4720

## International Sales Representatives

Cypress Semiconductor International
51 Rue du Moulin a Papier, Bte 11 1160 Brussels, Belgium
Tel: (32) 26722220
Telex: 64677 CYPINT B
FAX: (32) 26600366
Austria
Hitronik Vertriebs GmBH
St. Veitgasse 51
A-1130 Wien, Austria
Tel: (43) 222824199
Telex: 133404 HIT A
FAX: (43) 222826440
Belgium
Microtronica
Keiberg/Brussels Airport
Excelsiorlaan 53/B2 1930 Zaventem-Belgium Tel: (32) 027206010
Telex: 64709 MICRO B
FAX: (32) 027208490

## Denmark

A/S Nordisk Electronik
Transformervej 17
DK-2730 Herlev
Tel: (45) 2842000
Telex: 35200 NORDEL DK
FAX: (45) 2921552
Finland
OY Fintronic AB
Melkonkatu 24 A
SF-00210 Helsinki
Tel: (358) 0-6926022
Telex: 124224 FTRON SF
FAX: (358) 0-674886
France
Cypress Semiconductor France
Bureaux de Sèvres
7278 Grande Rue 92310 Sèvres
Tel. (33) 145341010
Telex: 631606
FAX: (33) 145340109
Newtek
8 Rue de L'Esterel, Silic 583
94663 Rungis Cedex
Tel: (33) 146876025
Telex: 263046 COSERM
FAX: (33) 146878049
Germany
Cypress Semiconductor GmbH
Hohenlindner Str. 6
D-8016 Feldkirchen
Tel. (49) 0899031071
FAX: (49) 0899038427

## Germany

API Electronik GmbH
15, Ahornstrasse
D-8062 Markt, Indersdorf
Tel: (49) 81367092
Telex: 5270505
FAX: (49) 81367398
Astek GmbH
Gottlieb-Daimler-Str. 7
D-2358 Kaltenkirchen
Tel: (49) 41918711
Telex: 2180120 ASK D
FAX: (49) 41918249
Metronik GmbH
Leonhardsweg 2, Postfach 1328
D-8025 Unterhaching b . Munich
Tel: (49) 89-611080
Telex: 17897434 METRO D
FAX: (49) 896116468
Metronik GmbH
Laufamholzstrasse 118
D-8500 Nürnberg
Tel: (49) 911590061
Telex: 626205
Metronik GmbH
Löwenstrasse 37
D-7000 Stuttgart 70
Tel: (49) 711764033
Telex: 7255228
Metronik GmbH
Siemensstrasse 4-6
D-6805 Heddesheim
Tel: (49) 62034701
Telex: 465035
Metronik GmbH
Semerteichstrasse 92
D-4600 Dortmund 30
Tel: (49) 231423037
Telex: 8227082
FAX: (49) 02 31-41 8232
Metronik GmbH
Osterbrooksweg 61
D-2000 Schenefeld
Tel: (49) 408304061
Telex: 2162488
Hong Kong
Tekcomp Electronics
1603 Bank Centre
636 Nathan Road
Kowloon, Hong Kong
Tel: (852) 37109220
Telex: 38513 TEKHL
FAX: (852) 37109220

## Israel

Talviton Electronics
PO Box 21104, 9 Biltmore Street
Tel Aviv 61210
Tel: (972) 3444572
Telex: 33400 VITKO
FAX: (972) 3455626

## Italy

Cramer Italia s.p.a.
134, Via C. Colombo
00147 Roma
Tel: (39) 6517981
Telex: 611517 Cramer
FAX: (39) 65140722
Dott.Ing. Giuseppe De Mico s.p.a.
V. Le Vittorio Veneto, 8

I-20060 Cassina d'Pecchi
Milano
Tel: (39) 29520551
Telex: 330869 DEMICO I
FAX: (39) 29522227

## Japan

Tomen Electronics
2-1-1 Uchisaiwai-Cho, Chiyoda-Ku
Tokyo 100
Tel: (81) 35063670
Telex: 23548 TMELCA
FAX: (81) 35063497

## Norway

Nordisk Elektronik (Norge) A/S
Smedsvingen 4, PO Box 123
N-1364 Hvalstad
Tel: (47) 2846210
Telex: 77546 NENAS N
FAX: (47) 2846545

## Singapore

Desner Electronics PTE Ltd.
190 Middle Rd \# 16-07
Fortune Center, Singapore
Tel: (65) 3373188
FAX: (65) 3373180

## Spain

Comelta S.A.
Emilio Munoz, 41 Nave 1-1-2
E-Madrid 17
Tel: (34) 17543001
Telex: 42007 CETA E
FAX: (34) 17542151

## Sweden

Nordisk Electronik AB
Huvudstagatan 1, PO Box 1409
S-171 27 Solna
Tel: 8635040
Telex: 10547 Nortron $S$
FAX: (46) 8272204

## International Sales Representatives (Continued)

Switzerland
Baerlocher AG
Forrlibuckstrasse 150
CH-8005 Zurich
Tel: (41) 1429900
Telex: 822762 BAEZ CH
FAX: (41) 1445023
Taiwan R.O.C.
Prospect Technology Corp.
5, Lane 55, Long-Chiang Road Taipei
Tel: (886) 27219533
Telex: 14391 PROSTECH
FAX: (886) 27733756

## The Netherlands

Semicon B.V.
P.O. Box 408, 5600 AK Eindhoven

Office: Gulberg 335674 TE Nuenen
NL-5672 AD Nuenen
Tel: (31) 040837075
Telex: 59418 INTRA NL
FAX: (31) 040838635

## United Kingdom

Cypress Semiconductor U.K.
Business \& Technology Centre
Bessemer Drive, Stevenage
Hertfordshire, SG1 2DX
Tel: (44) 0438310118
Telex: 94013897 CYPR G FAX: (44) 0438740141

United Kingdom
Pronto Electronic System LTD.
City Gate House
399-425 Eastern Avenue
Gants Hill Ilford, Essex IG2 6LR
Tel: (44) 015546222
Telex: 8954213 PRONTO G
FAX: (44) 015183222
Ambar Cascom Ltd.
Rabans Close
Aylesbury Bucks HP19 3R5
Tel: (44) 0296434141
Telex: 837427
FAX: (44) 029629670

## Distribution

Marshall Industries:

## Alabama

Huntsville, AL 35801
(205) 881-9235

## Arizona

Phoenix, AZ 85044
(602) 496-0290

California Marshall Industries, Corp. Headquarters El Monte, CA 91731-3004 (818) 459-5500

Irvine, CA 92718 (714) 458-5301

Chatsworth, CA 91311 (818) 407-4100

Rancho Cordova, CA 95670 (916) 635-9700

San Diego, CA 92131 (619) 578-9600

Milpitas, CA 95035 (408) 943-4600

## Colorado

Thornton, CO 80241 (303) 451-8383

## Connecticut

Wallingford, CT 06492-0200 (203) 265-3822

## Florida

Ft. Lauderdale, FL 33309 (305) 977-4880

Altamonte, FL 32701
(305) 767-8585

St. Petersburg, FL 33716 (813) 576-1399

## Georgia

Norcross, GA 30093
(404) 923-5750

## Illinois

Schaumburg, IL 60173
(312) 490-0155

## Indiana

Indianapolis, IN 46278
(317) 297-0483

## Kansas

Lenexa, KS 66214
(913) 492-3121

Maryland
Gaithersburg, MD 20877
(301) 840-9450

Massachusetts
Wilmington, MA 01887
(617) 658-0810

## Michigan

Livonia, MI 48150
(313) 525-5850

## Minnesota

Plymouth, MN 55441
(612) 559-2211

Missouri
Bridgeton, MO 63044
(314) 291-4650

New Jersey
Fairfield, NJ 07006
(201) 882-0320

Mt. Laurel, NJ 08054
(609) 234-9100

## New York

Johnson City, NY 13790
(607) 798-1611

Hauppauge, LI, NY 11788
(516) 273-2424

Rochester, NY 14624
(716) 235-7620

North Carolina
Raleigh, NC 27604
(919) 878-9882

## Ohio

Solon, OH 44139
(216) 248-1788

Dayton, OH 45414
(513) 898-4480

Oregon
Beaverton, OR 97005
(503) 644-5050

Pennsylvania
Mt. Laurel, NJ 08054
(609) 234-9100

Pittsburgh, PA 15238
(412) 963-0441

## Texas

Austin, TX 78754
(512) 837-1991

Carrollton, TX 75006
(214) 233-5200

Houston, TX 77040
(713) 895-9200

## Utah

Salt Lake City, UT 84115
(801) 485-1551

## Washington

Bellevue, WA 98007
(206) 747-9100

Wisconsin
Waukesha, WI 53186
(414) 797-8400

Distribution (Continued)
Semad:
Canada

## Toronto

Markham, Ontario L3R 4Z4
(416) 475-3922

FAX: 416-475-4158

## Montreal

Pointe Claire, Quebec H9R 427
(514) 694-0860

1-800-363-6610
FAX: 514-694-0965

## Ottawa

Ottawa, Ontario K2C OR3
(613) 727-8325

FAX: (613) 727-9489
Vancouver
Burnaby, B.C. V3N 4S9
(604) 420-9889

1-800-663-8956
FAX: (604) 420-0124

## Calgary

Calgary, Alberta T2H 2S8
(403) 252-5664

FAX: 403-255-0966
Cypress Electronics:
Santa Clara, CA 95050 (408) 980-2500

## Falcon Electronics:

Hauppauge, LI, NY 11788
(516) 724-0980

Framingham, MA 01701
(617) 626-2128

Milford, CT 06460
(203) 878-5272

Anthem Electronics, Inc.:
Tempe, AZ 85281
(602) 966-6600

Chatsworth, CA 91311
(818) 700-1000

East Irvine, CA 92718 (714) 768-4444

Sacramento, CA 95834
(916) 922-6800

San Jose, CA 95131
(408) 295-4200

San Diego, CA 92121
(619) 453-9005

Englewood, CO 80112
(303) 790-4500

Elk Grove Village, IL 60007
(312) 640-6066

Lake Oswego, OR 97034
(503) 603-1114

Salt Lake City, UT 84119
(801) 973-8555

Redmond, WA 98052
(206) 881-0850

Zeus Components, Inc.:
Yorba Linda, CA 92686
(714) 921-9000

San Jose, CA 95131
(408) 998-5121

Oviedo, FL 32765
(305) 365-3000

Lexington, MA 02173
(617) 863-8800

Columbia, MD 21045
(301) 997-1118

Port Chester, NY 10573
(914) 937-7400

Richardson, TX 75081
(214) 763-7010

## Quality Components:

Huntsville, AL 35816
(205) 830-1881

Addison, TX 75001
(214) 733-4300

Austin, TX 78758
(512) 835-0220

Sugarland, TX 77478
(713) 240-2255

Tulsa, OK 74129
(918) 664-8812

## Lionex Corporation:

Meriden, CT 06450
(203) 237-2282

Wilmington, MA 01887
(617) 657-5170

Columbia, MD 21045
(301) 995-6640

Fairfield, NJ 07006
(201) 227-7960

Hauppauge, NY 11787
(516) 273-1660

Horsham, PA 19044
(215) 443-5150


CYPRESS SEMICONDUCTOR CORPORATION 3901 NORTH FIRST STREET SAN JOSE, CALIFORNIA 95134


CYPRESS SEMICONDUCTOR CORPORATION 3901 NORTH FIRST STREET SAN JOSE, CALIFORNIA 95134


[^0]:    PAL ${ }^{\circledR}$ is a registered trademark of Monolithic Memories Inc.

[^1]:    Package Code:
    D = CERAMIC DIP
    $\mathrm{F}=\mathrm{FLATPAK}$
    $\mathrm{G}=\mathrm{PIN}$ GRID ARRAY
    $\mathrm{J}=\mathrm{PLCC}$
    $\mathrm{K}=$ CERPAK
    $\mathrm{L}=\mathrm{LCC}$
    $\mathrm{P}=\mathrm{PLASTIC}$
    Q = WINDOWED LCC
    S = SOIC
    T = WINDOWED CERPAK
    $\mathbf{V}=\mathbf{S O J}$
    $\mathrm{W}=$ WINDOWED CERDIP

[^2]:    $+=$ meets all performance specs but may not meet $I_{C C}$ or $I_{S B}$;

    * = meets all performance specs except 2 V data retention-may not meet $\mathrm{I}_{\mathrm{CC}}$ or $\mathrm{I}_{\mathrm{SB}}$;
    - = functionally equivalent

[^3]:    lote: Unless otherwise noted, product meets all performance specs and is within 10 mA on $I_{C C}$ and 5 mA on ISB ;
    $+=$ meets all performance specs but may not meet $\mathrm{I}_{\mathrm{CC}}$ or $\mathrm{I}_{\mathrm{SB}}$;

    * = meets all performance specs except 2 V data retention-may not meet $\mathrm{I}_{\mathrm{CC}}$ or $\mathrm{I}_{\mathbf{S B}}$;
    - = functionally equivalent

[^4]:    te: Unless otherwise noted, product meets all performance specs and is within 10 mA on I ICC and 5 mA on ISB ;
    $+=$ meets all performance specs but may not meet $I_{\text {CC }}$ or ISB;

    * = meets all performance specs except $2 \mathbf{V}$ data retention-may not meet $I_{C C}$ or $I_{S B}$;
    - = functionally equivalent

[^5]:    ote: Unless otherwise noted, product meets all performance specs and is within 10 mA on $I_{C C}$ and 5 mA on $I_{\text {SB }}$;

[^6]:    OUTPUT O - 1.73 V 0015-4

[^7]:    0087-13

[^8]:    Document \#: 38-00078-A

[^9]:    0112-10

[^10]:    *7C291 only

[^11]:    Document \#: 38-00014-B

[^12]:    Document \#: 38-00018-C

[^13]:    $+=$ Plus; $-=$ Minus; $\vee=$ OR; $\wedge=$ AND; $\forall=$ EX-OR

[^14]:    J = Contents of Microprogram Counter
    $\mathbf{K}=$ Contents of Address Register
    $\mathrm{R}_{\mathrm{a}}, \mathrm{R}_{\mathrm{b}}, \mathrm{R}_{\mathrm{c}}, \mathrm{R}_{\mathrm{d}}=$ Contents in Stack

[^15]:    Notes:

    1. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ includes scope probe, wiring and stray capacitance.
    2. $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ for output disable tests.
[^16]:    Minimum Clock Period $=\mathbf{8 0} \mathbf{n s}$

[^17]:    * 10 MHz operation

[^18]:    *Shifted output is loaded into the QLINK.
    SRC = Source
    $\mathrm{U}=$ Update
    $0=$ Reset
    $N C=$ No Change
    $1=$ Set
    $\mathrm{i}=0$ to 15 when not specified

[^19]:    SRC $=$ Source
    $U=$ No Change
    $0=$ Reset
    $1=$ Set
    $i=0$ to 15 when not specified

[^20]:    $\mathrm{U}=\mathrm{Update}$
    $\mathrm{NC}=$ No Change
    $0=$ Reset
    $1=$ Set

[^21]:    $\mathrm{U}=$ Update
    $\mathrm{NC}=\mathrm{No}$ Change
    $0=$ Reset
    $1=$ Set
    $\mathrm{i}=0$ to 15 when not specified

[^22]:    *This bit must be transmitted first.

[^23]:    *QLINK is loaded with the shifted out bit from the checksum register.
    $\mathbf{U}=$ Update
    NC = No Change
    $0=$ Reset
    $1=$ Set
    $i=0$ to 15 when not specified

[^24]:    Note:
    2. 52 Pin PLCC version also available as package type J69.

[^25]:    SPARCTM, Sun-4TM, and NFSTM are trademarks of Sun Microsystems, Inc.
    UNIX ${ }^{\circledR}$ is a registered trademark of AT\&T Bell Laboratories.
    VAX ${ }^{\circledR}$ is a registered trademark of Digital Equipment Corporation.

[^26]:    Notes:

    1) Electrical Test is performed after burn-in. Results of this are used to determine PDA percentage.
    2) Burn-in is performed as a standard for 12 hours at $150^{\circ} \mathrm{C}$.
[^27]:    JEDEC File (Continued)
    10111011111111111110111101111111 10110111111011111111111101111111 01111011111111111110111101111111 01110111101111110111111101111111 01110111101101111111011101111111 00000000000000000000000000000000 00000000000000000000000000000000 11111111111111111110111110111111 10111011111111111111111001111111 10110111111111101111111101111111 01111011111111111111111001111111 01111011110111011111111101111111 01110111111110111111111101111111 00000000000000000000000000000000 00000000000000000000000000000000 1ll111111111111111111111010111111 10111010111111111111111101111111 10110111111111111110111101111111 01111011111111111111111101111111 01111011110111011111111001111111 01110111111101111011011101111111 01110111011111111011011101111111 01110111101111111011101101111111 111111111111111111111111111100111 01111011111011101111111111111011 01111011111011111110111011111011 01111010111111111111111011111011 01111001110111011101110111111011 00000000000000000000000000000000 00000000000000000000000000000000 00000000000000000000000000000000 00000000000000000000000000000000 00000000000000000000000000000000 00000000000000000000000000000000 00000000000000000000000000000000 00000000000000000000000000000000 00000000000000000000000000000000 00000000000000000000000000000000 00000000000000000000000000000000* C8E51* D15A

[^28]:    *This office is a duplicate of the listing that appears under its state of residence.

